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Dual-data Filtering for Robust Position and Angular Tracking of the Oculus Rift
∗

Anonymous

Abstract

We present a system to perform long-range, robust positional and
angular tracking of the Oculus Rift head-mounted-display (HMD).
In this case, Marker Tracking with overhead camera (pointed down-
wards) is used to achieve both positional and angular tracking of the
Oculus Rift. Here, our contribution is to combine the resulting es-
timates of pose (from Marker Tracking) with low-latency inertial
sensor data from the Oculus. This is motivated by our key obser-
vation that inertial sensors in the Rift suffer from low-frequency
drift which accrues over time, while Marker Tracking systems suf-
fer from high-frequency error when estimating angles. In addi-
tion the latter also suffers from glitches when tracking fails or the
marker is not visible in the image frames. However, although track-
ing can lead to a few frames with unreliable data, they do not ac-
crue error when tracking does resume. We combine robustly data
from the Rift using computer vision based tracking methods, by us-
ing a Kalman filtering approach. Our experiments shows that this
approach can deal wiht drift in yaw angle. The positional track-
ing enables crouching, jumping and small positional movements
in games. Finally, we show acceptable delays in both the marker
tracking by using color blob detection and network communication
neccesary for this solution.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: Color Blob Detection, Marker Tracking, Oculus Rift
DK1, Overhead Camera, Walking, Crouching, Jumping

1 Introduction

The Oculus Rift DK1 [DK1 ][Pohl et al. 2013] is gaining popular-
ity as an interface for Virtual Reality (VR) and Augmented Real-
ity (AR) applications. This system is essentially a head-mounted-
display (HMD) with built-in angular tracking of rotations of the
head. While this version has remarkably low-latency tracking
(1000Hz), there are limitations. the residual error in the angular
tracking (particularly yaw) is significant1, even with additional cal-
ibration and magnetometer-based corrections (see fig. 5). Although
the latest version Oculus Rift DK2 (not available at the time of writ-
ing) comes with infra-red (IR) LED’s to perform some positional
tracking, this system is limited by the view of the camera and still
focuses on seated users because of the frontal facing camera.

Our main observation is that the measurement errors of the sen-
sors in the Oculus Rift and computer vision based algorithms are
complementary. While the former suffers from accrued inaccuracy
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1http://www.oculusvr.com/blog/magnetometer/

over long periods of time, the latter provide more noisy measure-
ments within a short time window. However, the Oculus Rift is able
to provide low-latency reliable data in small time windows while
the computer vision algorithms are more likely to yield consistent
tracking over long time periods. Based on this observation, we pro-
pose a novel approach that combines both the sensor modalities.

The core contribution in this paper is a system that can perform
both positional (moving, crouching, jumping) and angular track-
ing of head-mounted-display (HMD) within an acceptable delay.
The entire system uses readily available and affortable hardware to
enhance the gaming experience. Secondly, an online filtering algo-
rithm is presented that uses the dual streams (Oculus rift and vision-
based marker tracking) of data to reconcile their mutual shortcom-
ings. Additionally, color blob tracking further reduces system la-
tency in localising the vision-based marker processing to a subset
of the camera image. We demonstrate the benefits of the above in
the context of a virtual reality application using the Oculus Rift (see
Supplementary Materials for a demonstration of our system).

2 Related Work

Currently we are not aware of any prior work that combines the
Oculus Rift with Computer Vision in the manner we propose. Al-
though there are several industry projects that combine the Oculus
with another sensor modality, these do not use overhead camera
which allows for less constrained positional tracking. Since there
is not much related work to the current solution, we have looked
at the two most important subproblems that have to be solved: the
marker detection methods and the virtual reality helmets systems.

