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Abstract

Web developers have been relying more and more on the features of JavaScript

for deploying a range of applications, from online banking and email services

to digital media delivery and gaming, rendering it the assembly language of

the Internet. Since it allows external scripts from untrusted third-parties

to access the application’s content, it has become an attractive target for

cyber attackers. This untested and untrusted by the application’s true au-

thor code cannot only damage the content of the application it runs within,

but also obtain access and modify other applications running on the same

browser, or even the host system.

In this paper, we compare implementations that operate as Sandboxes

in order to isolate JavaScript from untrusted third-parties, so that they have

limited privileges over the application. We use specific metrics to compare

them, and afterwards we evaluate those results after testing them on an x64

machine.
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Chapter 1

Introduction

JavaScript [Fla02] is a scripting language developed by Netscape and de-

signed for enhancing Web pages, in order to make them more responsive,

engaging and interactive, by defining event handlers when a specific event

occurs. Its use in Web browsers allows executable content to be distributed

over the Internet in the form of JavaScript scripts, but its role is not re-

stricted to that; JavaScript can also be embedded within any application.

It allows control not only over the context of Web pages, but also over the

browser and over the content and behavior of the HTML forms that appear

in the browser. Moreover, its ability to handle cookies [Fla02] has enabled

their use not only by server-side scripts, but by client-side as well; the HTTP

protocol by design is a stateless protocol [GWS11], whereas web applications

require stateful sessions. The use of cookies is an attempt at reintroducing

the notion of state which is essential for security. Thus, with JavaScript,

programs have the ability to read and write cookie values both by the server

and by the client end.

However, since JavaScript is used for creating documents transmitted

over the Internet, it can also be exploited to launch browser-based secu-

rity attacks. Due to the complexity of the Web browser environment, and

the fact that JavaScript became the standard for executable content on the

Web, it became an attractive target for malicious attackers and security

problems arose. Users’ credentials can be stolen, or benign web applications

can be fooled to deliver harmful content to the user with cross-site attacks

[CHGL06, HV05, DLFMT04]. Another form of attack is the spyware in-

fection (drive-by-download) [SGL04], where the user clicks on a hyperlink
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that could cause hostile software to be downloaded and executed on the

user’s machine, either by using frameworks [teaa], [Teab], [jT], [Tead], [Teaf],

[Teag], JavaScript libraries that abstract messy aspects of the browser’s in-

terface, or by using ad networks [IW12] that can hinder or harm the enclos-

ing page, or by using widgets [Teae], code supplied by an off-site service to

invoke that very service. Content-based attacks [CHGL06] caused by secu-

rity holes of trusted plug-ins are very common, as well as hijacking browser

windows [Chi06], [Pro], [saW], [Sec], caused by browser flaws. Users could

also be lured into providing sensitive information to unauthorized parties

with hijacking attacks [CHGL06, HV05, YCIS07, DG09], where a hostile

application masquerades as another to capture information from the user.

Moreover, a malicious attacker could steal sensitive information from the

user such as cookies [MMT09] and saved passwords, execute arbitrary code

on the host system, compromise the browser security, or even exploit the

privileges that the browser affords to JavaScript [DG09] due to the fact

that JavaScript extensions from untrusted third-parties may contain mali-

cious functionality. Vulnerabilities in the browser could cause the file system

on the host machine to be accessed by unauthorized parties, or system re-

sources to be abused [Pil, Wil05], whereas session riding and self-propagating

worms in Web-based email and social networking sites [Chi06], [Pro], [Pro]

are both very well known attacks. All these attacks lead to the conclu-

sion that JavaScript, thus Web applications and Web browsers [CHGL06]

cannot be trusted. However, despite the threats that JavaScript code could

bring to users, caused by either malicious injected scripts or poorly designed

third-party code, most of them still trust it running on their browsers.

There have been many attempts to address these issues and successfully

thwart these attacks, all of them trying to solve the same problem, but

following different approaches. Previous work has been done with language-

based approaches, auditing mechanisms, Web Workers, Interpreters, and

browser-based approaches.
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Static checks - a language based approach that involves code

checking before it is executed

• GateKeeper [GL09], a static analyzer that protects the host from ma-

licious widgets

• FBJS [MT09], a subset of JavaScript for the Facebook networking site

in which every part of the application’s code is rewritten to that safe

subset

• ADsafe [Cro08], a subset of JavaScript that filters specific methods in

order to isolate advertisements

• Jacaranda, Dojo Secure, and Blancura [FWB10], all used for web page

advertising isolation

• Type refinement [KSW+13]

Apart from static checks, program instrumentation has been

studied, where the code is checked dynamically with filters, rewrit-

ers, and wrappers, after its execution

• [MMT09] found vulnerabilities in Adsafe and BFJS, and proposes dy-

namic checking as a solution by combining filtering, rewriting, and

wrapping [MMT09]

• Caja [MSL+08] is a mechanism that filters and rewrites the code

• WebSandbox [IM09],BrowserShield [RDW+07], and AjaxScope [KL10]

offer dynamic instrumentation

• [PSC09] is another example of dynamic instrumentation

• Mutation-Event Transforms [ELX07] is a client mechanism that runs

before any other script and disallows the use of certain web client

features

• CoreScript [YCIS07] is a mechanism for regulating the behavior of

untrusted JavaScript code by rewriting scripts
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• XPCNativeWrapper [Cen], a JavaScript object for wrapping proper-

ties that should be used whenever privileged code is used to access

unprivileged code

• JS0 [AGD05] for better error detection

• [Thi05], a type system for analyzing JavaScript programs

• [CF91] combines static and dynamic typing

Auditing mechanisms have been developed like:

• the Intrusion Detection System [HV05]

• SABRE [DG09], a Security Architecture for Browser Extensions

Work on Interpreters, JavaScript engines that compile JavaScript

code, includes:

• Safe Interpreters [AM98]

• js.js [TBK12], an interpreter that runs on top of JavaScript

Web Workers as separate threads to isolate JavaScript code

• TreeHouse [IW12]

• JSandbox [Gre]

• Bawks [The]
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Finally, browser-based approaches that use special browser op-

erating systems with their own security architecture include

• Tahoma [CHGL06]

• the Illinois Browser Operating System [TMK10]

• Google Chrome [RBP09]

• Internet Explorer [Zei]

• The OP browser [GTK08]

• The Atlantis browser [MD11]

• The Gazelle browser [WGM+09]

Frame isolation

• [BJM09]

• SMash

• Subspace [JW07]

• Open Mashup OS (OMOS) [ZYG08]

• AdJail [TLGV10]

• AdSentry [DTLJ11]

Others

• MashupOS [WFHJ07]

• OMash [CHC08]

• BEEP [FHEW08]

• SpoofGuard [BML+07]

• ConScript [ML10]
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• BFlow [YNKM09]

• Mugshot [MEH10]

Sandboxing can also take place on hosts

• V32 [FC08]

• Ostia [GPR04]

• using software fault isolation with MisFit [SS98]

• Remote Procedure Calling [WLAG94]

It can also take place in the browser, sandboxing native code

with:

• Xax [DEHL08], a browser plug-in for deploying desktop applications

on the web

• NativeClient [YSD+09]

A classic dilemma [PS01] is when a user wants to see the content of a

received file, but is afraid of what will possibly happen to his host system

in case the file contains a virus. Our project takes that dilemma to the next

step, where the user is reluctant to trust any application coming from the

web. On the other hand, there is the type of users [CHGL06] that assume

that Web applications cannot interfere with one another or with the browser

itself, which leads them to executing untrusted third party content without

realizing it. The sandboxing idea is not new and tries to give a solution

to the JavaScript isolation problem [MMT09], where a hosting page, Phost,

includes content P1,. . . ,Pk from untrusted origins that will execute in the

same JavaScript environment as Phost. This problem is difficult because of

the close integration of JavaScript with complex browser applications, such

as Mozilla [HV05], however, many different sandboxing implementations

have been created in order to execute programs in a restricted environment;
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our goal is to investigate further the sandboxing idea and discuss these dif-

ferent approaches that contribute to the solution of the JavaScript isolation

problem. We did that by installing their code on an x64 Windows machine,

evaluating them according to specific metrics, and comparing them, conclud-

ing to how effective and easy these approaches are, and how much overhead

they cause. The authors’ reviews but ours as well will be considered.

The rest of the paper is organized as follows. In section 2, we give the

literature review, describing in more depth previous implementations that

were meant to solve the JavaScript isolation problem. In section 3 we give an

overview of the JavaScript language and its features. Section 4 demonstrates

the steps we followed in order to reach our conclusions, while our results of

the experiments and the comparison of the two implementations are given

in Section 5. Section 6 consists of the Evaluation of our project. Finally, we

conclude our discussion and provide some Future Work ideas in Section 7.
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Chapter 2

Literature Review

Since the web is constantly exploited by attacks varying from code injec-

tion with cross-site scripting, to browser hijacking, it cannot be trusted.

Spyware infection and session riding are other popular attacks able to ex-

ploit vulnerabilities especially on the browser. Many efforts have been made

on preventing these attacks as well as self-propagating worms and content-

based, phishing and spoofing attacks. These efforts are all trying to solve the

same problem from different perspectives, leading to different contributions.

Language-based approaches include static analysis, program instrumenta-

tion, and the formalization of JavaScript. In addition, auditing mechanisms

for monitoring the behavior of the code have been developed. Interpreters

and Web Workers have also been the focus of many studies for JavaScript

isolation. Finally, browser-based approaches include Browser Operating Sys-

tem implementations and iframe isolation.

2.1 Language-based approaches

We can see that JavaScript isolation is a very difficult problem, since so

many attempts have been made on solving it with no success. JavaScript

is a dynamic language; this means that its code can change dynamically

at runtime, thus violations will not be detected until the code is executed.

It also contains methods like eval, this and others, that can help an at-

tacker easily exploit it and attack the system in many ways. The first and

most obvious way of preventing such attacks is static analysis; compilation

of the code and error detection before it is executed. However, this ap-
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proach proved to be insufficient, since methods change dynamically, or even

new ones can be added. Examples of great importance using this technique

are Facebook FBJS and Yahoo! ADsafe, systems widely known and used.

These systems, although they were considered to be safe, were not; [MT09]

discovered vulnerabilities that will be explained in 2.1.2 more thoroughly,

rendering static analysis an insufficient method. Program instrumentation

became the solution for many people; isolation techniques were used like fil-

tering, rewriting, and wrapping, and error checks were inserted dynamically.

However, a completely different language-based approach was also studied,

the formalization of JavaScript; JavaScript type systems were designed in

order to create a completely safe subset of the language.

2.1.1 Static Checks

GateKeeper

GateKeeper [GL09] is a static approach to security policy enforcement in

order to protect the host page from widgets that contain malicious code.

The hosting site that wants to enforce a security policy programs the pol-

icy and applies it to the newly submitted widget for restricting widget ca-

pabilities, preventing code injections and browser redirects, making sure

that built-in objects are not modified, allowing cross-site scripting detec-

tion, and preventing global namespace pollution. It also uses filters for dis-

allowing JavaScript methods like eval, Function, with, setTimeout and

setInterval, as well as wrapping mechanisms for running runtime checks.

Two subsets of JavaScript are used; JavaScriptSAFE and the JavaScriptGK.

According to which subset the code belongs to, it either proceeds to fur-

ther instrumentation, or pointer analysis; a static code analysis technique

that establishes which pointers point to which variables and helps the rea-

soning process. If the program passes the checks above and lacks stati-

cally unresolved array accesses and innerHTML assignments, it belongs to

JavaScriptSAFE, otherwise, to JavaScriptGK. An important feature of this

system is that it provides detailed information about why a widget fails, so

that the widget developer can change the code and resubmit it. GateKeeper

was tested on 8,379 real-world widgets with nine privacy policies, resulting
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in only 1,341 policy violations, but unfortunately, its implementation is not

available for inspection.

FBJS

Because of its great extent and influence that makes Facebook a more visible

target, it needed a special JavaScript language to safely run applications in

separate namespaces. Facebook applications are written in FBML, Facebook

HTML. Since they need to interact with the user’s profile, they are not iso-

lated in iframes. However, their actions should be restricted. Facebook uses

an isolation mechanism where every part of the application’s code is rewrit-

ten in a subset of JavaScript, the FBJS [MT09], and is runtime checked to

make sure it contains valid FBJS. FBJS has the same syntax as JavaScript,

but in contrast with GateKeeper and ADSafe, all variable names are pre-

fixed with a unique identifier. This way, the application cannot access native

JavaScript objects. Again, unlike GateKeeper and ADSafe, the FBJS does

not try to do local static analysis of field names, and access to the DOM is

not allowed.

FBJS focuses on the fact that window should not be accessed by third-

party scripts because it has global scope and access to it might cause great

damage. One way of accessing window is by executing the identifier this.

Since renaming this would change the meaning of JavaScript, this is re-

placed by ref(this) by the FBJS preprocessor. ref checks what this

refers to, and if it refers to window it is rewritten to null. Another way

of accessing the window is by accessing certain standard predefined object

properties like \_\_parent\_\_ and constructor. Therefore, these prop-

erties are blacklisted, and access to them is rewritten as \_\_unknown\_\_.

Finally, properties like valueOf are redefined and cannot use the construct

with.

