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 

Abstract--An independent Generation Company (GenCo) 

secures its future trading position by managing its portfolio 

among multiple trading options. Future returns of these trading 

options are not known during decision making and are 

traditionally estimated using probabilistic or fuzzy methods. 

Quantifying such uncertainty of market returns by conventional 

methods does not reflect the information gap existing between 

estimated and actual market returns. Based on quantification of 

this information gap, the paper proposes GenCo’s portfolio 

optimization using a non-probabilistic Information Gap Decision 

Theory (IGDT). This framework comprehensively models 

GenCo’s behavior in deciding its trading strategy.  Considering 

GenCo’s risk-averse behavior, the framework provides decisions 

that are robust towards losses, while considering its risk-seeking 

behavior the framework offers opportunity to capture windfall 

gains. The proposed approach has been validated through 

practical case study of PJM market.  

Index Terms—GenCo, information gap decision theory, 

portfolio optimization, uncertainty.  

I.  NOMENCLATURE 

A.     Indices 

,i j  Index of trading contract 

k  Index of trading interval 

B.    Parameters 

a
 

No-load heat-rate coefficient  in MW 

b
 

Linear heat-rate coefficient in MW/MBtu 

c
 

Quadratic heat-rate coefficient in MW/MBtu2 

,i kLMP  LMP of trading area i in kth trading interval 

M  Considered time horizon or planning period 
n  Number of locations 

,

Min

i kp  
Minimum trading limit for contract i in kth 

trading interval 

,

Max

i kp  
Maximum trading limit for contract i in kth 

trading interval 

r  
Set of uncertain returns from contracts 

( 1 ~ )i n  

r  Estimate of returns from contract 

Cr  
Critical return 

Wr  
Windfall return 

t  Time for each trading interval in hours 

                                                           
Parul Mathuria is associated with Electrical Engineering Department, 

Malaviya National Institute of Technology Jaipur, India. (e-mail: 

parulvj14@gmail.com) 

Rohit Bhakar is Prize Fellow, Department of Electronic and Electrical 
Engineering, University of Bath, Bath, UK. (e-mail: r.bhakar@bath.ac.uk). 

  Congestion charge factor, varying from 0 to 1 

,i k  
Price of trading contract i in kth trading interval 

($/MWh) 

,i k
 

Forecast/Estimate of ith contract price at kth 

trading interval 

,

B

i k
 

Bilaterally agreed price for contract i  during kth 

trading interval ($/MWh) 
F

k  Fuel price in kth trading interval ($/MBtu) 


 Lagrange coefficient 

C.    Decision Variables 

,i kp  Traded power for contract i in kth trading interval 

,i ku  Binary variable representing selection state of 

contract i in kth trading interval 
w  Set of weights reflecting allocation in each trade 
  Uncertainty parameter or Horizon of uncertainty 

D.    Functions 

 , , F

i k kC p   Generation cost for trading quantity 
,i kp   

 ,R q u
 

System model in IGDT method 

 ,PR w r
 

Portfolio return for allocation w and  return r  

 , ,,i k i kRV p 
 
Revenue from ith contract 

 ,U u  Uncertainty function in IGDT method 

 , Cq r  Robustness function in IGDT method 

 , Wq r  Opportuneness function in IGDT method 

II.  INTRODUCTION 

EREGULATION of power sector has introduced a 

variety of markets and trading alternatives, offering 

multiple choices for independent power companies to trade 

electricity. In electricity markets, these companies make 

advance trading decisions. During real time condition, prices 

are affected by several unpredictable factors, causing them to 

vary widely and creating high market uncertainty. This affects 

trading contracts in electricity market and makes them 

uncertain, leading to unique price-volatility characteristic for 

each contract. GenCos as a supplier of electricity, 

appropriately diversify their trading in multiple trading options 

to reduce their risk exposure and maximize profit [1]. This 

strategic decision making to allocate energy among multiple 

contracts, considering risk-return trade-off in a prospective 

market and risk preference of the company is known as 

portfolio optimization.   
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In electricity markets, portfolio optimization is an 