Marker detection: for virtual and augmented reality purposes
is not novel, where multiple papers [Zhang et al. 2002],[Fiala
2005],[Garrido-Jurado et al. 2014] describe how a marker can be
detected and some paper even look at optimal marker designs [Fi-
ala 2010]. Although marker detection can be done in real-time
(depending on your definition), for the HD webcam used in this
project the marker detection was the major bottleneck. Color track-
ing is another technique for allowing tracking of objects in an image
[Bradski 1998],[Simon et al. 2001],[Pérez et al. 2002], with a large
body of work focusing on robustness of the color tracking under
varying illumination conditions. Given that in our case we can cre-
ate the marker ourselves, more simple thresholding seems to work
given one simple color and computing a blob given a pre-defined
threshold.

Virtual Reality helmets system: are not a recent development in
consumer entertainment, despite the booming interest in the Oculus
Rift. Disregarding it’s prevalent use in commercial or military ap-
plications, such as pilot training and vehicle safety testing [Tomilin
1999], the use of head-mounted displays for entertainment pur-
poses has been executed somewhat successfully almost a decade
ago[Pausch et al. 1996]. However, these devices were prohibitively
expensive for regular consumers up until very recently. With the
advent of consumer-priced virtual reality headset systems like the
Oculus Rift [DK1 ] and CastAR2, and the wide commercial interest
they’ve had, there is huge motivation to research similarly low-cost
methods to improve on them. The most relevant work on positional

2https://www.kickstarter.com/projects/technicalillusions/castar-the-
most-versatile-ar-and-vr-system



and angular tracking of an virtual reality helmet is already quiet old.
The first system dates from the 1990s [Wang et al. 1990], where
head-mounted cameras are used. Improvement on both the cam-
era system and tracking are suggested by [Ward et al. 1992],[Welch
et al. 1999],[Maesen and Bekaert 2011],[Maesen et al. 2013]. In all
cases, head-mounted cameras seem to be preferred over following
the virtual reality helmet with an overhead camera system. Possible
reasons for this are latency, where the signal of the camera has to be
sent to and processed by the helmet, while with headmounted cam-
eras, there is only latency due to processing. We however argue that
given the new advances in both networking, computer vision and
graphical rendering, the delay can be brought to acceptable levels,
making an over-head camera a realistic possibility.

3 Angular and positional tracking data

For the angular and positional tracking both a standard webcam
(Logitech C920 HD) and the sensor information of Oculus Rift
DK1 are combined. The webcam tracks an augmented reality
marker [Garrido-Jurado et al. 2014], which gives us estimates of
both the angular and positional data of the Oculus. Because the
detection of the augmented reality marker is not fast enough (es-
pecially in the HD1080p recordings), this step has been improved
by using color detection (Section 3.1) to find subregions, execut-
ing the marker detection algorithm on a small portion of the image
(Section 3.2). The Oculus Rift DK1 is connected to the laptop,
which directly receives the angular data (Section 3.3). Computer
vision processing is performed on a server which sends the data
over a wireless connection to a laptop (using UDP), where times-
tamps (NTP) are used to synchronise the Oculus and webcam data
(Section 3.4) On the laptop, both the webcam and Oculus data are
combined using a Kalman Filter (Section 3.5)

3.1 Fast color blob detection

Our focus is the creation of a fast and reliable detection with center
location a known color feature. Many simple blob detection meth-
ods have been developed over the years [Williams 1990], with much
attention directed to human skin color [Bradski 1998]. However,
skin color of humans can vary greatly, often making this an unre-
liable feature. In our case, with easilly accessible printed markers,
the only variations are caused by the light reflections of the surface,
while color is pre-defined. The two main reasons to perform color
feature detection is that this is more robust and faster than struc-
tured marker detection.
The following methodology (see Figure 3) has been developed to
perform fast feature detection:

- Convert the RGB image to HSV

- Thesholding in the HSV space to obtain a binary image

- Compute the integral image of the binary image

- Check using the integral image for possible blob locations

- Refine the blob locations

The main challenge is to develop a fast method that obtains the re-
gion which contains the color based on the thresholded images. To
achieve this, first the integral image is computed for the binary im-
age. This allows us to compute the histogram on both the rows and
columns of the image, where using the integral image we only have
to perform 4 array references to compute the number of black pixels
in the image3. By thresholding (with T = 10 pixels), we remove

3The sum of all values in rectangle is given by 4 values of the integral
image: (xbr−xbl−xtr+xtl), where t, b, l, r are respectively top, bottom,

the noise and obtain possible regions that can contain a blob feature.
However, if there are multiple blobs in the image, the integral im-
age can be used to check if the regions indeed contain a significant
number of black pixels. Finally, a refinement needs to take place,
where for each detected blob we verify if it can pruned by checking
if the outer rows and columns have enough pixels (with T = 10
pixels). The rows and columns with less pixels than the threshold
are removed, which gives us the final squared blob position in the
image.
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Figure 1: Visualisation of our color blob tracking works. Thresh-
olding of the image (left) result in binary mask (right). Based on
the integral image, fast computation of the histograms is possible.
Thresholding based on histograms gives us the region of interest
(based on horizontal and vertical lines), where for the red region
using the integral image the number of white pixels can be com-
puter using 4 array references.

While this method performs efficiently on desktop and laptop de-
vices, a further optimized method can be employed to reduce im-
pact of latency of tracking on low-powered devices, such as mo-
bile phones and tablets. Here, our GPU accelerated method follows
[Williams 1990] in the computation of the first moment of the inte-
gral of the thresholded color difference image to recover the centre
of the blob area. A GPU reduction performs the summation hi-
erarchically with accumulations from successive (16 bit half-float
format) render target passes with OpenGL ES2.0. Such process-
ing is extremely fast with simple addition operations aligned to the
maximum number of simulatanous texture samples per fragment
shader pass of the device. The primary performance harzard is the
potential for delays in transfer of results to CPU memory. This is
avoided by having the render target results remain on GPU memory
for texture reads by successive passes, until the final reduced buffer
to sum is a single value or otherwise very small buffer of values.
We demonstrate the robustness of this fast feature tracking method
in an iPad app available on the AppStore [SkyeWars 2013] (Figure
2).

left and right



Figure 2: Fast blob feature tracking on a GPU as applied on mobile
devices to tracking an illuminated aerial robot with moon coloring
in the augmented reality game, Skye Wars. The converging lasers
and explosion visual effect illustrates the tracked location of the
moon’s cresent within a challenging illumination environment (the
Anaheim Arena).

3.2 Angular and Positional tracking: From the Marker
Detection

Marker tracking is performed with the Aruco library [Garrido-
Jurado et al. 2014], where markers are found in combination with
the color blob detection. By using the color blob detection detec-
tion, we limit the search area of the Aruco library, making it in most
cases faster. The camera can be calibrated either with a checker-
board or the code provided by Aruco, which allows us to obtain
the angular and positional information based on the known size of
the marker. The angular position of the marker is converted to eu-
ler angles. In this work, we chose a overhead camera, where the
yaw will be the most accurately estimated angle. This is because,
given the appearance of the marker, we only need two points to ac-
curately estimate yaw, while for pitch and roll 3 points are needed.
To compute the postion and angles, the four points of the square are
required. We considered using multiple markers, which will give
some robustness in detection (if the single marker is missed) and
improving the accuracy by taking the average angles of the mark-
ers. However in this case, the markers often became too small in
terms of pixels for accurate detection, which is the reason that in the
final setup a single marker of 19×19 centimeters is used which can
still be detected at a distance of 3 meters given a (Logitech C920
HD) webcam. In the case that we lose the marker, no angular in-
formation will be provided by the webcam to the laptop, so we will
rely on entirely on the Oculus data. Without the marker, it is impos-
sible anyway to provide angular information because a homography
needs to be estimated which can only be done by finding four points
of the square. For the positional data, if the marker detection fails,
we can still compute an estimate based on size and location of the
blob. There are however circumstances in which also the color blob
is also not detected (i.e. where the user will walk out of the camera
view or the marker is perpendicular to the image plane). In scenar-
ios where the gameplay uses the positional data, a clearly defined
field of view needs to be set both for obvious safety reasons and for
gameplay experience.

