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ABSTRACT 

Literature offers a quantitative number of diagnostic imaging methods that can 

continuously provide a detailed image of the material defects in aerospace and civil 

applications. This paper presents a nonlinear Structural Health Monitoring (SHM) 

imaging method, based on nonlinear elastic wave tomography (NEWT), for the 

detection of the nonlinear signature in damaged isotropic structures. The proposed 

technique, based on a combination of higher order statistics (HOS) and radial basis 

function (RBF) interpolation, is applied to a number of waveforms containing the 

nonlinear responses of the medium. HOS such as bispectral analysis and bicoherence 

was used to characterize the second order nonlinearity of the structure due to corrosion, 

whilst RBF interpolation was applied to a number of signals acquired from a sparse 

array of sensors, in order to obtain an image of the defect. Compared to standard linear 

ultrasonic imaging techniques, the robustness of this nonlinear tomography sensing 

system was experimentally demonstrated. Moreover, this methodology does not 

require any baseline with the undamaged structure for the detection of the nonlinear 

source as well as a priori knowledge of the mechanical properties of the medium. 

Finally, the use of HOS makes NEWT a valid alternative to traditional nonlinear elastic 

wave spectroscopy (NEWS) methods for materials showing either classical or non-

classical nonlinear behaviour.  

KEYWORDS: nonlinear elastic tomography, damage detection, imaging method, SHM 

applications. 

INTRODUCTION 

Damage detection is getting more and more attention from scientists and engineers operating in the 

aerospace field since composite materials have become a structural material adopted for aircraft 

primary structures (wing, fuselage) of large airliners and not only for secondary structural elements. 

Non Destructive Techniques play a major role in qualification of process and products and ensure 

that structural components do not have internal or surface defects. Nevertheless, the attention of 

scientific community is focused on acousto/ultrasonic Structural Health Monitoring (SHM) imaging 

techniques, based on guided waves (GW), which are able to identify and localise damages in 

operating conditions before these could lead to catastrophic failures [1]. There are different 

ultrasonic GW imaging methods that can be adopted for SHM falling in two big categories, i.e. 

linear and nonlinear. The former ones require a baseline whilst the latter do not. A baseline should 

represent the structural behaviour of the undamaged sample and it can correspond to operational 

mode shapes, natural frequencies, vibrational and acoustic signals properly chosen. The effect of 

damage on the natural frequencies of a sample has been investigated as a potential global inspection 

technique, but this approach has been proved to be sensitive to environmental factors [2]. Other 
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linear methods have been proved to be more effective in damage localisation: among these, 

tomography [3], time-of-arrival [4], time-difference-of-arrival [5], energy arrival [6] and 

Reconstruction Algorithm for the Probabilistic Inspection Damage (RAPID) method [7]. All these 

methods are based upon the signals between pairs of N transducers, i.e. they post-process the 

differences between signals acquired for the undamaged and the damaged structure in different 

locations and build several figures of merit allowing the prediction of the damage location. Rayleigh 

Maximum Likelihood Estimation (RMLE) method is another linear technique able to locate 

structural damage using guided waves to feed a Rayleigh based statistical model of scattered wave 

measurements [8]. However, the large changes in nonlinear ultrasonic parameters for small degrees 

of damage have stimulated interest in the use of nonlinearity for fatigue crack detection: nonlinear 

elastic wave spectroscopy (NEWS) shows promise as a route to a sensitive crack detection method 

[9], [10]. In Kyung-Young [11], the use of nonlinear ultrasonic waves for evaluation of material 

degradation was presented. The generation mechanism of the second-order harmonic frequency 

components during the propagation of elastic stress waves through the degraded material was first 

explained on the basis of nonlinear elasticity. Then, higher order statistics (HOS) analysis was used 

for the measurement of the nonlinear parameter β, indicating the ratio of the amplitude of second-

order harmonic frequency components relative to the power of the fundamental. Finally, several 

experiments were carried out to confirm the correlation between the second order nonlinear 

parameter β and the material degradation. The results showed that β is proportional to the 

magnitude of the load and the number of fatigue cycles and well reflected the actual variation of the 

specimen strength. In Ciampa et al. [12], nonlinear elastic wave tomography (NEWT) was used as a 