ADsafe

Yahoo! ADsafe [Cro08] is an effort of isolating web pages from advertise-

ments. Much like GateKeeper, Yahoo! defines a safe subset of JavaScript,

filtering specific methods in order to allow guest code safely interact with

the application, using a static approach. It is verified by the tool JSLint
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without requiring human inspection. The script is not allowed to access

the DOM directly; instead, it is given indirect access to it, by accessing an

ADSafe object provided by the page’s server. ADSafe does not apply script

modification of any type, and can be performed at any stage. However,

this approach does not prevent advertisements from accessing new methods

added to the built-in prototype objects by the hosting page.

Jacaranda, Dojo Secure

Jacaranda and Dojo Secure [FWB10], just like ADsafe, are used for safe web

page advertising. They have the same approach as ADsafe; they use static

analyzers to verify the correctness of the code based on a specific subset

of JavaScript that differs according to the system. The external script has

only access to objects defined by the host, thus it cannot interact with the

rest of the page. The restrictions it imposes are on the publisher, using

blacklists, so that the advertisement will not breach containment. However,

they both share the same vulnerability as ADsafe, where new methods added

at runtime can be accessed by advertisements.

Blancura

[FWB10] shows that existing static analyzers used in ADsafe [Cro08], Dojo

Secure, and Jacaranda [FWB10] are not capable of efficiently sandboxing

malicious advertisements. So, it proposes Blancura, a system that whitelists

known-safe properties. That way, users cannot access exploitable methods

because they are not on the whitelist. The host and each guest are run in

separate namespaces so that they can interact with the same objects but

without interfering with one another. Like FBJS [MT09], Blancura requires

that all property names begin with a unique prefix, and only these prefixes

can make access requests. This way, if a vulnerable method is added by

the host, the malicious script will not be able to access it. Whitelisting

properties only incurs a tiny memory overhead, whereas the addition of

prefixes does not affect runtime performance.
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Type refinement

[KSW+13] proposes type refinement of JavaScript by implementing static

analysis and taking advantage of the implicit conditional executions in order

to provide improvement in analysis precision. The first condition, isUndefNull,

checks whether a value is either null or undefined when a property is ac-

cessed, added, updated, or deleted, and returns a type error. The second

condition, isPrim, checks whether a value is primitive rather than an object,

when a value is converted into another type during execution. Finally, the

third condition is isFunc and checks whether a value is callable. If it is not,

a type error execution is thrown. [KSW+13] shows that type refinement can

have a significant impact on precision of up to 86%, without causing any

adverse performance impact.

2.1.2 Program Instrumentation

Improving ADSafe and FBJS

[MT09] discovered vulnerabilities in Yahoo!ADsafe [Cro08] and Facebook

FBJS [MT09]. Analyzing the FBJS, they discovered that two methods could

be used to return their this due to library leaks, thus obtaining access to

the window object; setSendSuccessHandler of LiveMessage.prototype,

and htmlEncode of String.prototype. They also discovered that runtime

monitoring functions like ref and idx could be switched off, thus altering

the scope of the program. These vulnerabilities could allow an attacker

to gain control over the whole Facebook page, alter the user’s profile and

exploit browser vulnerabilities. Facebook team was informed and fixed the

problem within 24 hours.

ADsafe, Yahoo! JavaScript subset, is used to safely run advertisements

in a web page. While trying to prove that, [MT09] discovered the vul-

nerability that the JavaScript library prototype.js provides ADsafe code

access to the global scope. This vulnerability could lead to the violation of

isolation properties. Restrictions were imposed by the vendor, however, fur-

ther investigation is needed since the language they proposed has the same

limitations as other blacklisted static verifiers.
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Combining Filtering, Rewriting, and Wrapping

[MMT09] proposes the combination of filters, rewriting and wrappers for iso-

lating JavaScript. That way filters will prevent malicious code from execut-

ing without affecting the performance, rewriting will insert runtime checks

for greater programming expressiveness, and wrappers will prevent the mis-

use and limit the impact of untrusted code without requiring any changes

on the code. However, the rewriting process might affect performance, and

wrapping mechanisms might cause runtime overhead. Assuming that a host

page includes untrusted code from different programs, either benign or not,

[MMT09] has two goals; the first one is restricting access to native properties

making use of a Whitelist that consists of native object’s properties that

can be accessed by untrusted code, and the Blacklist that consists of the

properties that access to them should be forbidden. The second goal is to

isolate the namespace of untrusted principals, thus separate the set of global

variables accessed by any two untrusted programs. The filters proposed are

for disallowing all terms which contain an identifier from the Blacklist, the

identifiers eval, Function or constructor, and identifiers whose name be-

gin with $. These filters combined with rewriting and wrapper functions are

designed in order to create a more expressive and safe subset of JavaScript,

the JSe2.

Caja

The Google Caja [Teac] is a project aiming to provide a safe subset of

JavaScript for object-capability security. It is enforced by a static verifier

(filter) and runtime checks (rewriting). A large JavaScript subset, Caja,

compiles untrusted JavaScript code with Google Caja, and produces code

filtering the with and eval methods in Cajita. Cajita is a capability-based

safe subset of Caja without the this method, used for code evaluation.

Caja allows untrusted code from different sources to interact in a safe way,

however lacking in complexity and efficiency. Its alterations from JavaScript

include rejection of all names ending with (double underscore), because

access to \_\_proto\_\_ of an object grants the authority to create more

objects like that. Moreover, it adds the ability to freeze an object, so that

its properties cannot be set, added or deleted, throwing an exception when-

ever such an attempt is made. When compiled, the code is separated into
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modules isolated and without being able to access each other. Caja also

enforces the convention that property names ending in (single underscore)

are protected instance variables.

WebSandbox

The Web sandbox [IM09] secures web content through isolation. It builds

on top of Microsoft’s BrowserShield project which uses the rewriting isola-

tion mechanism. It uses an open-sourced framework so that users can test

the Sandbox by using a cross-browser JavaScript virtualization layer, and

provide their feedback in the effort of providing a standardized secure web

platform.

BrowserShield

BrowserShield [RDW+07]is a framework for dynamic instrumentation, built

on top of Shield’s vision to a new domain. The web page and any embedded

script are rewritten at an enterprise firewall at runtime to use a JavaScript

library that will translate them according to its policies to safe equivalents.

Using the firewall, BrowserShield updates can be centralized at the firewall

without having to install them. However, end-to-end encrypted traffic is not

visible to a firewall, leaving the browser extension and the web publisher

to handle it separately. BrowserShield is focused on HTML, script, and

ActiveX controls; it is not well designed for preventing HTTP or images

vulnerabilities. However, if deployed with an HTTP filter and an Antivirus,

it can offer great protection, with only moderate overhead. BrowserShield

can also serve as a platform for link translation, script sandboxing, and

script debugging.

AjaxScope

AjaxScope [KL10], just like BrowserShield [RDW+07], is a framework for

dynamic instrumentation. The web application is monitored across users,

and an AjaxScope proxy acts as a mediator; it parses the code on-the-fly and

rewrites it according to security policies, before it reaches the user. AjaxS-

cope takes advantage of the instant redeployability of the web application
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environment to dynamically provide differently instrumented code to the

users. In order to reduce the overhead of every single user and spread it

across them, the tests are distributed, and the instrumentation taking place

is adaptive. AjaxScope does not require server-side modifications nor ex-

tensions or plug-ins on the browser. AjaxScope’s monitoring techniques, by

exploiting the power of software-as-a-service, can be applicable to a broader

domain of software.

Lightweight self-protecting JavaScript

[PSC09] suggests a method of making JavaScript self-protecting and reduc-

ing its overhead. Unlike other methods of dynamic instrumentation like

AjaxScope [KL10] and BrowserShield [RDW+07], the external script does

not go through runtime parsing, and no code is dynamically generated. In-

stead, [PSC09] inserts security policies via a reference monitor in order to

intercept API calls and load new code in the header of the page. Thus, its all

functionality is based on security policy enforcement. Challenges to that are

completeness and tamper-proofing; all API calls must be intercepted, and

the code must not subvert the monitor mechanism itself. [PSC09], just like

BrowserShield, does not require browser support to intercept and transform

JavaScript operations. In addition, the protection can be applied either at

the server-side, or at the client-side since it requires no browser modification.

What is very interesting about that mechanism, is that the security policy

is applied even if the code is compromised by an XSS attack.

Mutation Event Transforms

Mutation Event Transforms [ELX07], METs, is a mechanism that uses the

rewriting technique to offer client-side security by enforcing security policies.

These policies range from disallowing scripts in certain parts of the page, to

taint-based policies that regulate the flow of credit-card information input

by the user. They are specified by Web application servers as JavaScript

functions and included at the top of the page. Every time a Web page

is instantiated or updated, they are invoked by the client to ensure that

the page conforms to the security policy before any other script is run. This

way, METs transform the mutations before they take place on the web page.
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METs is an easy to use system since it requires straightforward changes to

existing web browsers.

CoreScript

CoreScript is an operational semantics of a subset of JavaScript, used to

prove the correctness of the rewriting process studied in [YCIS07]. It was

developed to be used in program instrumentation of JavaScript, combined

with policy management. This combined mechanism aims at the protec-

tion against malicious client-side code, as well as patching security holes.

The advantage of this tool comparing to others, is that it enables a unified

framework that enforces various security policies with the same rewriting

mechanism. Moreover, CoreScript is used considering higher-order scripts,

scripts generated by other scripts. The script goes through security checks

at runtime, guided by a customizable security policy. User prompts are gen-

erated and the web page viewer decides on how to proceed according to the

prompts. Thus, there are two distinct operations described; policy man-

agement, expressed by edit automata, and the rewriting mechanism. These

operations are separated using a policy interface. Although usually policies

are intended to secure the hosting page from a specific attack, [YCIS07]

proposes the combination of policies for guiding the rewriting process, with

the purpose of battling multiple attacks at a time. Experiments on the

effectiveness of CoreScript have proven successful, but unlike METs, such

proxy-based mechanisms must parse data and code in requests which might

lead to problems. Further investigation is needed on the practical aspects

of deployment.

XPCNativeWrapper

The XPCNativeWrapper [Cen] is a JavaScript object that implements the

wrapping isolation mechanism. Its aim is to provide safe access to the prop-

erties and methods of a possibly unsafe object, creating a security wrapper

around it. This way, access to the properties of this object is limited. It can

be used in all Firefox versions. The XPCNativeWrapper is an easy to use

mechanism since it does not require much modification to the existing code.

There are four case scenarios; when a protected script accesses a trusted
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object, then no wrapper is created and the script has full access over the

object’s properties. When a protected script accesses an untrusted object,

an implicit deep XPCNativeWrapper is created. Finally, when an unpro-

tected script accesses either a trusted or an untrusted object, then again no

wrapper is created. Firefox 3.6.2 added the unwrap() method for unwrap-

ping a wrapped object. Although two bugs that were discovered in previous

versions of Firefox are now fixed, it still has a lot of limitations that do not

allow commonly used properties to be used with XPCNativeWrapper.

2.1.3 JavaScript type-systems

JS0
T

JS0 is a formalism of JavaScript developed by [AGD05]; it is an object-based

language with features of JavaScript like dynamic addition of methods and

functions creating objects. Based on that formalism, [AGD05] aim to design

a type system, JS0
T, to allow type inference and offer safety, so that pro-

grammers do not have to write explicitly types. [AGD05] adopts congruence

for subtyping between function types, and defines a type inference algorithm,

unlike [Thi05]. This is sound with respect to the type system. The chal-

lenge JS0 is facing is the imperative nature of the language combined with

the possibility of extending objects. Although it is a promising approach,

further work is required in order to make the subtyping for functions more

flexible.

A type-based program analyzer

[Thi05] is the first attempt at defining a type system for analyzing a weakly

typed language, JavaScript. [Thi05] tracks automatic conversions that occur

in JavaScript through a matching relation, and flags the suspicious ones. It

includes singleton types, subtyping, and first class record labels. That way,

programs can be easily rejected if they have type mismatches or suspicious

conversions. Unlike [AGD05], it does not support recursive types, and no

type inference algorithm is given, but there is an implementation.
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Soft typing

Soft typing [CF91] combines the advantages of static typing with the flex-

ibility of dynamic typing. Thus, it is a dynamically typed language that

detects potential type errors statically. It focuses on a core functional lan-

guage similar to ML and Scheme, the prototypical representatives of static

and dynamic languages; it is an extension of the ML language that sup-

ports union types, recursive types, and parametric polymorphism. It also

uses a type inference engine with an algorithm that inserts dynamic run-

time checks, but does not reject programs. Further work on adding type

intersection to the polyregular types in order to subsume them would be

beneficial.

Object-capability model

[MMT10] studies the object-capability model where the programming lan-

guage objects are both subjects that initiate access and objects of regulated

actions. This model is another approach for restricting interactions between

web applications, without preventing them from interacting with the user or

the hosting page. [MMT10] is interested in authority safety, a subset of the

object-capability goals that provides safety conditions that support isolation

without any enforcement techniques. [MMT10] proves that capability safety

implies authority safety, and focuses on the Cajita subset.

2.2 Auditing mechanisms

Apart from Language-based techniques, monitoring systems have been de-

veloped for auditing JavaScript behavior and alerting users in order to pre-

vent possible attacks.