Figure 3: Example of the output of Aruco given the marker detec-
tion after performing color detection

3.3 Angular tracking: From Oculus Rift inertial sen-
sors

The Oculus Rift inertial sensors will give us pitch, roll and yaw.
Given our initial experiments (see Section 5.1), most of the drift
seems to be in the yaw. Although this is not visible for the user of
the Oculus except when they have finished using it. Still, by having
the users walking around it would be impractical if the yaw angle
drifted slightly, also because the camera view should be in relation
to an area in the real world, which should be similar to the field of
view of the camera.

3.4 Synchronisation of signals

Both the Camera and Oculus Rift are recorded on two different de-
vices, where these signals need to by synchronised. This is achieved
by first synchronising the clock of both computers using NTP to the
same time server. Both the computer attached to the webcam and
the laptop that receives the Oculus Rift sensor data give this data
a timestamp (given the NTP synchronised clocks). The timestamp
data is matched on the laptop that controls the Oculus Rift sensor,
where the timestamp with the most delay is used as direct input in
the Oculus Rift rendering module. We discovered that the synchro-
nisation is not necessary. In this case, both the Oculus and Network
data are collected by seperate threads. On the client side and we
used the most recent sensor data which worked as well. The exper-
iments are all performed with synchronised data.

3.5 Robustification using dual-track filtering

After synchronising the signals of the Camera and Oculus Rift, the
two signals need to be combined, where the Kalman filter [Kalman
1960] is used for this purpose. The first challenge is in alignment
of the angles between the Oculus Rift and Marker tracking. The
Oculus Rift starts with yaw at zero, while the yaw of the camera
depends on the Marker Position in the scene. To correct for this, a
difference vector δ is computed between the angle of the Oculus
Rift and the marker tracking, which is used in the remainder to
correct the marker tracking angular data.
The Kalman filter created in this research is able to deal with
angular information, where the distance between 5 and 355 is 10
degrees, instead of 350 degrees. The estimation of the next state
is based on the velocity. The Oculus Rift and marker tracking
is combined in the measuring stage, where for both sensors the
standard deviations of the noise are indicated. In the case of
pitch and roll, the measure of the Oculus have a lower standard
deviation, while for the yaw the marker tracking deviation is set to



be lower.
Our version of the Kalman filter (Algorithm 1) gives a good
framework for combining the noisy observations of both the
Oculus and marker tracking. In addition to dealing with the noisy
data, the Kalman filter is also able to deal with the fact that the
camera might not observe the marker. In this case, we only use the
Oculus Rift data. We considered also using a Kalman filter for the
positional data of the marker tracking. However losing the marker
was in most cases either because the marker could not be viewed
anymore due to the fact that the marker went out of the image
plane or due to severe pose (i.e perpendicular to the image plane).
For both cases, further predictions of the Kalman Filter are not that
useful.

Data: prediction: yt, measuments: zt, oculus: ot,1:3, vision: vt,1:3
Result: Kalman filter: xt
Prediction using velocity: A, Observation process: H ,
Measument noise: R, System noise: Q;
while program runs do

yt = Axt−1;
yt = value2angle(yt);
Et = APt−1A

T +Q;
Kt = EtH

T (HEtH
T +R);

tt,1:3 = angulardiff(ot,1:3, yt−1,1:3);
if notcameraworking then

d1:3 = angulardiff(ot,1:3, yt−1,1:3);
vt,1:3 = vt−1,1:3 + d1:3;
tt,4:6 = zt,4:6 − angulardiff(vt,1:3, ot−1,1:3);
vt = value2angle(vt);

end
tt,4:6 = angulardiff(vt,1:3, yt−1,1:3);
xt = yt +Kttt;
xt = value2angle(xt);
Pt = (I −KtH)Et;

end
Algorithm 1: Kalman filter for angular rotation, by using
angulardiff to compute the closest distance between two an-
gles and value2angle which converts any number not between
[0− 360] to the correct angular value.