useful diagnostic tool to image the presence of a crack or defect in composite structures. The 

bispectrum signal processing technique was employed to analyse the nonlinear response of the 

sample undergone to harmonic continuous excitation. Particularly, a bispectral matrix was 

generated allowing the definition of a damage map overlapping the sample formed by discrete 

values of bispectrum. The results showed a strong correlation of the parameter β and bicoherence 

with damage in the sample and encouraged the use of nonlinear ultrasonic as structural health 

monitoring (SHM) imaging technique. In the present paper the different imaging methods of 

damage detection before mentioned, i.e. linear and nonlinear, are applied to detect and localise the 

damage on a typical aluminium panel for aerospace applications undergone to pitting corrosion. 

Initially a baseline was obtained for the undamaged structure, then a controlled material degradation 

process was activated over a small region of the panel surface and the effect of this induced damage 

was evaluated. A comparison of the different techniques in providing reliable prediction on this 

simple structure was performed allowing useful discussion about the suitability of each of them. 

The layout of this paper is as follows: in Section 1, the different linear methods are briefly presented 

and discussed. Section 2 illustrates nonlinear methods. Section 3 illustrates the experimental set-up, 

whilst Section 4 reports the results provided by the different techniques. Finally, conclusions are 

drawn and summarised. 

1 LINEAR METHODS  

Hilbert Transformation  

If sij(t) is the signal recorded from each pair (baseline) with no damage, fij(t) is the signal recorded 

from each pair with damage. The residual signal is: 

 )t(s)t(f)t(r ijijij   (1) 

The complex analytical signal is formed from this signal and its Hilbert transform cij(t): 

 )t(iv)t(r)t(c ijijij   (2) 

The envelope detected residual signal is: 

 22 )t(v)t(r)t(h ijijij   (3) 

 



 

  

Time-Of-Arrival (TOA) (or Ellipse) Algorithm 

If (xi, yi) is the transmitter (tr) position, (xj, yj) is the receiver (rec) and (x, y) any point (p) of the 

structure, the time that the signal takes to travel from the transmitter location to the any point of the 

panel and the receiver is [4]: 
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By calculating hij(tij(x,y)), a spatial map of the subtracted signals is obtained. Therefore, for all 

transducers pairs combination in the array, the final amplitude map is: 
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where N is the number of sensors in the array and 
2
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 . Equation (5) means that values 

of the amplitude obtained at certain time (i.e. at the coordinate x and y) were first added for each 

pair and then averaged. For a single transducer pair, this imaging algorithm maps a single echo to an 

ellipse with its foci being the transmitter-receiver location. As additional pairs are added, the 

ellipses intersect at defect location and thus reinforce.  

 

Time-Difference-Of-Arrival (TDOA) (or Hyperbola) algorithm 

This algorithm [5] is based on the assumption that the received waveform at two sensing transducer, 

as actuated by the same transmitting transducer, can be correlated according to the time difference 

in the Time-Of-Flight (TOF) from a given region to each of the receiver transducer. Assuming that 

a transmitter (xn,yn) send a signal, the time difference that the waveform would take to travel from 

the source to a given point (x,y) on the panel and on to each of the two locations of receiver (xi,yi) 

and (xj,yj) would be: 
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If sin(t) and sjn(t) are the signals recorded from the receivers i and j  with no damage (baseline) and 

fin(t) and fjn(t) are the signals recorded from the receivers i and j with damage, the residuals are: 

 
)t(s)t(f)t(r

)t(s)t(f)t(r

jnjnjn

ininin




 (7) 

The time difference is calculated using the cross-correlation Rin,jn(t) between the two residual 

signals. If a damage is present at the point (xd0, yd0), its reflections will appear in the two residual 

signals with different time delays, and the cross-correlation function will give a maximum value at 

tij(xd0, yd0). However, there are many combinations of points (x, y) of the structure which will give 

the same time delay tij(xd0,yd0). Hence, a spatial map will be reproduced if the value Rin,jn(t) are 

plotted for each point (x,y) at its corresponding time delay tij(xd0,yd0). The intensity map is given 

by: 
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The maximum correlation is a serious of hyperboles that cross the location of the defect with the 

foci on the two receivers. 
 