2.2.1 Intrusion Detection System

The first attempt of designing an auditing mechanism for monitoring

JavaScript code and logging operations is discussed in [HV05]. This ap-

proach uses an Intrusion Detection System, IDS, for detecting malicious

code. The detection can take place either on anomaly detection, comparing
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the behavior of the script to the ’normal’ behavior of other scripts, inter-

preting deviations from the ’normal’ behavior as the problem, or on misuse

detection, comparing the operation of a script to some pre-defined attacks

called signatures. It audits JavaScript code and detects possible attacks. Its

overhead increases as does the number of operations logged, so future work

is required on decreasing the overhead by using more efficient I/O buffering

techniques as well as using more sophisticated signatures.

2.2.2 SABRE

Since extensions are not constrained by the same origin policy, they are

executed with the privileges of the browser, thus they can misuse these

privileges. Even when they are benign, they still share the browser’s vul-

nerabilities and therefore can be exploited by a malicious web site. SABRE

[DG09] is a Security Architecture for BRowser Extensions that monitors

JavaScript extension’s behavior; it differs from prior work in that it does

not reject malicious code, but instead it uses information flow tracking to

analyze plug-ins. Its core functionality is based on identifying extensions

that carry sensitive information, and it manages that by using labels. In

case the object that carries sensitive information is accessed in an unsafe

way, an alert is raised. Another difference from prior work is that the mon-

itoring process happens within the browser and not at the system level.

Its implementation though, requires some changes in the web browser.

SABRE can successfully identify information flow violations, and despite the

high overhead it reports, the performance does not slow down. It has proved

to be a substantial mechanism, but future work is required for making it

browser-portable, and for determining whether it can leverage static analysis

techniques in order to reduce its high overhead.

2.3 Interpreters

Interpreters are JavaScript engines that parse, compile, and execute

JavaScript code. Examples of commodity browsers implementations involve

SpiderMonkey, deployed by Mozilla, V8, deployed by Google and Opera,

JavaScriptCore, deployed by Safari, and others. These implementations can
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be used combined with various techniques to offer secure execution of third-

party scripts in web pages.

2.3.1 Safe interpreters

The goal of a safe interpreter is triple; access control in various objects,

ensure independence of different contexts, and manage trust relationships.

By doing that, it offers both data security to the user, and user privacy.

[AM98] suggests that security issues should be considered during the initial

design of new scripting languages. Safe interpreters tackle cross-window and

Trojan horse attacks. Since objects with browser or window data are read

accessible, safe interpreters isolate scripts from executing unsafe commands,

making use of a framework in which a variety of security policies can be

implemented. They alert the user to suspicious behavior and terminate

trust relationships when unloading of HTML documents.

2.3.2 js.js

[TBK12] proposes js.js, a JavaScript interpreter that runs on top of

JavaScript and allows third-party scripts to be executed within a sandboxed

environment. Thus, code is double protected by both the interpreter and

a wrapper around it. js.js is browser-portable, and protects against page

redirection, spin loops, and memory exhaustion by placing optional checks

inside the interpreter loop. The important feature of js.js is that it supports

the full JavaScript language unlike static analyzers previously discussed.

Its core functionality is based on allowing the application to have fine-

grained control over what actions a third-party script can perform. The

application acts as a mediator that intercepts all access requests from the

script, deciding whether it will allow them or not before they reach the

browser, while using the js.js library to execute the third-party script in the

sandbox. However, js.js presents much overhead and future work is required.

2.4 Web workers

Web Workers are JavaScript scripts that run in separate threads, executed

from an HTML page. Although their initial aim was to enable web pages
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to be responsive even when they run long tasks, they can also be exploited

and used in an attempt to make web pages safe.

2.4.1 Treehouse

TreeHouse’s [IW12] aim is to isolate third-party scripts and limit their in-

fluence by using Web Workers as containers to run guest code. It is a

system that tries to minimize modification or redesign, development-time

and runtime code changes, and server configuration. It requires no browser

modifications, but one of its limitations is that the guest code sometimes

needs minor restructuring. It is the first work on virtualizing the browser

in a backward compatible way that requires no server configuration and

protects against exhaustion attacks. TreeHouse gives the application au-

thor fine-grained control over the code by letting him define what access is

permissive by guests.

TreeHouse virtualizes the browser’s API to the sandboxed code. Each

application runs in a different Web Worker. These Workers do not have

access to the DOM; instead, a broker is installed in each Web Worker. In the

application environment a monitor is required. The role of the broker is the

virtualization of the browser’s resources (virtual DOM), and the handling of

communication between the script and the monitor, using message passing.

The monitor is used for applying changes in the VDOM to the real DOM

and for delivering DOM events that are decided by the author to guests.

When the guest code invokes the browser’s API, modifies the DOM, or

makes a request for registration to DOM changes, the broker decides on

whether these actions will be allowed and forwarded to the DOM according

to specific policies. If they are not, the broker terminates the guest.

TreeHouse’s implementation was successfully run on Chrome, Safari,

IE10 and Firefox. However, it demonstrates significant overhead on DOM

operations, with much latency shown in page load on large applications. Fi-

nally, porting an application to TreeHouse requires modest effort by chang-

ing some lines of code, whereas writing a non-trivial policy requires about

30 minutes.
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2.4.2 JSandbox

JSandbox [Gre] is an open source JavaScript sandboxing library that makes

use of HTML5 web workers in order to run untrusted content safely. It has

been successfully tested on Firefox and Google Chrome.

2.4.3 Bawks

Bawks[The] is a JavaScript sandbox based on JSandbox from [Gre]. It hosts

untrusted code inside a Web Worker thread, and uses cross-origin messaging

for communication. It makes use of four different functions; Load that loads

the script, Call that calls the function, Eval that evals the code inside the

untrusted scope, and Whitelist, a list with all the trusted functions.

2.5 Browser-based approaches

2.5.1 Browser Operating System

Tahoma

Tahoma [CHGL06] is a browser-portable system that uses virtual machines

for isolating web applications, so that users do not need to trust the web

browser. It is based on the Browser Operating System, BOS, a software

layer on which browsers execute. Not only does it provide strong isolation

between web applications, but between the browser and the host system

as well. Tahoma is a proposal of complete re-examination of the browser

architecture and is easy to use since it requires only three modifications on

the browser.

When a browser instance wants to run an application, the BOS acts as

the mediator, checking whether it conforms to the network policy; if it does,

it is executed on the virtual screen and finally aggregated to the physical.

Each browser instance can only execute a single web application, unlike in

conventional browsers.

It can effectively prevent both sandbox and spoofing vulnerabilities since

it uses virtual machines for sandboxed environments, and the window man-

ager decorates the browser instance which cannot be later modified. How-
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ever, it presents deficiencies in sharing interfaces and improper labeling vul-

nerabilities; although it limits the sharing interfaces they still exist, and

although web services declare the scope of their web applications, Tahoma

depends on external systems like DNS, and if these systems are subverted,

then Tahoma will be subverted as well. However, it is a system that offers

strong isolation without sacrificing performance.

IBOS

The IBOS [TMK10], Illinois Browser Operating System, is both an operating

system and a browser. Like Tahoma, it uses the BOS architecture, but its

principle goal is to reduce the Trusting Computing Base (TCB) for the

browser. It manages to remove almost all traditional OS components and

services by mapping browser abstractions to hardware abstractions. This

mapping happens by pushing security decisions to the lowest layers in order

to avoid millions of lines of library and OS code. IBOS is the first attempt

of its kind to improve browser and OS security. Its principle is to control

the sharing interfaces among web applications and traditional applications,

like Tahoma, as well as enforce security policies without changing the web

applications. It also avoids OS sandboxing because it is complex and difficult

to implement.

Its performance in security safety is effective. As for page latency, al-

though it reduces tremendously the TCB, it does not have the results ex-

pected. When comparing it to Tahoma, which operates mostly on hardware-

level abstractions, we find that the latter is unable to provide full backwards

compatible web semantics from the VMM and more fine-grained protection

for browsers.

Google Chrome

Google Chrome [RBP09] improves its security by modifying its architec-

ture. Its major components are two; the high-privilege browser kernel, and

the low-privilege rendering machine. The former is trusted and acts with

the user’s authority to provide network access, store cookies and history

databases, and draw the user’s interface. On the other hand, the rendering

engine is not trusted to interact with the user’s operating system and other
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processes since it parses HTML, executes JavaScript and performs other

tasks for the Web pages. Google Chrome’s architecture consists of many

layers in order to prevent this interaction; first, the untrusted web content

is sandboxed within a JavaScript virtual machine which protects different

sites from each other. The next layer consists of OS and runtime exploit

barriers to make it more difficult to exploit vulnerabilities in the JavaScript

sandbox. Finally, a sandbox is used again at the operating-system level

in case exploits escape the previous layers. This Windows implementation

runs with a restricted Windows security token, an invisible Windows desk-

top, and a restricted Windows job object. Compared to TreeHouse which

manages to isolate scripts within web applications, Google Chrome isolates

web applications only from each other. It also starts with a complex system

and tries to remove unneeded portions of it, while IBOS starts with a clean

slate and builds on top of it.

Internet Explorer

Internet Explorer [Zei], just like Google Chrome, is a commodity browser

with its own architecture for security. More specifically, IE8 has incorpo-

rated a new feature called Loosely-Coupled IE or LCIE which is a collection

of internal architecture changes in order to improve the reliability, perfor-

mance, and scalability of the browser. The browser frame and its tabs are

isolated and located in separate processes and components use asynchronous

communication with each other, so that potential failures in a tab cannot

affect the rest of the browsing session. Moreover, the frame and the broker

object are located in the same process which improves performance. Fi-

nally, Low and Medium integrity tabs can reside in the same UI frame; this

way, Protected Mode can be turned on or off on a per-tab basis, thus vastly

improving usability.

The OP browser

Another web browser, the OP browser [GTK08], was designed in order to im-

prove browser security. The OP browser combines operating system design

principles with formal methods, and is partitioned into smaller subsystems.

These are the web page subsystem, a network component, a user-interface
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component, a storage component, and a browser kernel. All communica-

tion between the subsystems is managed by a browser kernel that enforces

security features. OS-level sandboxing techniques are used to limit the in-

teractions of each subsystem with the operating system by denying file sys-

tem and network access. Security policies are enforced to be applied to

browser plug-ins by interposing on message passing in the browser kernel.

The OP browser provides better security and fault isolation than monolithic

browsers, and among with the Gazelle browser [WGM+09] they are the only

ones to offer the same protection to plug-in content as to standard web con-

tent. However, the fact that it uses standard browser modules to provide

the DOM tree renders it inefficient [MD11].

The Atlantis browser

[MD11] propose the Atlantis browser, a microkernel web browser, not only

for better security but for a more extensible execution environment as well.

The Atlantis kernel defines a narrow API for basic services like network I/O

and screen rendering. Its goal is to enforce the Same Origin Policy and to

allow web developers to customize the runtime environment for their pages.

At the bottom of the Atlantis architecture is the master kernel which

consists of the switchboard process that creates the isolation containers for

web pages, the device server that allows access to peripheral devices, and

the storage manager that provides a key interface.

The Atlantis browser differs from Gazelle [WGM+09], the OP [GTK08],

and IBOS [TMK10] in that it has a single master kernel and multiple sand-

boxed per-instance kernels so that even if the kernel is compromised, the

entire browser will not be compromised, unlike the others.

The Gazelle browser

Gazelle is a secure web browser introduced in [WGM+09]. The browser

kernel runs in a separate protection domain and interacts directly with the

underlying operating system. The rest of the principals communicate with

one another only through the browser kernel. It uses the Same Origin Policy

to offer consistency across various resources. Gazelle has the same princi-

pal instance as Google Chrome’s [RBP09], but with one difference; Google
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Chrome considers the sites that share the same registrar domain name to

be from the same site, whereas Gazelle considers them different.

The Gazelle browser offers strong isolation between web domains, but

does not protect intra-domain components like Atlantis does [MD11]. Some

of the problems it is facing are display protection and resource allocation.

Multi-process Browser architecture

[RG09] shows that web content can be divided into separate web programs

without losing compatibility with existing content, and that separate in-

stances can exist within the browser. The purpose of [RG09] is to create a

multi-process browser architecture for web application isolation in order to

improve the browser’s robustness and performance. OS processes are used

as an isolation mechanism, and web program processes are sandboxed in

order to help the enforcement of some aspects of the browser’s trust model.

[RG09] design idea is that one process is dedicated to each program instance

and the components that support it, while the remaining components are

safely executed in a separate process. The architecture described has been

implemented by Google in the Chromium [RBP09] web browser.

2.5.2 Frame isolation

Fragment Identifier Messaging and postMessage

In [BJM09] security policies for frame isolation like the same origin pol-

icy, the permissive policy, the window policy, the descendant policy, and

the child policy are discussed and compared, answering the question of

how to select the best navigation policy that would defeat both security

and compatibility issues. Trying to solve the problem of frame isolation in

mashups, where interframe communication is required, they end up propos-

ing the descendant policy, adding two techniques. Since navigation is essen-

tial for interframe communication, collaborating with the HTML 5 working

group, their proposed techniques are the fragmentidentifier messaging and

the postMessage. The former is a channel that uses frame navigation to

send messages between frames directly to each other, without using the net-

work’s latency. This way, the attacker cannot eavesdrop the message. The
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postMessage technique is a browser API that allows asynchronous commu-

nication between frames. These techniques were deployed by commodity

browsers like Internet Explorer, Google Chrome, Safari and Firefox.