important mechanism of risk hedging, considering the 

correlation between different trading options [1]-[5]. GenCos 

use it to secure themselves from multiple uncertainties of 

wholesale markets involving physical and financial trading 

[3]-[5].These may include pool price uncertainty, fuel price 

uncertainty [6], transmission congestion charges uncertainty 

[7], etc. For portfolio selection, conventional approaches like 

Markowitz mean-variance theory [6]-[10], stochastic 

programming using Value at Risk (VaR) [5] and Conditional 

Value at Risk (CVaR) [11], have been used.  

Existing approaches make decisions relying on estimation 

of future conditions and use probability distribution or fuzzy 

membership functions [1]-[11]. Estimations are based on 

historical data. However, past returns are an unreliable guide 

to estimate future returns, and quantifying uncertainty by 

probability distribution or otherwise requires information 

about future behavior of market returns. Portfolio involves 

multiple uncertain trading options. An optimal portfolio 

selection requires precise forecast of several input parameters, 

such as individual return, variance and correlation between 

different uncertain options. Such precise forecasts are not 

available during decision making and erroneous estimation 

gets reflected as inappropriate diversification. This leads to 

severe losses due to the large quantum of involved power. 

Further, the existing approaches make decisions based simply 

on risk return trade-off for portfolio selection, considering 

risk-averse nature of decision makers. However, practical 

market scenario necessitates broader criteria to be considered 

for improving portfolio performance that meets GenCo’s 

aspirations.  

In sharp contrast to existing portfolio selection approaches, 

IGDT provides reliable decisions based on quantification of 

information gap between estimated and actual value, without 

depending upon estimates. It can help to construct portfolios 

that are robust against losses as well as opportunistic to 

capture windfall gains [12]. Huge volatility of electricity 

markets and necessity of advance decision making makes 

IGDT an attractive option to understand and solve a wide 

variety of market issues, viz. electricity purchase bidding, 

robust scheduling of large consumers, and GenCo’s self-

scheduling and optimal bidding [13]-[16]. 

This paper proposes a quantitative methodology based on 

IGDT, to deal with severe uncertainty during portfolio 

selection, involving assets with uncertain returns. These assets 

are options available for GenCo to trade electricity in spot and 

contract market, considering price uncertainty of pool and 

congestion charges [7]. The proposed formulation deals with 

uncertainty of each trading alternative and their co-

movements. It considers risk averse as well as risk seeking 

nature of decision maker. The results based on a case study 

from PJM market highlight trade-offs existing between reward 

and robustness, opportunity and windfall gain, and robustness 

and opportuneness, for portfolio selection. 

 

III.  IGDT FRAMEWORK 

IGDT is a non-probabilistic decision making theory, which 

seeks to optimize robustness to failure and opportuneness to 

capture windfall gains, under conditions of deficient 

information about parameter of interest. In portfolio selection, 

information about nominal estimates of uncertain asset returns 

and their relative degree of variation is evaluated from past 

data. However, actual values of these parameters may deviate 

from estimated ones with unknown quantum of deviation. 

IGDT models size of gap between estimated and actual value, 

as uncertainty parameter , which is allowed to be unbounded 

[17]. 

IGDT evaluates decisions at many points, as uncertainty 

varies from estimation in an unbounded manner. These points 

are different values of uncertainty parameter   evaluated 

from different performance requirements. It helps the decision 

maker to compare different trading decisions which satisfy 

system performance criteria as per its requirements or 

aspirations. An IGDT decision making problem is specified by 

three component models:  

A. System Model  

For a set of decision variables q and uncertain parameter u , 

the system model  ,R q u  expresses the input/output structure 

of the system based on which the decisions are evaluated [17]. 