4 System Architecture and Testbed Configu-
ration

We opted to use Unity and its dedicated Oculus Rift SDK plugins in
order to set up the software side of our testbed, which were easy to
manage and modify. Given Unity’s accessible prototyping capabil-
ities we were also able to quickly build a sample game environment
for demonstration purposes.

The headset itself was mounted on a tripod and fastened securely to
ensure stability. The tripod was aligned so that the orientation data
provided by the headset was as close to 0 degrees as possible on
every axis. The tripod’s orientation and position was then marked,
using tape for guidelines, so that it could be returned to its origi-
nal position whenever required. The headset was calibrated with
the tripod attached in the test environment in order to account for
any magnetic interference from local artifacts (steps were taken to
isolate the system from devices that could provide magnetic inter-
ference, within reason) and the earth’s magnetic intensity and flow
at the laboratory’s location.

This system is targeted to be capable of supporting multiple users
in a “drop in and play” environment. The usb 2.0 wired camera
must be attached to a host machine for visual processing. Likewise,

the Oculus Rift headset required its own host machine for render-
ing. To accommodate these constraints, our system was set up to
support a single-server-multiple-clients networking protocol. The
camera is attached to the server (since we expect both to remain
stable throughout the session) and carries out all visual processing,
transmitting camera data regularly to the clients. The clients are
laptops attached to the system’s users which are also connected to
the individual headsets. Unfortunately, the Oculus Rift DevKit 1 re-
quires an external power source which would need portable battery
source of modest rating to fully untether our experimental setup.
The networked solution is however, wireless, in order to sufficiently
test the latency and engineering issues surrounding a fully-mobile
system.

5 Experiments and Results

Several experiments have been performed to understand the perfor-
mance of the Oculus Rift and combine it with the Webcam data.
During these experiments, we mainly looked at the difference be-
tween the sensor in the Oculus Rift compared with the Webcam
data. We verified that the positional data was correct by placing
the marker on different known positions and recorded these posi-
tions. Since positional marker tracking [Zhang et al. 2002],[Fiala
2005],[Garrido-Jurado et al. 2014] is pretty well understood, and
because positional tracking depends on the camera setup and scene,
we will not go into details on this issue. For the purpose of this
project, the positional tracking was deemed as accurate enough and
any small errors dependent on the camera setup and hardware used.
Given this project, the more interesting scientific question are:

- What is the Angular Drift of the Oculus Rift?

- How can we combine the Angular measure of the Oculus Rift
and Webcam?

- Can we improve the Yaw drift of the Oculus Rift with the
Webcam?

- What kind of Latency does this system have?

5.1 Verifying Angular Drift of Oculus Rift

Oculus VR’s Principal Scientist, Steve LaValle4, provides average
and worst-case yaw drift values for the Oculus Rift DevKit 1 with
magnetometer correction. For their experiments, the user sat down
and played a virtual reality game for over twenty minutes. They
continuously tracked the headset’s orientation data and compare it
against a ground truth obtained by measuring head orientations us-
ing an OptiTrack motion capture system. The Oculus Rift team
discovered a drift of approximately 3.7 degrees on average with
worst-case performance within 10 degrees.