SMash

SMash [DKBS+08] mitigates gadget hijacking by monitoring the frame hi-

erarchy for unexpected navigations. Although these navigations cannot be

prevented, the user will be alerted. There are however cases where the at-

tacker can lure the victim into entering sensitive information, since SMash

waits 20 seconds for a gadget to load before assuming that it has been hi-

jacked.

Subspace

Subspace [JW07] uses a multilevel hierarchy of frames so that the

document.domain property communicates directly in JavaScript. Subspace

also uses the descendant navigation policy to prevent gadget hijacking.

OMOS

Open Mashup OS (OMOS) [ZYG08] is a framework for secure communica-

tion in Mashup applications. Its design goal is to be compatible with all

mainstream browsers and easy to use and understand by mashup develop-

ers. It guarantees mutual authentication, data confidentiality, and message

integrity for Mashlets; client side components that run in the browser.

Its security communication protocol relies on the Same Origin Policy

(SOP) so that DOM elements, events, and cookies are protected, the URL

property of an iframe is write-only, and partial change of URL is not allowed.

AdJail

AdJail [TLGV10] is a framework for addressing security threats posed by

third party advertisements. Publishers are able to specify confidentiality

and integrity policies on advertisements, and targeting scripts that select

which ads to be displayed have restricted access to sensitive data. AdJail
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is also compatible with ad network billing operations like click metrics, and

guarantees consistency in user experience. It is easy to adopt, and works on

major browsers without any modifications.

Ads are fetched and executed in a hidden sandbox and all communication

takes place as if no interposition happens. At first the policy denies any

access to the script unless the publisher grants the ad any kind of permission.

AdSentry

Untrusted ads are sandboxed using a JavaScript engine mediating their ac-

cess to the page with AdSentry [DTLJ11]; a flexible isolation framework.

Access control policies can be specified by both web publishers and users for

regulating the behavior of the advertisements.

The difference in AdSentry’s approach is that a shadow JavaScript engine

is used for executing untrusted ads and making sure that they will not affect

the rest of the page. It exposes the full spectrum of JavaScript functionality

and it is strictly sandboxed. No modification to the browser is required, and

the protection is achieved only with a small performance overhead.

2.6 Others

MashupOS

MashupOS [WFHJ07] is a browser-based multi-principle operating system

that focuses on abstractions for communication and protection of web

browsers. Its goal is to allow communication without the compromise of

confidentiality and integrity. MashupOS introduces two new HTML tags

for integrators to include unauthorized content.

• <Sandbox> : for private unauthorized content that belongs to the in-

tegrator

• <OpenSandbox> : hosted by any domain

When the script is enclosed in the sandbox tag and comes from a dif-

ferent domain it cannot be accessed (read or write global objects, invoke
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script functions, modify DOM elements) by the enclosing page; it can only

be accessed when it comes from the same domain. In contrast, for the

OpenSandbox tag, no matter which domain hosts the script, its content can

be fully accessed by the page.

Although the code inside the sandbox cannot follow references outside

of the sandbox, data references from within the sandbox can be used by the

outside of it.

OMash

OMash [CHC08] is an access control model for writing secure mashup ap-

plications that allows objects to communicate only via their declared public

interfaces. It is inspired by MashupOS but it does not use the Same Origin

Policy because SOP relies on insecure services and has design limitations

[CHC08]. Moreover, instead of expressing different trust relationships with

different abstractions, OMash proposes a single abstraction for expressing

all trust relationships. It only requires a few preferences to be set.

BEEP

Browser-Enforced Embedded Policies (BEEP) [FHEW08] allows web devel-

opers to define a whitelist of scripts that may run in a page. However,

this approach is targeted at isolating static content and does not apply to

interactive mashup applications.

SpoofGuard

Web spoofing attacks manage to lure victims into revealing sensitive infor-

mation by masquerading to a trusted web site. SpoofGuard [BML+07] is

an Internet Explorer browser plug-in developed to prevent such attacks; it

monitors web pages for spoof attacks, and when such attacks are discovered

the user is warned. It manages to do that by computing a spoof index; if

that index exceeds a level selected by the user, the web page is considered

malicious. SpoofGuard also uses history to check whether the user has vis-

ited the page before. Web spoofing is a special case of intrusion detection,

but it additionally has access to both honest and spoof pages, which means
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it has a better chance of catching the attack. However, it has the downfall

of producing false alarms and that its tests can be fooled, so it needs further

improvement.

ConScript

The hosting page can use ConScript [ML10], the first general browser-based

policy enforcement mechanism for JavaScript, to express security policies

that are enforced at runtime. These policies can be automatically generated

either by server-side code through static analysis, or by client-side code

through runtime analysis. Although modifications on the browser are easy

and small, they are required.

BFlow

BFlow is proposed in [YNKM09] for observing confidential data that flows

into, out of, and within the browser, preventing it from leaking. It is a

browser security system that uses a reference monitor in the browser to en-

force information flow control. One of its design goals is to only allow the

human user and the origin web site to see the information derived from the

data when confidential data arrives from a web site, unless the site specifi-

cally allows it to go to another web site. Its second goal is to mark confiden-

tial data as confidential, unless the site allows the removal of confidential

marking.

Mugshot

Developers use Mugshot [MEH10], a system that captures every event in

an executing JavaScript program, in order to collect traces from programs

and gain visibility into the application execution. That way, developers can

replay past executions and improve performance evaluation.

In case content from an application does not pass through the proxy that

Mugshot uses to reproduce the load events, faithful replay is not guaranteed.

Moreover, unexpected interactions between HTML, CSS, and JavaScript, or

wrong installation of browser plug-ins by the user may cause a bug. However,

Mugshot introduces little overhead at logging time.
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SIF

Servlet Information Flow (SIF) [CVM+07], is a software framework for

building web applications. It uses new language features to enforce con-

fidentiality and integrity policies. SIF controls the flow of confidential and

low-integrity information to clients, and it also enables users to protect infor-

mation from one another. [CVM+07] shows that application-defined mech-

anisms for access control and authentication can be integrated securely with

language-based information flow and makes an important step towards wider

use of information-flow control.
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Chapter 3

JavaScript Overview

JavaScript [Fla02] is a web scripting language with object-oriented capabil-

ities. It enables programs to interact with the user and dynamically create

HTML content so that web pages are not static anymore. JavaScript re-

sembles C, C++, and Java syntactically, however, type specification is not

required. It is an interpreted language inspired by Perl. It was originally

called LiveScript [Fla02], but its name was changed to JavaScript at the last

minute.

The most common variant of JavaScript is client-side JavaScript; when

a JavaScript interpreter is embedded in a web browser. This refers to the

scripting ability of the interpreter of the language, combined with the Doc-

ument Object Model (DOM) [Fla02].

3.1 Previous uses

JavaScript is a general purpose language:

What JavaScript can do [Fla02]

• it can be embedded within any application

• it can be used for writing programs to perform arbitrary computations

• it can control the document appearance and content
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• it can control the browser behavior

– pop up dialog boxes

– open new browser windows

– frame layout

– move forward and back

– download and display content

• interact with HTML forms

• interact with the user

– define event handlers

• read and write cookie values

• control browser content

• allow content to be dynamically generated

• produce image rollover and animation effects

• interact with Java applets

• build delays or repetitive actions

• provide information about the name and version of the browser

• provide information about the color and size of the monitor

What JavaScript cannot do [Fla02]

• no graphics capablities

• no reading or writing of files

• no networking support

• delete data or plant viruses

• the value property of HTML FileUpload cannot be set
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3.2 Features-exploits-dynamism

As we have already mentioned, JavaScript is a dynamic language. This dy-

namism renders it an easily exploited language that attracts many attackers.

One thing that JavaScript’s features allow, is to execute annoying pop

ups. However, users have the ability to restrict this pop up abuse by adver-

tisers.

Moreover, if the value property of the HTML FileUpload could be set,

any kind of file could be uploaded to the server.

Same Origin Policy (SOP): JavaScript relies on the SOP. When

iframes are included, interactions between the different iframes is limited

by this security restriction. Only the properties of the documents that have

the same origin (protocol, host, and port of the URL) as the document that

contains the script can be read.

Cross-site scripting (XSS): server-side web developers defend against

cross-site scripting attacks; when HTML tags or scripts are injected into a

website. These kind of attacks take place when document content is gener-

ated dynamically.

Example:

Greet the user by name

<s c r i p t >

var name = decodeURIComponent ( window . l o c a t i o n . search . sub

s t r i n g ( 1 ) ) | | ”” ;

document . wr i t e (” He l lo ” + name ) ;

</s c r i p t >

Such a page is invoked with a URL like:

http://www.example.com/greet.html?Efi.

and the text displayed is Hello Efi.
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However, an attacker could inject a malicious script into another, invok-

ing the URL:

http://siteA/greet.html?name=\%3Cscript/

src=siteB/evil.js\%3E\%3C/script\%3E.

In this case, site B includes a link to site A that injects a script from site

B. The script evil.js is now embedded in site A and it can manipulate A’s

content. It can also read cookies stored by site A.

In order to prevent such attacks, the HTML tags should be removed. In

our case:

name=name.replace(/</g,"\&lt;").replace(/>/g,"gt;");

replacing all angle brackets with their corresponding HTML entities.

Denial of Service: when a user visits a website with JavaScript en-

abled, his browser might be at risk since the SOP does not protect against

brute force - denial of service attacks. Infinite loops of computations or alert

boxes can slow down the CPU or render the browser unresponsive. Methods

like setInterval() can attack the system by allocating lots of memory.
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Chapter 4

Overview of the various

solutions

4.1 Pre-requisites

This type of work, testing the code after applying different changes on it,

requires an available web page for printing out the results. So, our first task

was to create a website under the University of Bath directory, change the

permissions and make it look for the files in the correct directory. This took

us approximately 40 minutes.

Figure 4.1: Our home page

Since the public_html directory for our web page and the essential

files were stored under our University’s account, we used FileZilla for file

manipulation (read, write, over write, delete etc.) while connecting to the
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University’s servers. Installing this software takes about 15 minutes.

In order to investigate both the TreeHouse and the js.js sandboxing im-

plementations we had to undertake a JavaScript tutorial from w3schools.

After approximately 10 hours of studying and coding in JavaScript and

HTML, we were ready to start experimenting in an advanced level.

4.2 TreeHouse

4.2.1 Initial Experiments

Hands on the right piece of code

After reading the paper from Lon Ingram and Michael Walfish about Tree-

House, we were pointed to the actual repository on github [Ing]. This in-

cluded different demos in HTML format, JavaScript scripts, some required

packages, the base and default policies, and other template policies. Saving

the code locally, including all the files, required only a couple of minutes.

We started an HTML page from scratch, under our web page, that would

run under TreeHouse with the appropriate tag, trying to output some sim-

ple JavaScript code in order to ensure that we were looking at the right piece

of code. The whole process took about one hour and the results were not

satisfying. After trying unsuccessfully to print out various things and read-

ing more thoroughly both the paper and the rest of the files (30 minutes),

we found out about domtris; domtris is a JavaScript Tetris clone that uses

the DOM to render the game and handle user input.

What is allowed and what is not

Without having any expertise in JavaScript, we experimented for an hour

trying to figure out what is allowed and what is not by printing out a script

inside the head and inside the body. That way we could check if it makes any

difference where the script is inserted. We also tried to redirect the page

and we found out that the page gets redirected whether the appropriate

command is inside the head or inside the body tag.

When experimenting with alert events and page redirections for 3 hours,

although at first we concluded that domtris does not catch alerts, we finally

37



realized that in order for the TreeHouse sandbox to be enabled, we need to

include the treehouse tag when sandboxing the script. So, we came to the

conclusion that a script without the treehouse tag allows page redirections

and alerts, but a script with the specified tag does not.

<script src="../demos/tetris.js"

type="text/x-treehouse-javascript"

data-treehouse-sandbox-name="worker1"

data-treehouse-sandbox-children="#tetris">

</script>

Example of tetris.js with TreeHouse functionality

After two hours of reading about policies, we realized that the scripts

in domtris do not have any policy included, so we had some questions to

answer. Is TreeHouse coming with a policy by default? If so, which one?

TreeHouse comes with two policies; the base policy and the default policy,

but should we include them in order to work or do they come with TreeHouse

anyway?

Since alerts and page redirections are only captured by using the tree-

house tag and without using any policies, we were determined that at least

one of them must do so. More to that, when we tried to create a new policy,

we found out that the treehouse tag would not let us see any visible results,

and we were concerned that a possible problem would be the fact that the

tetris.js application did not have any functionality, since when we would

load the domtris page we were not able to actually play the game.

Can the user set what to be allowed?

When trying to experiment with methods that are and are not allowed by

policies we did the following. It took us about half an hour to create a policy

that would not allow another user to change the background color. We man-

aged to change the background color to red without the policy successfully.

On the contrary, when we included a policy (with the appropriate tag that

comes with it), the background color stayed the same. What was obvious
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to us, was that our up until then effort with regards to policies was a total

success.

However, while reading the paper once again for about 15 minutes, we

decided to create a new HTML page from scratch and experiment on this

one in order to double check our results. This page included two buttons;

one that when the user clicks on it, a function is triggered that is wrapped

inside a script with the treehouse functionality, and one without treehouse.

Having in mind that in order for an action to take place both the base and

the default policy must allow it, we made the following attempts:

At first we changed the policy to allow onclick events (1 min), and dom

manipulations like innerHTML and change of color (2 mins). We realized that

when the script is wrapped with treehouse nothing happens.