Here, u  is input parameter of interest which deviates from its 

nominal estimate in an unknown transient manner. System 

model is the objective function, i.e. GenCo’s portfolio return 

which is obtained for certain energy allocation in available 

trading alternatives. 

B. Uncertainty Model 

Uncertainty sets have a common structure which depends 

upon available information about parameter of interest [17]. 

UncertaintyU of an uncertain input parameter u can be defined 

as an unbounded family of nested sets, nested by the 

uncertainty parameter around estimate u . Ellipsoid bound 

model of info-gap uncertainty can be used to model variability 

in estimates and degree of co-variability of different securities. 

This is mathematically represented as [17] 

   T 1 2, : , 0U u u u u u C u        
     

(1) 

 
 

 

 
 

 

 

Fig. 1 Ellipsoid bound info-gap model of uncertainty representing unbounded 

uncertainty as a family of nested sets 

Here, C represents covariance matrix between different assets. 

The quadratic term defines an ellipsoid, centered at estimate u . 

Size of each ellipsoid is characterized by free uncertainty 

parameter α. The ellipsoid represents envelope for uncertainty, 

i.e. region defined by  ,U u within which all u would lie, 

for a particular .  

U 
T 1u C u 

 
u

 

 

 


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C. Performance Requirements  

The performance requirements express values of the 

outcomes that the decision maker requires or aspires to 

achieve, while selecting a decision [12]. The decision maker 

may consider uncertainty to be pernicious or propitious, 

depending upon its risk averse or risk seeking nature. The two 

conflicting concepts: satisfying or meeting critical 

requirements and aspiring windfall goal for better-than-

expected outcomes, are evaluated based on robustness and 

opportuneness functions respectively [12]. The robustness 

function guarantees a certain return, while opportuneness 

function identifies the possibility of securing windfall benefit. 

Both the functions optimize uncertainty parameter  such as 

    , max : min ,C Cq r R q u r              (2) 

    , min : max ,W Wq r R q u r             (3) 

The robustness function  ,q u expresses the maximum 

uncertainty ( ) as (2), at which minimum requirements are 

always satisfied i.e. minimum return should always be more 

than Cr . This addresses conservative nature of decision maker 

and expresses the level of protection for the selected decision, 

in case the market falls. 

 Opportunity function models the nature of optimistic 

decision maker who wish to benefit from favorable market 

changes. Opportuneness function  ,q u represents the 

minimum level of uncertainty which has to be tolerated to 

achieve windfall return as large as
Wr . Both functions evaluate 

uncertainty parameter  in order to obtain required or aspired 

outcomes. 

IV.  PROBLEM DESCRIPTION AND FORMULATION 

This paper presents an IGDT-based formulation for 

GenCo’s power portfolio optimization in medium term time 

frame. The work considers physical trading approaches, 

involving pool and bilateral contract markets under Locational 

Marginal Pricing (LMP) scheme. The GenCo makes bilateral 

contracts with consumers situated in same or different 

location. Bilateral contracts of different location may be 

affected by congestion [7]. Congestion creates LMP 

separation between locations. The difference between LMPs 

of two locations (where generator and load are connected), are 

applicable congestion charges for underlying contract. These 

charges are to be paid by supplier or consumer proportionately 

depending upon market rule that defines this proportion. In 

case of spot market trading, GenCo receives LMP of its own 

location.  

LMPs are based up on real time network conditions and can 

hardly be predicted at the time of planning. Thus, contracts 

that depend on LMPs are uncertain and returns from such 

contracts can only be estimated during planning. The returns 

of various uncertain contracts available to GenCo are 

correlated with each other up to a certain degree. This can be 

considered as an appropriate case for portfolio optimization in 

electricity market, as consideration of congestion and pool 

uncertainty provides the widest variety of trading options, 

each with its unique return-volatility characteristics and 

different correlations. Bilateral contract specifications 

(contract price, quantity, time etc.) are assumed known to 

decision maker. Returns from bilateral contracts within home 

location are not affected by network constraints, and are thus 

considered deterministic. This portfolio selection problem of 

allocating energy among multiple assets has been formulated 

for a price taker GenCo in an IGDT framework, for dealing 

severe uncertainty of returns from different trading options. 