Energy Arrival (EA) Method 



 

  

This approach [6] is an adaptively windowed version of the TOA Algorithm, where the contribution 

of a component of a waveform is inversely weighted by the wave energy that arrived before it. The 

residual signal is rij(t) for the transducer pair ij, and each of these signals can be windowed about 

the calculated arrival time for that transducer pair. The image is calculated according to: 

  


  




1

1 1

),(
N

i

N

ij
cum

ij

win

ij

cum

ij

win

ij

EA
EE

EE
yxI  (9) 

where: 
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t is the width of the time window, beginning at the calculated arrival time tij. The inversion of the 

wave energy adaptively reduces the amplitude of the scattered echoes.  
 

RAPID (Reconstruction Algorithm for the Probabilistic Inspection Damage) algorithm 

This method [7] defines on image over the sample subject of investigation through the following 

spatial distribution function: 
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where SDCij is a term associated to the covariance between the damaged and undamaged structural 

signals and sij(x,y) is a purely geometric term.  

 

Rayleigh Maximum Likelihood Estimator (RMLE) 

This method [8] consists of finding the maximum of the Rayleigh likelihood function at the damage 

location: 

  ),(maxargˆ
,

yxIRMLE
yx

x  (12) 

where x is the vector coordinates x and y on the structural surface. 
 

2 NONLINEAR ELASTIC WAVE TOMOGRAPHY 

According to Landau’s nonlinear classical theory [13], the standard second order nonlinear 

parameter β can be obtained as a solution of the nonlinear elastodynamic wave equation via a first 

order perturbation theory as follows 
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where  2P  is the magnitude of the power spectral density associated with the second harmonic 

frequency component. The parameter β is able to quantify the second nonlinear elastic response of a 

structure subjected to sinusoidal excitation. An analogous nonlinear parameter can be obtained from 

higher order statistics in order to measure the amount of coupling between the angular frequencies 

ω1 and ω2=2ω1. In particular, the bicoherence b2 is a useful normalized form of bispectrum that 

measures Quadratic Phase Coupling on an absolute scale between 0 and 1 and can be defined as 

[14]: 
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Since the bispectrum B(ω1,ω2) has a variance proportional to the triple product of the power spectra, 

it can result in the second order properties of the acquired signal dominating the estimation. The 

advantage of normalisation is to make the variance approximately flat across all frequencies. Hence, 



 

  

both the parameters β and the bicoherence b2 will be used to characterise the nonlinearity of the 

structural response of the aluminium panel subjected to a harmonic excitation. Furthermore, 

according to [12], a radial basis function (RBF) approach was employed to create the nonlinear 

elastic wave tomography images  yxI ,  and  yxI
b

,2  of the damage location using a sparse array 

or receivers sensors. 

3 EXPERIMENTAL SETUP 

The investigated structure was an aluminium panel with dimensions of 600 x 600 mm x 5 mm. Over 

the top panel surface eight piezoelectric sensors were surface bonded (see Fig. 1). Each sensor was 

used as transmitter while the others served as receivers allowing the realization of 8 matrices 7x7 

then summed and post-processed.  The transmitter sensor was linked to a preamplifier and 

connected to a National Instrument (NI) data acquisition system consisting of the NI PXI 5421 16-

bit arbitrary waveform generator card to send an 80-cycles Hanning-windowed tone burst at 200 

kHz. The excited voltage applied was around 150 V in order to maximize the efficiency of the 

available sensors. The plate was instrumented with eight, 10 mm circular piezoelectric tranducers 

designed to excite and measure the fundamental symmetric Lamb mode S0. At the chosen excitation 

frequency, the wavelength of the propagating wave S0 was around 25 mm. The undamaged structure 

was first tested for evaluating the baseline. Then, corrosion damage was introduced through a 

controlled material degradation process and finally imaging tests were performed. 

 

  
Figure 1: Sensors configuration and damage location. 