Our second attempt was to change the policy to allow postMessage

events (1min), but the results were the same. The first thing that crossed

our minds was that something was up with the monitor, and that led us to

our third attempt.

Our last attempt before coming to a meaningful conclusion was to change

the policy in order to allow background change of color, but this time in the

domtris page, so that the monitor is implemented. This took us about 3

minutes, but again nothing happened.

The important conclusion that we were led to after many different at-

tempts of manipulating the dom, was that changes to the page only work

when they are inside a script that does not include any treehouse function-

ality. Since the treehouse tag is supposed to be translated into something

meaningful by the monitor, that made us think that our real problem was

with the monitor. Looking through the code once again, we realized that

the necessary packages for the monitor to work were missing from the di-

rectory. We had to cease operations on TreeHouse and contact the author

in order to provide us with the appropriate packages. This is not a rare

phenomenon according to [CC13] where authors are contacted and asked

for source code very often. This whole process is best described by the term

reproducibility: ”only if my colleagues can reproduce my work should they

trust its veracity.” [CC13]
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4.2.2 After contacting the author

We were lucky enough to get feedback from the author who provided us

with a new and updated repository and instructed us to do the following:

• Update our clone

• Check out the working domtris-demo branch

• Run a webserver on port 8080 from the root of our clone

• Load http://localhost:8080/demos/domtris.html.

• Click in the gameboard of the DOMTRIS page and then press space

to start

We followed these instructions step by step (1 hour) until we finally were

able to run the application locally on our apache server with full functionality

of the game and start experimenting on the domtris page.

What is allowed and what is not

Our first attempt after the successful loading of the game was to write a

script in the domtris page that would execute an alert, and after loading the

page we indeed got the alert. When we wrapped that script with treehouse,

we neither got an alert nor the game was working. We had the same results

when we tried to redirect the page using the location API. At this point

we were not confident whether the monitor was finally indeed functioning

correctly.

One hour later, we tried the same things, but this time inside the script

that imports the tetris.js file. The results were still the same with the

difference that the game was running.

After another hour of efforts, we inserted the same code that would

redirect the page inside the tetris.js file. In order to check whether

it is important where the redirection happens in the code, we inserted it

both in the startGame() and in the gameOver() functions. The page

did not get redirected and the game stopped loading the moment it read

the appropriate command (either at the beginning or at the end). Even

when we wrote a new policy that would allow everything, we still were
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not successful. When we inserted the code startGame() at the end of

the gameOver() function, the game started again after it was over, which

gave us evidence that changes in the tetris.js file under treehouse are

possible. However, we still were not able to change the background color

(document.body.style.backgroundColor="\#00FF00";).

We came back to the ’example’ page that we had created, the one without

the tetris application, and we used the location API in order to reload the

page with the code location.reload();. This action only worked when the

script was not wrapped with treehouse.

Can the user set what to be allowed?

At this point, we started re-thinking about the policy issue. We knew that

if the author does not include a policy on his own, his application under

treehouse would ship with the base policy that cannot be overwritten, and

the default one. So, we imported them in the page using their url location,

but the results were still the same.

A couple of days later, the author informed us that the issue was that a

proxy for the location API was not yet implemented in the demo. Workers

have read-only access to the location object, but to provide functionality like

location.reload,code must be written to send a message to the parent

page asking that it perform the reload, and that he had not written that

code yet.

Now the question was:

Is the location API only facing this problem?

We had to experiment with other methods as well in order to answer

that question.

When we inserted the code game.innerHTML=navigator.appCodeName;

the text Mozilla appeared in the game field (Figure 4.1). We also tried

with game.innerHTML=location.host; and this time localhost:8080 ap-

peared in the game field. These were our first clues that manipulation of

the DOM under treehouse was possible. In order to be more certain about

DOM manipulation, we experimented with the background color once again.

We found out that game.style.backgroundColor="\#00FF00"; would suc-

cessfully change the color of the game field.
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Figure 4.2: TreeHouse: DOM manipulation (innerHTML)

What navigator, location, and backgroundColor had in common was

that all three were events allowed to be changed by the user under treehouse’s

default policy.

How can the user set what to be allowed?

Since at this stage we were successful, we decided that the next step

would be to try to manipulate an element not allowed by the de-

fault policy, in order to check how well the policy functions. We

concluded on the onclick and onmouseover events. The code

game.onclick=function(){game.style.backgroundColor="\#00FF00"};

did not affect the background color when run under treehouse. On

the contrary, the color was changed when the script was not running

under treehouse. Fortunately, we had the same satisfying results with

game.onmouseover=function(){game.style.backgroundColor="\#00FF

00"};. This led us to the conclusion that the default policy was working

100% right.

The only thing left to do was to change the policy our application was

running under. After about two hours, we created one that would allow

everything, another one were nothing was permitted, and a few others with

various alterations on the dom. In every case the results were the same; it

was as if the default policy was still implemented on the domtris page, and

the other policies were not functioning for some reason. The conclusion we
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reached was that the setPolicy system that was used to create the policy

was not working. That did not allow any other policy to be implemented,

so the application was always running under the default one.

4.3 JavaScript in JavaScript

In order to include the API in our website, we had to include either the

minified library (the translated shared compiled library) or the non-minified

one with the wrapper script. We chose the latter since it was useful for

debugging and modifications. This process took us about 5 minutes.

Hands on the right piece of code

We found many examples on github to experiment with. We chose the

’simple execution’ one which was the simplest to understand and work on.

This example implements the addition of two numbers inside a wrapped

function.

Our first experimentation was to change the inputs of the addition func-

tion in order to check whether the application works, and it did. This led us

to our next step; changing the input types in order to check the correctness of

the output. The variable that was bound to the sandboxed environment be-

fore any of our changes included the function: src="nativeAdd(1,1)".The

changes we made were the following:

• When a character was added to a number, the output returned was

that same number.

– Input: src="nativeAdd(’a’,1)”;

– Output: 1

• When a character without the string tag was added to a double num-

ber, the output returned was an error because a is a variable name

that cannot be added to any number, thus the value could not be

converted to a number.

– Input: src="nativeAdd(a,1)";

– Output: Can’t get result because an error happened.
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• When instead of a function the variable included a simple number, the

output was that same number.

– Input: src="5";

– Output: 5

• When the first argument was a number, and the second a minus one,

the output was the addition of those two numbers.

– Input: src="nativeAdd(5,-1)";

– Output: 4

• Having as arguments two characters, the output returned was 0.

– Input: src="nativeAdd(’a’,’b’)";

– Output: 0

These experiments showed that the expected output was returned ac-

cording to the input.

What is allowed and what is not

After about 2 hours of experimentation, we tried to redirect the page to

facebook in order to check whether page redirection is allowed, with the

code:

window.location.replace("http://www.facebook.com");

inside the wrapped function. When that code was added inside the

function and after the return statement, we had no visible results. How-

ever, when the code was placed before the return, the page got redirected.

We figured out that this was expected since when the function reaches the

return method, it terminates.

After reading the [TBK12] paper, we found out that there is a helper

function that specifies the expected types of the arguments of the wrapped

function and what the wrapped function should return. Thus, this is why

the page redirection could happen. But the question was: Should it happen?

Another concern of ours was whether we should only worry about what

is inside the src or what is inside the wrapped function?
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The meaningful conclusions that we managed to reach after about 2

hours of thorough investigation of the code and reading of the paper were

that the example code in the wrapper.js file was just an initialization tool

that we had to configure.

What the application does and what is allowed

At first we realized that the JSJS.Init() method creates a new runtime

with 8 mb of memory, sets the javascript version, an error reporter, creates

an empty global object in the interpreter space, and initializes the standard

javascript global objects(classes) like Array, Date, and String. In order to

ensure that every action is allowed since the global object is empty, we did

the following:

• Experimentation with alert (window.alert(str)):

– In a different script: we got the alert

– Inside the script before the sandbox initialization: we got the

alert

– Inside the script after the sandbox initialization: we got the alert

– Inside nativeAdd(): we got the alert

• Experimentation with prompt (window.prompt(str,str))

– In a different script: we got the prompt

– Inside the script before the sandbox initialization: we got the

prompt

– Inside the script after the sandbox initialization: we got the

prompt

– Inside nativeAdd(): we got the prompt

• Experimentation with redirection (window.location.replace(url))

– In a different script: we got the redirection

– Inside the script before the sandbox initialization: we got the

redirection
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– Inside the script after the sandbox initialization: we got the redi-

rection

– Inside nativeAdd(): we got the redirection

• Experimentation with background color

(document.style.backgroundColor=’color’)

– In a different script (before and after the sandboxed script): no

change of color

– Inside the script before the sandbox initialization: the color

changed

– Inside the script after the sandbox initialization: the color

changed

– Inside nativeAdd(): the color changed

• Experimentation with innerHTML (document.getElementById(id).

innerHTML="str")

– In a different script after the sandbox: nothing

– In a different script before the sandbox: nothing

– In a different script inside a called function: we got the change

– Inside the script before the sandbox initialization: we got the

change

– Inside the script after the sandbox initialization: we got the

change

– Inside nativeAdd(): we get the change

As it was expected, all the methods we experimented with were allowed

by the wrapper file. Cases where we did not have the expected results like

experimentation with the background color of the page and innerHTML were

because the code was invoked from a function of a different script, and that

function had to be called somehow.

The wrapper file initializes the document element and the window

element, creating the window object, the window.alert, and the

window.prompt methods. We were not sure whether these methods should
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be ’locked’ in order to be impossible for a user to use them, but the experi-

mentation so far showed us that actions on them are fully allowed.

However, since page redirection, alert and prompt use the window

element, and the background color uses the document element, we had to

experiment with another element in order to be sure that the empty global

object allows everything, and not just the elements that have been initialized

in the wrapper file.

• Experimentation with reload (location.reload())

– In a different script: we got the reload

– Inside the script before the sandbox initialization: we got the

reload

– Inside the script after the sandbox initialization: we got the

reload

– Inside nativeAdd(): we got the reload

The results were the same; everything was allowed. Our next thought

was to try to lock the window method and trigger a window prompt in order

to check whether the element gets locked and cannot be accessed.

• Experimentation with SetLock.

– JSJS.SetLock(window,’locked’): we got the prompt

– jsObj=JSJS.SetLock(window,’locked’): we did not get the

prompt, but we did not get any output

– jsObjs=JSJS.SetLock(document,’locked’): we did not get

the prompt, but we did not get any output

– jsObjs=JSJS.SetLock(document,’unlocked’): we did not get

the prompt, but we did not get any output

After the above experimentations we realized that the application stops

whenever it reads the SetLock method, so up to this point we were not able

to lock any methods.

Since we knew that the wrapper.js file was a tool that had to be con-

figured, we decided to manipulate its content. At first, we changed the file
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to an empty one in order to make sure that it affects our output and it did,

since there was no visibility of results after running the addition function.

After that, we removed the function that creates the window.prompt event

in order to check whether prompts are still allowed, but we could still exe-

cute a window prompt. We did the same with the window.alert method

and we had the same results. However, that was in fact expected since other

methods that were not initialized in the wrapper file were allowed. Moreover,

when we changed the expected arguments of the window.alert method to

either null or to objPtr instead of charPtr just to check whether any error

messages would be triggered, we could still get the alert without any error

messages.

The methods that the js.js implementation has initialized and are exe-

cuted in the sandboxed space when invoked by the user are:

• document.getElementById();

• window.top.location;

• window.alert();

• window.prompt();

To conclude, the wrapper.js file is indeed a file where methods and

functions are initialized and are invoked by the host page scripts so that

they are safely executed inside a sandbox. However, we were not able to

set specific methods allowed or not since the functionality where the user

has the option to setup white/black lists of browser elements is not yet

implemented and is left as future work [TBK12].
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Chapter 5

Experimental results

5.1 Evaluation

Just like the authors did, we evaluate TreeHouse on its latency overhead

and its ease of use, and JS in JS on its latency overhead. Our experiments

run on a Lenovo ThinkPad Edge with a 2.60 GHz Intel Core i5 processor

and 4 GB of RAM running Chrome 37.0.2062.120, Firefox 32.0, and IE

11.0.9600.17278 under Windows 8 Operating System.

5.1.1 TreeHouse

Page load latency: We evaluate TreeHouse on the latency of the

DOMTRIS page load with and without the TreeHouse functionality. In

order to do that we include a script in the head of the page to get the

starting time with the code:

<script type="text/javascript">

start=(new Date()).getTime();

</script>
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Then we create the latency function in order to calculate the loading

time, and we put the result in a <p id="loadingtime"></p>.

function latency() {

var end = (new Date()).getTime();

var sec = (end-start)/1000;

var p = document.getElementById("loadingtime");

p.innerHTML = sec;

}

Finally, we load the latency function in an onload event that is triggered

when the page finishes loading.

window.onload = function () {

pageload();

}

DOMTRIS with TreeHouse

An example of the latency page load evaluation on Chrome is depicted in

the 5.1 image.