The presented formulation is restricted to consideration that 

markets are efficient, competitive and sufficiently liquid. This 

work considers day-ahead market to represent pool, however 

similar modelling can be extended to integrate other markets 

(intraday and balancing) and trading contracts as well.  

For simplicity in calculations, it is assumed that a GenCo 

would make only one bilateral contract with consumer of a 

certain location and there exists a single spot market. For n  

considered locations, GenCo can have a total of 1n  

contracts; one bilateral contract with consumer of home 

location and 1n  bilateral contracts with consumer of non-

home locations and one spot market contract. 

A. Contract Price Modelling 

A GenCo is assumed to be placed at Location 1. For the 

local bilateral contract (indexed as 0i  ), contract price would 

be equal to bilaterally agreed price 1,

B

k
 

with consumer of 

home location, as transmission charges are not applicable. 

0, 1,

B

k k k                     (4) 

In spot market trading (indexed as 1i  ), GenCo would 

receive LMP of its own location i.e. Location 1, where 

generators inject power into the system. Their contract price 

would be  

1, 1,k kLMP k                    (5)

Contracts indexed as 2 ~i n  represent bilateral contracts 

with non-home locations. For this, applicable per unit 

congestion charges for transmitting energy from location 1 to 

location 2, at time k, would be: 

2, 1,Congestion charges k kLMP LMP k          (6) 

Contract-holders pay congestion charges on such contracts 

proportionately, based on  0 1   , as per the market rule. 

So, the effective contract prices for GenCo are  

 , , , 1,

B

i k i k i k kLMP LMP k               (7) 

for 2 ~i n
 

Thus, except for local bilateral contract
 
(indexed as 0i  ), all 

contracts depend upon severely uncertain LMPs, which make 

contract prices uncertain. Based on prices of different trading 

options, returns from each can be calculated to evaluate 

overall portfolio return. 

B. Portfolio Return  

Overall portfolio return PR  is the weighted sum of 

individual returns from each trade. Return from local bilateral 

contract is indexed as zero. Future net return of the portfolio 
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with 1n assets, with returns 
ir  and relevant weight

iw  is: 

0

n

P i i

i

R w r


                 (8) 

0

. . 1
n

i

i

s t w


                  (9) 

and 0iw                     (10) 

Return from any asset can be considered as 

Revenue –  Cost
Return  

Cost
             (11) 

Revenue generated from trading 
,i kp  power in each option i  

at contract price 
,i k  can be calculated for each trading 

interval as  

, , , ,( , )i k i k i k i kRV p t p                (12) 

Generation cost is composed of two components fixed and 

variable cost. It can be represented as quadratic cost curve 

   2, F F
k k k k kC p a bp cp t    , where kp  is the generation 

outcome (MW).  Generated power at each trading interval is 

then allocated among 1n trading options. Thus, generation 

cost for kp  is divided for power traded in each option. Share 

of cost for power traded1

 
in ith contract ,i kp , at kth trading 

interval can be calculated as: 

 , ,, F F

i k k k k i kC p t b p                (13) 

where 
2

k k
k

k

a bp cp
b

p

 
 , and fuel prices are assumed 

deterministic for the considered planning period. 

Using (12) and (13), return from each trading contract i 

 1 ~i n for planning period M2, can be evaluated by 

averaging out the returns of each trading interval k as 

 , , ,

1 1,

1 1
1

F
M M

i k k k i k i k

i iF
k k kk k i k

t b p
r r

M M Kt b p

  

 


    

   

(14) 

where F

k k kK b                  (15) 

C. IGDT Formulation 

The discussed portfolio optimization problem is formulated 

based on IGDT framework of Section III.  The future returns 

from different trading options ir  and corresponding proportion 

of energy allocation iw  evaluate portfolio return PR . Uncertain 

returns from different trading options, except 0r , are 

considered as uncertain parameters of the problem. The 

corresponding weights are decision variables. For the 

considered uncertainty model, trading strategies are derived 

for robustness and opportunity functions, using system model 

and relevant constraints.  