 

3.1 The Corrosion Process 

After the application of a Teflon mask, a surface of 10 x 10 mm was subjected to three different 

corrosion processes. The first process involved HNO3 concentrated (Sigma-Aldrich 70%, density of 

1,413 g/mL at 20 °C). A uniform layer of HNO3 was deposited using a glass pipette [15]. After 

three hours, 2g of bicarbonate was used to neutralize the acid environment. The surface was cleaned 

with distilled water. A change of colour was noticed as a proof of the action of the acid on the first 

layer of aluminium oxide that naturally covers the surface of an aluminium alloy. The second 

process was mechanical and aimed to accelerate the corrosion action by the acids over the chosen 

surface. Particularly, a small notch was created with a chisel. The third process consisted of an 

attack with H2SO4 concentrated (Sigma-Aldrich, ACS reagent, 95.0-98.0%, density of 1,840 g/mL 

at 25 °C) according to Ghali [16]. An attack with H2SO4 is strong enough to corrode the surface 

enchanting a pitting corrosion following the notch made with the mechanical process.  

4 RESULTS 

The following figures report the results of the application of the different imaging methodologies 

for the damage localisation. 



 

  

  

Figure 2: Residual signals. Figure 3: Spectrum of the measured signal. 
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Figure 4: Application of linear methods for the damage localization. 
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Figure 5: Application of nonlinear methods for the damage localization. 



 

  

It is clear from the Figure 2 that there is a strong difference between the signals for the undamaged 

and damaged structure. The blue waveforms represent the acquired time histories, whilst the red 

ones are the associated envelopes. From Figure 3 it is evident the presence of a second harmonic at 

400 kHz due to nonlinear interactions of the elastic wave with the damage. Predictive capability of 

the methods is measured on the post-processing of these residuals in order to find the exact location 

of the damage due to corrosion. Among linear imaging techniques, the most accurate prediction was 

achieved using RMLE technique. Indeed, according to Table 1 and the error function   defined by 

   20

2

0 dddd yyxx  , where xd and yd and xd0 and yd0 are the coordinates of the 

estimated and true damage location, respectively, a maximum estimation error of 25  mm in 

the damage location was found using RMLE technique. 
 

Table 1: Damage coordinates and error function for both linear and nonlinear imaging methods 

 x-coordinate (mm) y-coordinate (mm) Error Function (mm) 

TOA – 8 Sensors 120 185 poor localisation 

EA – 8 Sensors 270 225 40  

TDOA – 8 Sensors 310 365 poor localisation 

RAPID – 8 Sensors 430 400 poor localisation 

RMLE – 8 Sensors 230 175 25 

 + RBF – 8 Sensors 251 190 no error + ambiguities 

b2 + RBF – 8 Sensors 250 290 no error 
 

Figure 5 showed that a combination of bicoherence analysis and radial basis function allowed a 

perfect localization of the pitting corrosion location with an error function equal to zero. However, 

unlike bicoherence, the nonlinear imaging with the standard second order nonlinear parameter β 

provided not only perfect damage localisation, but also ambiguities over the surface panel. This was 

due to the lack of information provided by the quadratic phase coupling between the fundamental 

and the second harmonic for the calculation of the second order nonlinear coefficient [12]. Indeed, 

the parameter does not provide any information on the phase of the measured signals, which may 

lead to ambiguities in the image of the nonlinear source. Such ambiguities could be produced by 

spurious experimental sources of nonlinearity such as the amplifier and the excitation transducer 

due to the high input amplitude, or the coupling between the receiver sensor and the aluminium 

structure.  

CONCLUSION 

In the present paper an aluminium panel for aerospace applications has been tested for comparing a 

nonlinear SHM imaging method, based on nonlinear elastic wave tomography (NEWT), with 

different linear damage detection techniques. The linear techniques indeed require a baseline of the 

undamaged structure while the nonlinear techniques do not. HOS such as bispectral analysis and 

bicoherence was used to characterize the second order nonlinearity of the structure due to corrosion, 

whilst RBF interpolation was applied to a number of signals acquired from a sparse array of 

sensors, in order to obtain an image of the defect. Compared to standard linear ultrasonic imaging 

techniques, the robustness of this nonlinear tomography sensing system was experimentally 

demonstrated: a combination of bicoherence analysis and radial basis function allowed a perfect 

localization of the pitting corrosion with an error equal to zero.  
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