Figure 5.1: Page load latency on Chrome

In more detail, we perform 10 runs in each browser, and the results in

milliseconds are shown in Table 5.1:
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Google Chrome Mozilla Firefox Internet Explorer
69.0 184.0 88.0
24.0 253.0 87.0
24.0 13.0 97.0
24.0 121.0 35.0
27.0 100.0 49.0
73.0 153.0 38.0
26.0 161.0 34.0
21.0 124.0 40.0
22.0 135.0 54.0
26.0 161.0 38.0

Table 5.1: DOMTRIS page load latency with TreeHouse in milliseconds

DOMTRIS without TreeHouse

In order to run DOMTRIS without TreeHouse, we had to remove every

treehouse functionality where the type of the script was:

type="text/x-treehouse-javascript"

data-treehouse-sandbox-name="worker1"

data-treehouse-sandbox-children="#tetris"
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Including the monitor:

<script src="../lib/require.js"></script>

<script>

// web worker compat

window.doc = document;

window.win = window;

require({

baseUrl: ’../src’,

packages: [{

name: ’jsdom’,

location: ’../lib/jsdom/lib’,

main: ’jsdom’

},

{

name: ’node-htmlparser’,

location: ’../lib/jsdom/node-htmlparser’

},

{

name: ’underscore’,

location: ’../lib/underscore’,

main: ’underscore’

},

{

name: ’treehouse’,

location: ’./’

}]

}, [ ’kernel’ ], function (kernel) {

console.debug(’Kernel loaded.’);

kernel.initialize();

console.debug(’Kernel initialized.’);

});

</script>
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Again, the results of 10 runs in milliseconds are shown in the table below:

Google Chrome Mozilla Firefox Internet Explorer
17.0 40.0 61.0
16.0 84.0 12.0
16.0 34.0 45.0
14.0 34.0 36.0
17.0 36.0 71.0
13.0 63.0 37.0
14.0 62.0 12.0
14.0 42.0 10.0
16.0 39.0 40.0
16.0 13.0 10.0

Table 5.2: DOMTRIS page load latency without TreeHouse in milliseconds

Table 5.2 reports the results of the mean values of with and without

TreeHouse for each browser in milliseconds. Google Chrome shows the best

results in both cases. Mozilla Firefox seems to be the slowest of the three

both with and without TreeHouse. In every case, the time of the page load

without TreeHouse is almost half the time of the one with the TreeHouse

functionality.

Experiment Chrome Firefox IE

DOMTRIS, baseline 15.3 44.7 33.4
DOMTRIS, TreeHouse 33.6 152.2 56.0

Table 5.3: Mean values in milliseconds

Ease of use: Developers’ job is to integrate TreeHouse into a web ap-

plication and write policies [IW12]. The integration part consists of in-

cluding the monitor JavaScript code into the web page and the appropriate

treehouse tag in the script type. Writing policies can either be easy or

difficult depending on the complexity of the policy, the understanding of

how TreeHouse operates, and how familiar one is with coding in JavaScript.
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After thorough experimentation and reading of the [IW12] paper, and af-

ter taking a JavaScript tutorial, we managed to write a couple of policies,

spending only a couple of minutes.

setPolicy({

’!api’: {

’*’ : true

},

’!elements’: {

’!attributes’: {

’*’ : true

},

’!tags’: {

’*’: true

}

}

});

Example 1:Everything is allowed

setPolicy({

’!elements’: {

’!attributes’: {

’*’: {

onmouseover: true,

onclick: true

}

}

}});

Example 2: onmouseover and onclick events set to true
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5.1.2 JS in JS

Page load latency: We evaluate the time required for the start up and

shut down of the js.js implementation, as well as the overhead of a simple

execution. More specifically, we evaluate the overhead of the NewRuntime,

NewContext, GlobalClassInit, and StandardClassesInit (they all belong

in the start up), DestroyContext, and DestroyRuntime (they both belong

in the shut down), and finally the EvaluateScript function. In order to do

that, we had to include some extra lines of code in the wrapper.js and the

simple-js.html files for the start up - shut down and the simple execution

accordingly.

NewRuntime

var NewRun = Date.now();

var rt = JSJS.NewRuntime(8 * 1024 * 1024);

var NewRun2 = Date.now() - NewRun;

reportMessage("NewRuntime time: " + NewRun2);

NewContext

var NewCon = Date.now();

var cx = JSJS.NewContext(rt, 8192);

var NewCon2 = Date.now() - NewCon;

reportMessage("NewContext time: " + NewCon2);

GlobalClassInit

var Glob = Date.now();

var global_getter = JSJS[’PropertyStub’];

...

var Glob2 = Date.now() - Glob;

reportMessage("GlobalClassInit time: " + Glob2);
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StandardClassesInit

var InStan = Date.now();

var init_standard = JSJS.InitStandardClasses(cx, global);

console.log("init standard classes " + init_standard);

var InStan2 = Date.now() - InStan;

reportMessage("InitStandardClasses time: " + InStan2);

DestroyContext

var DestCon = Date.now();

JSJS.DestroyContext(jsObjs[’cx’]);

var DestCon2 = Date.now() - DestCon;

reportMessage("DestroyContext time: " + DestCon2);

DestroyRuntime

var DestRun = Date.now();

JSJS.DestroyRuntime(jsObjs[’rt’]);

var DestRun2 = Date.now() - DestRun;

reportMessage("DestroyRuntime time: " + DestRun2);

EvaluateScript

var evalScr = Date.now();

var rval = JSJS.EvaluateScript(jsObjs.cx, jsObjs.glob, src);

var evalScr2 = Date.now() - evalScr;

reportMessage("Simple execution 1+1 time: " + evalScr2);
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The results of 10 runs for each browser in milliseconds were the following:

NewRuntime results:

Google Chrome Mozilla Firefox Internet Explorer
14.0 19.0 41.0
17.0 14.0 20.0
14.0 14.0 14.0
16.0 13.0 23.0
16.0 19.0 20.0
7.0 16.0 22.0
15.0 14.0 23.0
7.0 17.0 17.0
16.0 14.0 20.0
7.0 24.0 18.0

Table 5.4: NewRuntime time load in milliseconds

NewContext results:

Google Chrome Mozilla Firefox Internet Explorer
30.0 37.0 241.0
36.0 31.0 140.0
29.0 32.0 141.0
30.0 31.0 133.0
28.0 31.0 138.0
29.0 30.0 124.0
28.0 27.0 134.0
32.0 37.0 127.0
30.0 33.0 131.0
25.0 46.0 124.0

Table 5.5: NewContext time load in milliseconds
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GlobalClassInit results:

Google Chrome Mozilla Firefox Internet Explorer
8.0 23.0 7.0
8.0 18.0 7.0
8.0 20.0 7.0
8.0 21.0 6.0
9.0 21.0 9.0
2.0 22.0 7.0
9.0 22.0 7.0
4.0 22.0 6.0
9.0 24.0 7.0
3.0 29.0 11.0

Table 5.6: GlobalClassInit time load in milliseconds

StandardClassesInit results:

Google Chrome Mozilla Firefox Internet Explorer
89.0 120.0 84.0
86.0 123.0 101.0
98.0 112.0 106.0
95.0 105.0 90.0
86.0 105.0 101.0
44.0 115.0 91.0
89.0 107.0 100.0
86.0 170.0 94.0
90.0 118.0 98.0
81.0 156.0 94.0

Table 5.7: StandardClassesInit time load in milliseconds
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Execute 1+1 results:

Google Chrome Mozilla Firefox Internet Explorer
75.0 92.0 93.0
76.0 86.0 106.0
87.0 98.0 106.0
74.0 102.0 121.0
77.0 94.0 107.0
11.0 97.0 90.0
80.0 106.0 118.0
6.0 107.0 105.0
79.0 101.0 102.0
7.0 137.0 98.0

Table 5.8: Execute 1+1 time load in milliseconds

DestroyContext results:

Google Chrome Mozilla Firefox Internet Explorer
33.0 47.0 39.0
35.0 44.0 57.0
36.0 52.0 44.0
32.0 44.0 37.0
36.0 47.0 39.0
18.0 42.0 38.0
34.0 52.0 66.0
21.0 43.0 52.0
36.0 57.0 52.0
19.0 58.0 54.0

Table 5.9: DestroyContext time load in milliseconds
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DestroyRuntime results:

Google Chrome Mozilla Firefox Internet Explorer
6.0 3.0 7.0
3.0 4.0 10.0
6.0 5.0 8.0
4.0 8.0 10.0
4.0 5.0 8.0
3.0 7.0 6.0
5.0 6.0 6.0
2.0 4.0 9.0
4.0 5.0 8.0
4.0 6.0 8.0

Table 5.10: DestroyRuntime time load in milliseconds

Figure 5.2: Page load latency on Chrome in milliseconds

60



Table 5.11 shows the mean time in milliseconds across 10 executions

required to execute the start up and shut down routines for the js.js imple-

mentation, as well as the simple execution 1+1. Google Chrome presents

the least overhead in every execution. Internet Explorer appears to have

the biggest overhead when loading the page.

Experiment Chrome Firefox IE

NewRuntime 12.9 16.4 21.8
NewContext 29.7 33.5 143.3
GlobalClassInit 6.8 22.2 7.4
InitStandardClasses 84.4 102.5 95.9
SimpleExecution 57.2 102.0 104.6
DestroyContext 30.0 48.6 47.8
DestroyRuntime 4.1 5.3 8.0

Page load 247.8 378.8 475.2

Table 5.11: Mean time load in milliseconds

We created the Table 5.12 by making some calculations based on

the Table 5.11. We added the mean times of NewRuntime, NewContext,

GlobalClassInit, and InitStandardClasses in order to calculate the whole

start up time. We then added the mean times of the DestroyContext, and

DestroyRuntime in order to calculate the whole shut down time. What we

deduced from our results was that the quickest routine is the shut down in

every browser. Although creating the runtime environment is the slowest

procedure, it still is not an expensive cost.

Experiment Chrome Firefox IE

Start up 133.8 174.6 268.4
Simple execution 57.2 102.0 104.6
Shut down 34.1 53.9 55.8

Table 5.12: Mean time load of start up, simple execution, and shut down
routines in milliseconds
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5.2 Comparisons

This section is about comparing the two investigated implementations both

to each other (Section 5.2.1) and to the authors’ results (Section 5.2.2).

They will be compared for their purpose, methodology, and contributions.

5.2.1 Head-to-head comparisons

Purpose

Although TreeHouse and js.js use a different methodology, they both have

the same purpose; allow site operators to control included code by pro-

viding a sandbox where JavaScript code can be run by a web application.

TreeHouse’s additional goal is to be a mechanism that works today by mini-

mizing browser modification, redesign, development-time code changes, run-

time code changes, and server configurations, and to allow the access and

the resources for the contained script to do its job. On the contrary, js.js

is designed to be generic, easy to use, and flexible, and is used to bind any

kind of global object inside the sandbox space.

Methodology-design

Both TreeHouse and JS in JS rely on isolation, interposition, and virtual-

ization. As shown in the Table 5.13, TreeHouse uses Web Workers for

isolation, whereas js.js uses JavaScript Interpreters. For interposition and

virtualization, TreeHouse uses a broker in each worker that virtualizes the

browser resources, and a monitor that runs in the JavaScript environment

of the window in which the user loaded the application. On the contrary,

js.js relies on a Mediator for interposition that uses a js.js library to execute

a third-party script in a sandbox.

In TreeHouse, what is permitted is decided by the application author

using policies, whereas js.js does not include any policies. Communication

between the monitor and the guest script in TreeHouse takes place with

message passing.

Both implementations provide full JavaScript support and require no

browser changes. Fine-grained control is only supported in js.js. Finally,
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TreeHouse’s limitations include that its Trusted Computed Base includes

the browser and is not small, the guest code sometimes needs minor restruc-

turing, and that the future of Web Workers is uncertain. On the other hand,

js.js makes it very complex to create a virtualized DOM since there is no

functionality for a user to setup white/black lists of browser elements, sites

etc.

TreeHouse JS in JS

Isolation Web Workers JavaScript Interpreters

Interposition
Broker Mediator

Monitor

Virtualization Broker Mediator

DOM Permission
Author Author
Policies wrapper file

Communication Message passing N/A

Limitations

browser in the TCB complex VDOM
minor code restructuring no white/black lists

Web Workers future

Full JS Support X X
Fine-grained control 7 X
No Browser changes X X

Table 5.13: TreeHouse and js.js design differences

Contributions

TreeHouse:

• ”Applying the operating systems ideas of sandboxing, virtualizing, and

resource management to JavaScript.” [Ing]

• ”The design of TreeHouse, which instantiates these OS ideas without

browser modification.” [Ing]

• ”The implementation and evaluation of TreeHouse.” [Ing]
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JavaScript in JavaScript:

• ”Fine-grained control: Rather than course-grained control, e.g., dis-

allowing all DOM access, an application should have fine-grained con-

trol over what actions a third-party script can perform.” [TBK12]

• ”Full JavaScript support: The full JavaScript language should be

supported, including with and eval, which are impossible to support

with static analysis.” [TBK12]

• ”Browser Compatibility: All major browsers should be supported

without plugins or modifications.” [TBK12]

• ”Resilient to attacks: Resilient to possible attacks such as page

redirection, spin loops, and memory exhaustion.” [TBK12]

5.2.2 Comparisons to prior work

In this section we compare the authors’ results to ours.

TreeHouse

Table 5.14: Author’s

Chrome Firefox IE
without 24.0 12.0 6.0
with 361.0 181.0 405.0

Table 5.15: Ours

Chrome Firefox IE
15.3 44.7 33.4
33.6 152.2 56.0

Table 5.16: TreeHouse: Comparison of results

We can see that our results differ from the author’s. Without TreeHouse

their mean times are not so different from ours, since we are talking about

milliseconds, but our best browser seems to be Google Chrome, whereas for

them Google Chrome’s results are the worst. When TreeHouse functionality

is enabled, Mozilla Firefox appears to be their best option, presenting almost

half the overhead of the other two browsers. On the other hand, we found

out that Firefox is the slowest of the three, presenting mean times of 3 to 4
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times of the other two. These results can be justified since prior experiments

were made on very old versions of the browsers and a lot might have changed.