    1)  System Model 

For the considered planning period, net future portfolio 

return of known (return from local bilateral contract ( 0r )) and 

                                                           
1 Traded quantity for each transaction is the product of corresponding 

allocation 
iw and total scheduled power p. 

2 Planning period could be one day, one month or one year. 

unknown (returns from contracts i =1~ n ) assets is considered 

as 

  0 0

1

,
n

P i i

i

R w r w r w r


 
 

            (16) 

If  1 2 nw w w w  and  1 2 nr r r r ,
 
then (16) can be 

re-written as 

  T

0 0,PR w r w r w r                (17) 

As r  is uncertain, it can deviate r from its expected value 

r as 

r r r                     (18) 

where 
1 2 nr r r r   

and  1 2 nr r r r    
 

Variation in returns is due to variation in contract prices ,i k
 

from their expected value ,i k . Corresponding relation can be 

represented as
 

 , .

1

1
1

M

i ki i k

kk

r
K

 


                 
(19)

 

The system model or portfolio return can be represented as
 

   T

0 0,PR w r w r w r r  
            

(20) 

    2)  Uncertainty Model 

A typical historical covariance matrix for different asset 

returns ( 1 ~i n ) contains information indicating the relative 

degree of variability in prices of different trading options and 

their correlated or anti-correlated variations. An ellipsoid 

bound model of IGDT uses this information to formulate 

uncertainty of returns, by forming uncertainty shape matrix C. 

The model can be used without any correlation between 

securities, with only diagonal matrix elements. Using the 

available information, uncertainty can be modelled as  

   T 1 2, : : 0U r r r r r r C r           (21) 

Here, size of C is n n , where n represents the number of 

uncertain trades. C is real, symmetric and positive definite 

matrix. The matrix elements can be calculated using (14) and 

(15) as: 

 , cov ,i j i jC r r                  (22) 

The covariance matrices are evaluated between uncertain 

returns. Covariances between these returns are evaluated for 

each trading interval and averaged out to obtain elements 

of C for planning period M  

 , ,

, 2
1

cov ,1 M
i k j k

i j

k k

C
M K

 



                   (23) 

for    1,2, , , 1,2, ,i n j n   

    3)  Robustness Function 

A risk-averse GenCo wishes to immune itself from losses. 

Robustness function evaluates the level of protection for 

certain fall in market returns ensuring that minimum return 

would not be less than a critical return Cr . It evaluates the level 

of uncertainty that any decision can sustain without sacrificing 

certain performance requirements. Robustness of the portfolio 

selection strategy w , for critical return Cr , is the largest value 

of uncertainty parameter , such that any return in 
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region  ,U r would give  ,PR w r , which is not less than
Cr . 

For performance requirement (2) to be satisfied, for a certain 

uncertainty  , when all  ,r U r , the minimum value of 

portfolio return would be 

  T T

0 0min ,P
r

R w r w r w r w r


              (24) 

s.t.
T 1 2r C r                    (25) 

These equations can be rewritten as  

   T T T 1 2

0 0min , min :P
r r

R w r w r w r w r r C r 

 
       (26) 

Above optimization problem can be solved using Lagrange 

relaxation method, which gives (derivation in Appendix A) 

T

C w
r

w Cw
                   (27) 

So, for minimum  ,PR w  , negative value of r  is used 

(as 0  ), which results in: 

  T T

0 0min ,PR w w r w r w C w           (28) 

Minimum portfolio return should be at least equal to Cr .  