In order to simulate approximately 20 minutes of standard game-
play the tripod oscillated on yaw at a moderate pace, with occa-
sional rotations on pitch and roll. Orientation data from the head-
set was recorded continuously at 60Hz and at 90 second intervals
for 15 intervals, with 80 seconds per interval dedicated to moving
the headset in a natural way (totaling to 20 minutes of movement
across the entire run) and 10 seconds to realign the headset to the
starting position. By realigning the headset to its original position
where the sensor indicated 0 degrees on each axis, and recording
the stipulated orientation at that point, we merely calculated the
difference between the original measurement and the current mea-
surement in order to calculate the drift. The experiment was re-
peated three times to calculate a satisfactory average; one set with
the magnetometer correction on and one with the correction off.

4http://www.oculusvr.com/blog/magnetometer/



Our yaw drift experiments with magnetometer correction showed
worse results than the Oculus VR team, deviating by approximately
8.22 degrees on average after the 20 minutes of standard gameplay.
Our average maximum error value was near the value presented by
Oculus VR, at 10.51 degrees. It should be noted that although we
ran our experiments with the utmost care, it is possible that there
is slight deviation from the true value compared to a computerized
ground-truth method such as the OptiTrack motion capture system.
Drift from the rest position angle, with magnetometer correction,
tends to oscillate around zero. Without magnetometer correction,
the average yaw drift by the end of the experimental run was ap-
proximately 64.13 degrees. Drift in these cases steadily increases,
so the maximum average drift value is equivalent to the average
yaw drift by the end of the experimental run.

Given that an top-down camera is used to track the marker, the most
accurate angle given by the marker detection is the yaw, because
only 2 points of the markers are needed to estimate it’s position.
Figure 4(b) shows that the estimation for yaw by the camera is
smoother than for the another angles. In case of pitch and roll,
the camera estimates are less accurate as can be observed in Fig-
ures 4(a) and 4(c), where the angular estimation of the cameras con-
tains lot of noise, which is filtered by using our Kalman filter. The
Kalman filter takes into account the noisy measurement of pitch and
roll, while at the same time is able to give the camera measurement
in yaw higher priority. There are two reasons that pitch and roll
are more noisy for the camera. The first reason is that 3 points of
the marker are neccesary to to estimate those angles. The second
reason is that the board on which the marker was attached some-
times bends a little which has effect on the geometric assumption
used in computing those angles (this can be improved in our next
prototype).

5.2 Filtered Orientation Estimation

The same procedure is used to validate our headset’s yaw-drift in
order to test our complete system. The headset’s orientation data,
the webcam’s orientation estimates, and the resulting Kalman fil-
tered data are all recorded at 60Hz.

We were also interested in the system’s performance in “non-
standard” gameplay scenarios with severe motion. In order to
simulate “non-standard” motion the headset was rotated rigorously
along each axis – although mostly on yaw – for brief periods fol-
lowed by long periods of stable rest. Occasionally, the marker was
occluded, either manually or just due to the headset’s orientation, to
induce tracking failure. This is highly relevant for augmented real-
ity scenarios, where the capability of additional unrestricted move-
ment through space would require a system that would be able to
track the user’s orientation in difficult situations.

The Kalman filtered data performed well in all scenarios. This was
least noticeable for the standard 20 minute gameplay experiments
where adjustments were on the order of tenths of a degree. We
expect that as gameplay extends past 20 minutes, and yaw-drift ac-
cumulates, the filtered data will lay closer to the true orientation
than the raw headset data. More interestingly, and confirming our
assumption above, the Kalman filtered data also performed well in
the severe, “non-standard” gameplay scenario. The headset’s ori-
entation data with magnetometer correction had drifted by approx-
imately 20 degrees in the worst-case while the filtered data showed
a drift of approximately 5 degrees for the same instance. Without
the magnetometer correction, the headset’s final drift for standard
gameplay motion was approximately 25 degrees, while the filtered
data reported a drift of approximately 8 degrees.

In Figure 5, we show three experiments with both the Oculus Rift
(red), Camera Position (green), Kalman Filter (blue) and Rest Po-

(a) Pitch

(b) Yaw

(c) Roll

Figure 4: The pitch, yaw and roll estimates of both the Oculus
Rift sensors, Marker Tracking and Kalman Filter. It shows that
the Marker Tracking is not so accurate for pitch and roll, while
being accurate and smooth in yaw estimation of the Virtual Reality
Helmet.