JS in JS

Here we compare the author’s results to ours; however, it is not known

which browser was used for their experiments. The GlobalClassInit rou-

tine on the IE shows a very large overhead compared to both the other

browsers and the author’s results. Firefox shows a large overhead in

StandardClassesInit and Execute 1+1 compared to their results as well.

Generally, their results are very close to ours.

Table 5.17: Author’s

N/A
NewRuntime 25.2
NewContext 35.8
GlobalClassInit 15.5
StandardClassesInit 60.1
Execute 1+1 70.6
DestroyContext 33.3
DestroyRuntime 1.8

Table 5.18: Ours

Chrome Firefox IE
12.9 16.4 21.8
29.7 33.5 143.3
6.8 22.2 7.4
84.4 102.5 95.9
57.2 102.0 104.6
30.0 48.6 47.8
4.1 5.3 8.0

Table 5.19: JS in JS: Comparison of results
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Chapter 6

Evaluation

Level of difficulty: The completion of this project required about four

months. In this section we describe how difficult this project was to our

perception, the hours we spent, and our opinion on the results.

• In order to successfully complete this project, at first we had to make

a thorough investigation of previous work and different solutions. We

found 49 papers that each one proposed a different approach and we

included them all. Finding papers based on prior work was an easy

task since the JavaScript isolation problem is widely known and worries

most developers and users.

• After that, we created a website where we could apply our experiments,

which only required some basic level knowledge of HTML.

• The next step was to find the code of each of the two implementations

we would evaluate. As instructed on both papers, the code was easily

found on the appropriate repositories on github, so we did not have to

contact the authors.

• Following that, we stored it into the right directories and loaded it

into our website.

• The first major difficulty we faced was inexperience with the JavaScript

language, so we had to undertake a tutorial from w3schools and read a

book about JavaScript [Fla02] which slowed down the whole procedure.
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• Starting with js.js, we soon realized that the code was working and

what we had to do was configure the wrapper.js file, so we left it

aside and continued with the TreeHouse code.

• TreeHouse was not as easy as we found js.js. It took us a while

to realize the reason why we had no functionality of the Tetris game

(under the DOMTRIS page), so we had to contact the author in order

to provide us with the right piece of code. As we said before, although

this is something usual when it comes to reproducibility, we did not

see that coming and we had to cease operations on this tool for quite

a while.

• But this was not our only problem with TreeHouse; neither the full

code for the demo was yet implemented, nor the policy system was

working. By the time the author informed us about these problems,

we had already spent more hours experimenting on TreeHouse than it

was planned.

• While waiting for the author’s replies we got back to js.js. Alto-

gether, the only major problem we faced with js.js was with compa-

rability; we evaluated its overhead on Google Chrome, Mozilla Firefox,

and Internet Explorer. However, we could not compare our results to

the author’s, since we did not know which browser they used for the

exact results.

• The overhead evaluation of both implementations was not a difficult

task since it only required some JavaScript code in order to print out

timing results for each method we wanted to measure.

• Finally, it is worth mentioning that every step we took including hours

spent was written down as a diary, making the whole process a lot

easier.
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Hours spent: Table 6.1 shows in more detail the hours we spent on

each part of the project. Previous work consists of 49 papers we used as

literature review, spending on average two hours on each paper. We needed

40 minutes to create our webpage under the University of Bath servers,

and 5 minutes to find and download the code of each implementation. Our

meetings were 4, accounting for 3 hours and 55 minutes in total. The time

spent on studying JavaScript programming, its methods, and ways to be

exploited was 12 hours and 30 minutes. Experimentation on TreeHouse

required 18 hours and 30 minutes, whereas on JS in Js 11 hours and 45

minutes. More time was spent on TreeHouse because it was the first one to

experiment on, and because it appeared to be more complicated due to the

problems we faced. Finally, evaluating TreeHouse took us 7 hours, while

only 30 minutes were spent on evaluating JS in Js. Again, we spent about 6

hours trying to figure out how to make the evaluation happen (print timing

results), and since TreeHouse was the first we evaluated, it was also the one

we spent more time on.

TreeHouse JS in JS Generic

Previous work - - 98h
Webpage - - 40m
Code download 5m 5m -
Supervisor meeting - - 3h 55m
Study JavaScript - - 12h 30m
Experimentation 18h 30m 11h 45m -
Evaluation 7h 30m -
Writing - - 63h 26m

Total 25h 35m 12h 20m 178h 35m

Table 6.1: Hours spent on the whole project based on hour diary

Knowledge gained: The goal of this project was to become more

familiar with research and practical aspects of security. We understood how

big the problem of hosted applications can be, and how much JavaScript

can be exploited due to its dynamism and exploitable features. We read so

many papers in order to learn all the different approaches one could take to

eliminate this problem, and we decided to give our attention to sandboxes.

By reproducing the results of prior work we now have the knowledge of how
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sandboxing implementations can be integrated into applications, how they

work, how a developer can manipulate the code so that it will not later be

manipulated by a third-party, and how to evaluate such implementations

according to how safe they are, how much overhead they cause, and their

ease of use. More to that, we learned the JavaScript language in a more

advanced level.

Progress results: As mentioned in the proposal of this project, in the

beginning of May 2014, work to be done consisted of:

• Code installation and measurement

• Desk exercise

• Set of metrics

• Evaluation

with 9 weeks as best case scenario, and 15 weeks as worst case scenario. The

project’s lifetime was 17 weeks due to difficulties faced in the meantime.

Problems with the code appeared that were not expected (with TreeHouse),

so we had to cease operations twice and wait for the author’s guidance for

about 20 days in total. More to that, we experienced difficulties communi-

cating with each other due to the fact that for 1 month we lived in different

continents so it was almost impossible to find a time that suited us both.

So, lack of communication made the progress of the project a bit slower.

However, if we deduct these delays, the project was completed as it was

expected having very satisfying results.

Experimental results: The reason why we chose to investigate the

TreeHouse and JS in JS implementations, is because they represent two im-

portant categories of sandboxing; Web Workers and JavaScript Interpreters.

Both of these methods sandbox external scripts in a new and interesting way,

so for this reason results based on them would be, and proved to be very

significant to our research.

Methodology: Our methodology was both appropriate and effective.

The steps we followed (JavaScript tutorial, installation of the code, un-

derstanding of how the implementations work by thorough reading of the
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papers, decision upon the set of metrics, testing and experimenting with

the code, evaluation of the code) led us to the kind of the results we were

expecting.

70



Chapter 7

Conclusion

7.1 Summary

A lot of research so far has been focused on making web sites and hosted web

applications that are written in JavaScript secure. JavaScript’s dynamism

has rendered it an exploitable scripting language that needs to be isolated

so that even if malicious attackers try to inject code or cause any kind of

harm, it will not affect the rest of the code.

A thorough investigation of the various approaches of securing JavaScript

has proved that this is a very big problem that has not been fully solved.

Different approaches have managed to partially solve the problem, but even

in that case, there is still room for further improvement.

The goal of this project was to evaluate two implementations that try to

solve the problem from different perspectives, TreeHouse and JS in JS, by

reproducing prior work, and to determine how effective they are.

The Treehouse product, as available on <github>, does not, as far as we

could tell after correspondence with the author, correspond to all the claims

made in [IW12]. When we downloaded the code there was no functionality

of the demo (the tetris game under DOMTRIS), so we had to contact the

author in order to point us at the right direction. As already mentioned

in this project and in [CC13], there are many examples where authors are

being approached because the code they claim to have uploaded is nowhere

to be found, or does not function (our case). This project, although not in-

tended to, now belongs to this category. Moreover, although our results on

overhead for the different browsers for TreeHouse differ from the author’s,

71



our experiments tell us that web developers can use such an implementa-

tion in order to safely include third-party scripts to their web page without

sacrificing performance. However, if they do wish to set their own allowed

methods, work needs to be done on the setPolicy system of the TreeHouse

policy system. In other words, TreeHouse is an effective tool for JavaScript

isolation that does not sacrifice performance, but our experiments, for now,

show that what can and what cannot be manipulated by other applications

is pre-configured.

As for JS in JS, our results on overhead were very close to prior experi-

ments, but their’s did not cope with our project’s aim, comparability, since

we did not know on which browser overhead was tested. Finally, just like

with TreeHouse, further work needs to be done in the wrapper.js file so

that it becomes more than an initialization tool and it allows for users to

set their own white/black lists of methods.

While finishing this project we realized that the JavaScript isolation

problem is indeed a very controversial problem that attracts many and

different solutions contributing partial solutions to different aspects of the

problem.

7.2 Future Work

We faced a lot of problems in the process of TreeHouse’s evaluation. We

had to run it under our own server listening to a specific port, we later

realized that proxies for every API were not yet implemented in the demo,

so the methods that we could experiment with became even less. Finally,

when we were to write policies in order to check how a developer can set

the methods he wants to be manipulated by other applications, we were not

successful since the setPolicy system required for the creation of a policy

was not working. Therefore, since evaluating the intention of TreeHouse

appeared to be a difficult task, we believe that there is room for TreeHouse’s

improvement.

As for js.js, neither reproducibility was a smooth task since they do not

mention which browser they used for the overhead results, nor the evaluation

of setting which methods to be allowed, since that was left for future work.

In the future we could evaluate other implementations both from the
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same categories and from different ones, so that we have a larger sample of

comparisons which will lead to us reaching to more accurate conclusions.
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Appendix A

Project Diary

This diary was maintained by the author during the project. One aim

was to quantify the hours spent on experimentation, JavaScript etc. (but

not general project tasks, paper reading etc.), in order to substantiate the

analysis in the project of how time-consuming the various tasks of using this

technology were.

15/5/2014

• Download TreeHouse master code: 5 mins

• Download js.js master code: 5 mins

16/5/2014

• Meeting with my supervisor - start with js.js (twitter application): 15

mins

17/5/2014

• Reading js.js paper: 50 mins

• Download and install node.js: 2 - 3 mins

• Continue reading: 30 mins

• Run the shell: 10 mins
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19/5/2014

• Meeting with my supervisor - create my website and include the code

in my public html directory: 40 mins

20/5/2014

• Make my website readable (chmod 711 ev242): 1 min

• Include lib.minO2.js in my directory: 5 mins

• Make lib.minO2.js executable: 5 mins

• Meeting with my supervisor - make the website look for the SUBdi-

rectory, 1+1 demo: 30 mins

• Fix the buttons: 15 mins

21/5/2014

• Study JavaScript exploitance: 60 mins

• Changed the output (simple execution): 5 mins

• Page redirect (simple execution): 5 mins

• Study: 1h 30 mins

40 mins:

• src=nativeAdd(character,double) outputs null

• src="5", outputs 5 // it considers the second argument as 0

• src=nativeAdd(-5,6) outputs 1

• src=nativeAdd(a,b) outputs null

• src=nativeAdd(window.location.replace("http://facebook.com"),5),

outputs nothing
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22/5/2014

• try different things: 1 h

// improved the without jsjs implementation

//when nativeAdd returns d1+d2 everything is ok. when we add a

page redirection AFTER the return, everything is ok. when we add a

page redirection BEFORE the return, we get the redirection.

//i think that after the return, the function ends, that’s why we don’t

have the redirection AFTER the return.

//the helper function specifies expected types of ARGS and RETURN,

that’s why the page redirection can happen. BUT should it happen???

//is our only concern what is inside the ’src’ aka the third party script,

or what is inside the function as well (in this case nativeAdd)?

• src=window.location.replace("http://facebook.com"), redirect

to facebook

29/5/2014

• change double to bool: return ”0” -> false: 1 min

• meeting with my supervisor: 1 h 30 mins

//figured out that the example code is just an initialization tool and

that I need to check the code and configure it (shouldn’t the example

on the paper of the author catch page redirection by default?)

6/6/2014

• read the Treehouse paper again: 30 mins

• created a link to tetris.js running under treehouse, changed it to hello-

guest, still nothing as an output. Inserted some js code inside the

script, still nothing: 45 mins

• meeting with my supervisor (found out about domtris after trying

unsuccessfully to print out various things): 30 mins

// require is like import in Java
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// doesn’t catch page redirection

*1 hour

• tried a script of printing out inside the head

• tried to run a script inside the head, inside a function and then loading

the function

• tried page redirection inside the head, inside a function -> the page

got redirected

//stopped because my webpage stopped refreshing

7/6/2014

*total of 3 hours

//domtris doesn’t catch alert

//No! actually it does!! when the script is sandboxed with treehouse,

we get no page redirection and no alerts!

• tried a simple javascript script, once without treehouse(alert, page

redirection), and once with treehouse (no alerts or page redirection)

-> success!

• js.js: couldn’t print out with reportMessage but fixed it! (included the

appropriate javascript scripts)

8/6/2014

• read about policies and how to change them in treehouse: 2 h

//the scripts I run and test do not use any policy, is treehouse coming

with one by default? if so, which one? there is default policy and

a base policy, but should I include them in order to work or do they

come with treehouse anyway? at least one of them must do so, because

possible attacks like alerts and page redirections are captured by only

using the ’treehouse’ tag (i mean without including any policy)
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• i tried to make another policy but i cant check it because the tetris

application is not working, and the treehouse tag doesn’t let me do a

thing: 10 mins

--- TRAVEL TO GREECE ---.