T T

0 0 Cw r w r w C w r               (29) 

 
T

0 0

T

C

C

w r w r r
r

w C w


 
              (30) 

Robustness function represents the largest value of  for a 

targeted return 
Cr .  

   
T

0 0

T
, max max C

C C
w w

w r w r r
w r r

w C w
 

 
       (31) 

As  is the size of uncertainty ellipsoid, and represents gap 

from nominal estimate, it cannot be negative. So 

for  T

0 0Cr w r w r  , it is zero. 

For portfolio optimization, optimal energy allocation 

strategy depends on returns and uncertainty of assets, as well 

as their relative propensity of variation. Robustness decreases 

with increase in targeted critical returns. Optimal weights for 

maximizing robustness  , Cw r for GenCo’s energy allocation 

are so selected that portfolio return is maximized, while 
Tw C w is minimized, subject to other constraints.   

    4)  Opportunity Function 

To benefit from the opportunity of high market prices, a 

GenCo has to bear certain uncertainty.  

Opportunity  , Cw r is the least level of uncertainty which 

must be tolerated in order to enable the possibility of reward 

as large as Wr . The maximum possible return up to 

uncertainty , when all  ,r U r , subject to (21) for 0  , 

can be calculated using Lagrange method, considering positive 

value of r from (27). 

  T T

0 0max ,P
r

R w r w r w r w C w


  
        

(32) 

Maximum value of  ,PR w  should be as large as windfall 

return Wr , thus  

T T

0 0 Ww r w r w C w r               (33) 

 
 T

0 0

T

W

W

r w r w r
r

w C w


 
             (34) 

Based on (3), this represents least possible uncertainty. So, 

using (34), opportunity function can be evaluated as  

   
 T

0 0

T
, min min

W

W W
w w

r w r w r
w r r

w C w
 

 
       (35) 

Opportunity function  , Ww r increases with windfall 

returns. For a certain value of
Wr , opportunity  , Cw r is 

minimized by maximizing
Tw C w and portfolio return.  

Finally, (31) and (35) are two optimization problems, 

which are solved for multiple values of 
Cr  and 

Wr  to decide 

trading strategy w  as per GenCo’s nature.  , Cw r is 

maximized when 
Tw C w is to be minimized while  , Cw r  is 

minimized for 
Tw C w  to be maximized. Thus, the portfolio 

optimization strategies offered by two optimization problems 

are divergent. An optimistic decision maker selects an 

opportunistic strategy, generally accompanied with higher 

uncertainty contracts, though recognizing that it would be less 

robust. Minimization of
Tw C w is possible with single plane 

constraint (5) but its maximization requires additional 

constraints. In this problem, the limiting constraint on trading 

contracts is  

 , , , , , for , and 1    Min Max

i k i k i k i k i kp u p p u i k i
       

(36) 

   , 0,1 for , and 1   i ku i k i
           

(37) 

where variable ,i ku  decides the selection of contract. The two 

optimization problem (31) and (35), each under the constraints 

(5), (6), (36) and (37), are MINLP problems. These can be 

optimized individually for given return targets, in order to 

obtain asset weights w . 

V.  CASE STUDY AND RESULTS  

To analyse the proposed portfolio optimization 

methodology for GenCos, a case study of PJM electricity 

market has been considered [18]. A GenCo of 600 MW total 

capacity with generation specifications 735.583a  MBtu, 

8.28b   MBtu/MW and 0.00115c   MBtu/MW2, intends to 

plan its trading strategy for the month July 2013. The 

considered planning period is one month, with one hour as 

trading interval, i.e. a total of 31 24 744   trading intervals. 

Fuel prices are considered stable at 4 $/MBtu, for all trading 

intervals. The GenCo trades its scheduled generation (assumed 

equal to maximum capacity in this case) in day-ahead spot 

market and in multiple bilateral contracts with six different 

locations, as per contract specifications shown in Table I. 