Desktop PC Apple MacBook Pro

Network Latency 0.54 ms

Marker Detection 9.085 ms *8.194 ms

Color Marker Detection 4.01 + 3.68 ms 5.54 + 6.67 ms

GPU Feature Detection na 1.54 + 6.67 ms

Table 1: The latency due to the network and computer vision (color
marker detection or only marker detection), this table shows that
the latency introduced by our solution is under the advised latency
of 20 ms. It also shows that the color blob detection methodology is
able to speed up the Marker Detection and an even better speedup
can be achieved with the GPU color feature tracking method. In
case of the combination of color detection and marker detection,
first the speed of the color detection is given and than of the marker
detection. [*] In this case, marker detection does not search on
lower resolutions for markers.

sition (black). Figure 5(a), the magnetometer in the Oculus Rift
deals very well with the drift showing that all the signal are nicely
aligned. Without the magnetometer (Figure 5(b)), a large drift in the
Oculus Rift can be observed, where both the camera position and
Kalman filter give a better estimate. Also in case of more severe
movements (see difference in y-axis in Figure 5(c)), we observe
more drift even with a magnetometer, where the marker detection
and Kalman filter correct the drift in yaw as observed from the rest
periodes.

5.3 Measurable Latency

The latency of the entire system is an important issue in Virtual
Reality, where the Oculus Rift developers are aiming to get the la-
tency to under 20 milliseconds5. Although the latency in rendering,
streaming to screen and communication of sensor information is
normally also present, we focused only on the additional latency
parameters in our system. The biggest latency in our system can
be expected in the network communication and the computer vi-
sion processing. In Table 1, the network communication and vi-
sion computation speed are shown. The Desktop Computer used
in these experiments has as processor an Intel Core i7-3770 CPU
@ 3.40GHz, while the Apple MacBook Pro has a Intel Core i7-
3720QM CPU @ 2.60GHz. The Table shows that first performing
Color Blob Detection and using only a small region for Marker De-
tection has a some speed gain over only using Marker Detection.
Although for the Apple MacBook Pro there seems to be no speed
gain, in reality the Marker Tracking library uses a trade-off between
speed and resolution, where on the Apple MacBook Pro is does not
find marker located further for the camera due to their lower reso-
lution, which can be fixed by using Color Marker Detection.
In our case, the network latency is measure by using ping over 500
packages (mean = 5.27, median = 0.54) on a local network utilising
a wifi connection.

6 Application Domains

We believe that there is still unexplored potential in using existing
virtual reality headsets for low-cost shared augmented reality expe-
riences. By fully exploiting all the capabilities of our yaw-drift cor-
rected system we are able to track multiple users’ position, height,
and orientation using only additional cheap materials that are quick
to set up. Additionally, the system is robust even when poorly con-

5http://oculusrift-blog.com/john-carmacks-message-of-latency/682/

structed, and calibration in new lighting conditions only takes a few
minutes.

Although we currently use a dedicated desktop or laptop machine
for vision processing (see Figure 6), it would be easy to develop a
portable solution using small-sized computers, like the single-board
Raspberry Pi. Given the Raspberry Pi has similar GPU capability
as mobile devices used in figure 2 we assume its processing capa-
bility is approximately up to the task. In order to accomplish a fully
portable system, a portable power source would have to be provided
for the headset itself.

Our system can be applied to several existing or upcoming headset-
based virtual reality solutions. The Oculus Rift DevKit 2 will come
with positional tracking through an external near Infrared CMOS
Sensor intended to be placed in front of a seated user. The headset
itself will come with infrared emitters on the face of the device but
not on the top or back straps, restricting positional tracking to a
viewing plane which is only functional when viewed directly from
the front. This is sufficient for the seated experience the Oculus Rift
is targetting, where the user is expected to remain relatively stable,
but restrictive in comparison to our system. It is also uncertain
whether a single CMOS sensor would be able to detect multiple
users or whether the new positional data is being used to correct for
yaw-drift. Our system could equally be used to cheaply enhance
the DevKit 2’s capabilities.