19/6/2014

• created a policy with a background colour set to false: 30 mins

• changed the background colour in domtris to red and it worked (it

turned to red without the policy and it didn’t change with it): 10

mins

--- JavaScript TUTORIAL ---.

17/7/2014

• finished the JavaScript tutorial from w3schools and the quiz - ready

to start working on the code I guess: 10 h

19/7/2014

• read the paper once again: 15 mins

• created a new html page with simple html - javascript: 2 mins

//alerts are on (without treehouse)

//(in order for an action to take place, both the base and the reference

policy must accept it)

//base policy: everything is accepted, BUT XHRs must only open

asynchronously

//reference policy: is used by default, when no other policy is used by

the author
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2 hours in total

• 1st attempt: changed the policy to allow onclick events, dom ma-

nipulations(innerHTML, change of colour)

//work outside treehouse BUT inside the script nothing happens

• 2nd attempt: changed the policy to allow postMessage event: noth-

ing happened

//!!! my guess is something’s up with the monitor;

• 3rd attempt: changed the policy to allow background change of color

in the domtris (so that the monitor is implemented): nothing happened

changed the order -> worked! it depends on which one goes first

21/7/2014

2 hours

• inserted the code: document.write to see what happens - the url at

the end of the page disappeared

• removed the whole style tag so we don’t get confused with all the

graphics - nothing happened

//***conclusion: changes to the page only work when they are inside

a script that does not include any treehouse functionality -¿ the new

policy does not work, something is up with the default

• tried again with the background color, setInterval and alerts -¿ same

conclusion

--- WAITING FOR THE AUTHOR AND START WRITING THE

THESIS (contents etc) ---.
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29/7/2014

3 hours

• experiment again with everything I’ve done so far regarding js.js ->

same results

• read the paper

// !!! stuck !!!

30/7/2014

1 hour

back to domtris!! the author replied to me!!

so, he provided me with a new and updated repository and instructed

me to follow these specific steps:

1. update your clone

2. check out the working-domtris-demo branch

3. run a webserver on port 8080 from the root of your clone

4. load http://localhost:8080/demos/domtris.html.

5. click in the gameboard of the DOMTRIS page and then press space

to start

I did all these and it worked! It took me about one hour to figure

everything out though.

now I run the application locally on my server - did some experimenta-

tions (1 hour):

1. wrote a script for an alert - I got the alert

2. wrote a script with the treehouse tag for an alert - i didnt get the alert

AND we had no functionality of the game

3. wrote a script for page redirection - the page got redirected
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4. wrote a script with the treehouse tag for page redirection - the page

didn’t get redirected AND we had no functionality of the game

// is this a success, or do we still have the same problem with the mon-

itor??

1 hour

• I tried the same things, but this time inside the script that imports

the tetris.js file: i didnt get neither a page redirection nor an alert,

BUT we had functionality on the game

• tried to redirect the page inside tetris.js -¿ the game stops at the exact

spot where the appropriate command is found (start, ending)

• wrote a new policy that allowed everything without any success

3/8/2014

1 hour

• inserted an alert after the game is over - nothing happened

• inserted the startGame (so that the game would start again) after it

was over - it worked!

• tried with backgroundColor and bgColor - nothing

• used the tetris-pageload-policy (postMessage is only allowed) and the

game stopped when it got to that command

• experiment on the ’example’ page (without the tetris app)

//location.reload (only works without treehouse)

30 mins

//so, scripts under treehouse CANNOT manipulate the dom (because

web workers can’t). they can import scripts, create child workers, and

issue XHRs
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5/8/2014

30 mins

• included the default.js and base-broker.js in the html page - nothing

6/8/2014

2 hours

//the author told me that there is something wrong with the proxy and

the location API that needs to be fixed

• i tried with navigator but i had the same results

• wait!! I inserted the code: game.innerHTML=navigator.language;

inside the startGame() function and the text ’undefined’ appeared in

the game field

• I inserted the code: game.innerHTML=navigator.appCodeName; and

the text ’Mozilla’ appeared in the game field!

• the same happened with game.innerHTML=location.host; (local-

host:8080)

• the backgroundColor works too!!!!! super excited! i typed:

game.backgroundColor="#00FF00"; and nothing happened

• but then i typed: game.style.backgroundColor="#00FF00"; and it

worked!!!

• I changed the backgroundColor using the domtris1 policy (where ev-

erything is allowed) and it worked!!

• bad news. i changed the dotris policy so that nothing is allowed and

the color still changed

//that means that I am not good with writing new policies..

//stuck again - i am gonna try something that is not allowed by the

default policy
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• ok!! inside startGame(): game.onclick=function(){game.style.ba

ckgroundColor="#00FF00"}; -> the color changed without the tree-

house tag, it didn’t change with the tag (onclick is not allowed by the

default)

• i had the same satisfactory results with onmouseover

• i copied the default policy and i created a new one(domtris2) replacing

every false with true -> no!domtris2 is a fail (generally i cant create a

right policy)

7/8/2014

20 mins

• changed the backgroundColor in the default policy to false -> the

game stopped working because this method is used by the application

• changed the onclick and onmouseover in the default policy to true ->

nothing happened (i guess the default policy cannot be over written)

//it does not listen to any policy other than the default!! something

is seriously wrong

11/8/2014

4 hours

1. the JSJS.Init() creates a new runtime with 8mb of memory, sets the

javascript version, an error reporter, creates an (empty) global object

in the interpreter space, and initializes the standard javascript global

objects(classes) like Array, Date etc

2. experimentation with alert:

• in a different script -> we get the alert

• inside the script before the sandbox initialization -> we get the

alert

• inside the script after the sandbox initialization -> we get the

alert

83



• inside nativeAdd() -> we get the alert

3. experimentation with prompt:

• in a different script -> we get the prompt

• inside the script before the sandbox initialization -> we get the

prompt

• inside the script after the sandbox initialization -> we get the

prompt

• inside nativeAdd() -> we get the prompt

4. experimentation with page redirection (window.location.replace):

• in a different script -> we get the redirection

• inside the script before the sandbox initialization -> we get the

redirection

• inside the script after the sandbox initialization -> we get the

redirection

• inside nativeAdd() -> we get the redirection

5. experimentation with backgroundColor

(document.style.backgroundColor):

• in a different script (before and after the sandboxed script) -> no

change

• inside the script before the sandbox initialization -> changed

• inside the script after the sandbox initialization -> changed

• inside nativeAdd() -> changed

//a window.alert method is created under customAlert(str), wrapped,

and defined

//a window.prompt method is created under customPrompt(prom,

defText), wrapped, and defined

// maybe we need to create a method just like alert or prompt and

unlock it

// or not
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//* up until now everything is allowed (alert, prompt, redirection,

backgroundColor)

// alert, prompt, and redirection use the window method (i guess

that’s a coincidence) AND the background color uses the document

element

6. experimentation with reload (location.reload):

• in a different script -> we get the reload

• inside the script before the sandbox initialization -> we get the

reload

• inside the script after the sandbox initialization -> we get the

reload

• inside nativeAdd() -> we get the reload

//* still everything is allowed!!

7. experimentation with innerHTML:

• in a different script after the sandbox -> nothing

• in a different script before the sandbox -> nothing

• in a different script inside a called function -> we got the change

• inside the script before the sandbox initialization -> we get the

change

• inside the script after the sandbox initialization -> we get the

change

• inside nativeAdd() -> we get the change

//* still nothing

8. i’ll try to lock the window method:

(a) JSJS.SetLock(window,’locked’);

//right after the initialization of the sandbox window.prompt(..);

-> we got the prompt

(b) jsObjs=JSJS.SetLock(window,’locked’); window.prompt(..);

-> we didn’t get the prompt!! ->>> good news //nothing!
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(c) jsObjs=JSJS.SetLock(document,’locked’); win-

dow.prompt(..); -> we didn’t get the prompt -> bad news

//nothing!!!

(d) jsObjs=JSJS.SetLock(document,’unlocked’); win-

dow.prompt(..); -> we didn’t get the prompt //nothing

(e) jsObjs=JSJS.SetLock(document,’unlocked’);

//just before the shut down of the sandbox (after the prompt)

window.prompt(..); -> we got the prompt

(f) jsObjs=JSJS.SetLock(document,’unlocked’);

//right after the prompt and before the postMessages win-

dow.prompt(..); -> nothing

//* it stops when it reads SetLock for some reason

12/8/2014

30 mins

a break from js.js !!! -¿ hands on treehouse

• changed the default one (onclick event to true) -> nothing

• changed the setPolicy to self.policy of the other policies -> noth-

ing

1 hour

LET’S GET BACK TO JSJS

• removed the ’create window.prompt’ from the wrapper.js -> i could

still get the prompt

• JSJS.LockElement(window); and try window.prompt -> i got the

prompt

• JSJS.LockElement(window.prompt); and try window.prompt -> i

got the prompt
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13/8/2014

DID NOT INCLUDE TIME FOR SOME REASON

tried to manipulate the wrapper.js file

• cleared the whole content: no visibility of results

• deleted the window.alert method: still got the alert (which must have

been expected since other methods that are not written in the file are

allowed)

• changed the expected args of the window.alert to null and objPtr:

still got the alert

--- to be honest, stuck, waiting for someone’s reply (author’s, supervi-

sor’s) to guide me what to do next..in the meantime writing on the thesis

---.

29/8/2014

DID NOT INCLUDE TIME FOR SOME REASON

• invoked the JSJS.SetLock(window.alert) function, and changed the

content of this function inside the wrapper (added a window.alert)

and we got the alert!

--- TRAVEL TO LONDON ---.

12/9/2014

6 hours to figure out how to print the time

1 min per load: (30 mins)

Page load experiments in sec (with TreeHouse):

Chrome: 0.069, 0.024, 0.024, 0.024, 0.027, 0.073, 0.026, 0.021, 0.022,

0.026 = 33.6 (mean time)

Firefox: 0.184, 0.253, 0.13, 0.121, 0.1, 0.153, 0.161, 0.124, 0.135, 0.161

= 152.2 (mean time)
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IE: 0.088, 0.087, 0.097, 0.035, 0.049, 0.038, 0.034, 0.04, 0.054, 0.038 =

56.0 (mean time)

Page load experiments in ms(without): (30mins)

Chrome: 17, 16, 16, 14, 17, 13, 14, 14, 16, 16 = 15.3 (mean time)

Firefox: 40, 84, 34, 34, 36, 63, 62, 42, 39, 13 = 44.7 (mean time)

IE: 61, 12, 45, 36, 71, 37, 12, 10, 40, 10 = 33.4 (mean time)
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13/9/2014

jsjs Latency: (30 mins)

Chrome:

NewRuntime: 14, 17, 14, 16, 16, 7, 15, 7, 16, 7 = 12.9

NewContext: 30, 36, 29, 30, 28, 29, 28, 32, 30, 25 = 29.7

GlobalClassInit: 8, 8, 8, 8, 9, 2, 9, 4, 9, 3 = 6.8

InitStandardClasses: 89, 86, 98, 95, 86, 44, 89, 86, 90, 81 = 84.4

Simple execution: 75, 76, 87, 74, 77, 11, 80, 6, 79, 7 = 57.2

DestroyContext: 33, 35, 36, 32, 36, 18, 34, 21, 36, 19 = 30

DestroyRuntime: 6, 3, 6, 4, 4, 3, 5, 2, 4, 4 = 4.1

Page load: 280, 283, 305, 273, 278, 137, 288, 179, 287, 168 = 247.8

Firefox:

NewRuntime: 19, 14, 14, 13, 19, 16, 14, 17, 14, 24 = 16.4

NewContext: 37, 31, 32, 31, 31, 30, 27, 37, 33, 46 = 33.5

GlobalClassInit: 23, 18, 20, 21, 21, 22, 22, 22, 24, 29 = 22.2

InitStandardClasses: 120, 123, 112, 105, 105, 115, 107, 170, 118, 156

= 102.5

Simple execution: 92, 86, 98, 102, 94, 97, 106, 107, 101, 137 = 102

DestroyContext: 47, 44, 52, 44, 47, 42, 52, 43, 57, 58 = 48.6

DestroyRuntime: 3, 4, 5, 8, 5, 7, 6, 4, 5, 6 = 5.3

Page load: 377, 341, 360, 349, 349, 354, 358, 431, 381, 488 = 378.8

IE:

NewRuntime: 41, 20, 14, 23, 20, 22, 23, 17, 20, 18 = 21.8

NewContext: 241, 140, 141, 133, 138, 124, 134, 127, 131, 124 = 143.3

GlobalClassInit: 7, 7, 7, 6, 9, 7, 7, 6, 7, 11 = 7.4

InitStandardClasses: 84, 101, 106, 90, 101, 91, 100, 94, 98, 94 = 95.9

Simple execution: 93, 106, 106, 121, 107, 90, 118, 105, 102, 98 = 104.6

DestroyContext: 39, 57, 44, 37, 39, 38, 66, 52, 52, 54 = 47.8

DestroyRuntime: 7, 10, 8, 10, 8, 6, 6, 9, 8, 8 = 8

Page load: 807, 464, 444, 434, 435, 396, 486, 430, 433, 423 = 475.2
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