AECO is considered as home location for the trading GenCo 

and bilateral contract with it is indexed as Contract 0 ( 0i  ). 
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LMPs of AECO are spot contract price for GenCo and are 

indexed as Contract 1( 1i  ).  

Hourly day ahead LMPs of month July, from year 2006 to 

2012, have been used to calculate the expected/forecasted 

LMPs. These calculate expected contract prices ,i k  (shown 

in Fig. 2.) using (4)-(7), based on the specifications shown in 

Table I and 1  . Among the total of 1n  contracts, for all 

returns except Contract 0, expected values r  are estimated 

using expected value of contract prices ,i k  (Contracts 1~6) 

and generation specification is based on relation shown in 

(19).  

  Uncertainty shape matrices for each trading interval are 

calculated from (23), using variance-covariance between n 

uncertain contract prices, by appropriate function in 

MATLAB ® [19]. For the considered data, there exist 744 

matrices of the order 6 6 . All matrices are not shown in the 

paper due to space limitation.  

Table II shows the uncertainty shape matrix for total 

planning period, which represents variability and co-

variability of returns. The diagonal elements represent 

individual variability, while off-diagonal elements represent 

co-variability between returns of uncertain trades. Contract 1 

represents high variability, while other contracts have 

comparatively less variability, with a minimum for Contract 6. 

 

A. Simulations  

 For the estimated values of input parameters, without 

considering any uncertainty (i.e. r = 0), maximum value of 

portfolio return  ,PR w r  is evaluated by optimizing (20), 

subject to (5), (6), (36) and (37). For robust decision making, 

critical return targets 
Cr are assumed less than

  ,PR w r ,
 
in 

decreasing small steps. For opportunistic strategies, windfall 

returns 
Wr  

are assumed more than  ,PR w r in increasing 

small steps. For all 
Cr  less than and for all

Wr higher than the 

maximum obtained portfolio return  ,PR w r , optimization is 

performed for robustness (31) and opportunity (35) 

respectively, subject to (5), (6), (36) and (37). 

For each value of 
Cr and

Wr , a particular trading strategy is 

obtained in terms of weight w . For the present analysis, each 

optimization problem has been solved with 6706 real and 5208 

discrete variables, using SBB-CONOPT© solver of GAMS in 

a Core i5, 3.2 GHz processor and 4 GB RAM computer, with 

an average solution time of 2.7 seconds [20]. 

With both optimization being MINLP in nature, global 

optimality is not guaranteed. Approaches available in 

literature provide global solutions for such problems in 

different conditions; however this is not the focus of this work. 

B. Results 

For the above considered case, maximum obtained 

portfolio return  ,PR w r for zero uncertainty is 0.7785, 

corresponding to energy allocation w , as shown in Table III.  

This reflects risk neutral behavior of GenCo, when it takes 

decision considering estimated value as true value, without 

considering any uncertainty in future. At 

0.7785C Wr r  both robustness and opportunity are zero.  

Values for the two functions increase as the return target 

varies from 0.7785 in different directions, as shown in Fig. 3. 

In this situation, the estimations are accurate, so the targeted 

returns are equal to expected returns. 

 

The two optimization problems (31) and (35) calculate 

uncertainty/error from expectation for different values of Cr  

and Wr . Fig. 3 shows horizon of uncertainty evaluated for 

robustness and opportunity functions versus targeted returns 

Cr  and Wr . This represents performance quantification under 

various uncertainty levels, as robustness at any demanded 

return and as opportuneness for windfall returns, considering 

two faces of uncertainty. To guarantee Cr , a certain tolerable 

deviation is calculated by robustness function. While the same 

level of uncertainty provides the opportunity of securing 

returns up to Wr , however attaining those returns is not 

guaranteed. The decision maker can opt for a strategy to select 

TABLE I 

 SPECIFICATIONS OF BILATERAL CONTRACTS 

Contract 

Number 

Location 

Name 

Contract Prices 

($/MWh) 

Min. 