Finally, the crux of our solution is the real-time filtering of multiple
streams of data. This allows some flexibility in our choice of track-
ing and detection method, as long as it can reliably detect the user’s
orientation and translation in real-time from an eagle-eye vantage
point. For example, cost permitting, a spaced LED board solution
could be used with a low-persistence camera to track bright light
sources in low-light imagery, making the system more robust to
changes in lighting conditions.

Figure 6: Example of the system running on two MacBook Pros,
where the user has a large space to walk around while in the Skye
Wars game environment.

7 Discussion

Although our developers did not experience any significant amount
of nausea (at least not more than to be expected from current virtual
reality headsets), malaise in virtual reality systems is an endemic
problem that must be addressed carefully. Due to time limitations,
we were unable to run user studies to ensure our system’s usability.
However, what we have shown is that such a system is possible to
construct in a relatively short amount of time with low-cost mate-
rials, but perfecting our system to consumer standards would take
much longer. Future work may include extensive user studies and



(a) With Magnetometer

(b) Without Magnetometer

(c) Severe Motion With Magnetometer

Figure 5: Yaw estimation is shown for both the Oculus Rift with and without magnetometer and with severe movements, in the top, middle and
bottom graphs respectively. The top, middle and bottom graphs. The top figure shows that there is not much drift in Oculus Rift estimation
and all signals are well aligned. The middle figure shows that in the rest periodes a much larger drift (see our purple line estimate of the drift
nicely aligned with the red line) and demonstrates that the Kalman filter is able to correct for this drift. The bottom figure shows that severe
movements also create more drift in the Oculus Rift where both the camera data and the Kalman filter correct for this drift.



algorithmic tweaking to develop a solution with comparable accu-
racy to cumbersome or costly ground-truth alternatives. In addition
to user studies, more extensive testing is required to ensure our so-
lution’s stability in a variety of gameplay scenarios. Users will typi-
cally follow the motions encouraged by the individual game, which
may not be as encompassing as the full range of movements and
environments we would like to test against. On the other hand, the
gameplay can also limit the allowable positional movement by, for
example, placing the gamer on a platform surrounded by a deadly
pit.

The effectiveness of different real-time filtering and tracking algo-
rithms could also serve as the body for future publications. Our cur-
rent system uses an adaptation of the Aruco marker tracking library
enhanced with fast feature tracking based on color. In this case, in-
tegration of the color blob detection with the marker detection can
be improved using only the resolution suggested by the color de-
tection. We also use a simple Kalman filter to adjust the headset’s
orientation data over time with the camera’s tracking data, which
could subsume other methods such as Low/High Pass Filter combi-
nation or Extend Kalman/Particle Filter.

The Oculus Rift DevKit 2 comes with built-in USB ports, which
will ease the development of a portable system based on LED lights,
ultrasound emitters, or other client-side powered tracking methods.
In this case, they still focus on a seated user. Our focus, however,
is on developing a very low-cost solution that doesn’t require spe-
cial ceiling markers or expensive tracking devices that are gener-
ally not available at the consumer level. Another low-cost alter-
native for tracking would be to construct a cheap sphere dipole or
tripole [Greenspan and Fraser 2003] with different colored spheres
for general spherical color tracking [Sỳkora et al. 2008] or the fast-
feature color tracking used in our current study. We expect that
this system would be less susceptible to failure on steep orientation
angles in pitch and roll. Additionally, it may be less cumbersome
to attach to the headset and it would be easier to account for steep
angle failure by adding more cheap color markers at problem ori-
entations.
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