(MW) 

Max. 

(MW) 

0 AECO 56 50 300 

2 COMED 42 50 300 
3 AEP 43.5 50 300 

4 PENELEC 49.5 50 300 

5 APS 51.5 50 300 
6 PECO 54 50 300 

 

 

 

 

TABLE II 
UNCERTAINTY SHAPE MATRIX BETWEEN RETURNS 

Contract Index 1 2 3 4 5 6 

1 1.020 0.556 0.550 0.383 0.387 0.163 

2 0.556 0.385 0.374 0.255 0.258 0.107 

3 0.550 0.374 0.369 0.253 0.252 0.107 

4 0.383 0.255 0.253 0.197 0.188 0.097 

5 0.387 0.258 0.252 0.188 0.205 0.090 

6 0.163 0.107 0.107 0.097 0.090 0.085 
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Fig. 2 Estimated contract prices ,i k based on estimated LMPs 

TABLE III 

ENERGY ALLOCATION WITHOUT CONSIDERING UNCERTAINTY 

Contract 0 1 2 3 4 5 6 

Allocation % 8.5 24.9 15.1 19.6 7.3 23.7 0.9 
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portfolio, depending upon its perception about the market and 

its nature. In case of uncertainty , if a decision maker thinks 

that it could be pernicious, it would select an strategy to secure 

return 
Cr , whereas a propitious consideration of uncertainty 

would lead to strategy that may attain return as large as 
Wr .  

 
    1)  Robust Portfolio Selection 

The critical return
Cr is varied from 0.7785 to 0.34, for 

which the optimization results are shown in Figs. 3, 4 and 5. 

At 0.7785Cr  the obtained robustness, i.e. allowable error is 

zero and varies from zero to 1.955 as Cr  decreases from 

0.7785 to 0.34 , as shown in Fig. 3. Higher return targets are 

more demanding, thus robustness of the decision decreases 

with their increasing values. For each targeted return
Cr , the 

robustness represents allowable uncertainty range  , under 
unfavorable deviation in market returns, up to which the 

decision can give return at least equal to
Cr . For example, at 

0.6Cr   the obtained robustness  ,0.6 0.239w   

represents that the allowable uncertainty/error for securing a 
minimum portfolio return of 0.6 is 0.239. The expected 

portfolio return    ,CR w r r also reduces with targeted 

returns, as shown in Fig. 4, but is always higher than the 

corresponding targeted value. For a certain value of
Cr , the 

difference between expected portfolio return 

   ,CR w r r and maximum portfolio return  ,PR w r is 

the cost which GenCo has to bear for robustness of selected 
decision.  

With reducing return target
Cr , the optimal energy 

allocation w varies in such a way that allocation increases in 

contracts with lesser variability and vice-versa. This happens 

because higher variability contracts are accompanied with 

higher possibility of losses and a strong risk-averse GenCo 

would aim to reduce its exposure towards losses. So, for a 

decision to be more robust, a GenCo allocates energy in 

Contracts 6 and 0, as observed from Fig. 5. Allocation in 

Contracts 4 and 5 increases initially due to their moderate 

 
Fig. 4   Expected portfolio returns for different         Fig. 5   Optimal energy allocation in different contracts 

               critical targeted returns                  for different critical returns 

 
Fig. 6   Optimal energy allocation in different contracts           Fig. 7   Expected portfolio returns value for 

   for different windfall returns                       different windfall returns 
 

 

 
Fig. 3   Lower and upper bound of portfolio return for different 

uncertainty horizons 

Opportuneness function 

Robustness function 
Cr  

Wr  
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uncertain nature, but finally reduces for higher robustness. A 

trade-off exists between reward and robustness, i.e. a 

conservative GenCo aiming higher robustness has to 

compromise with returns.  

    2)  Opportunistic Portfolio Selection 

Opportunistic portfolio selection represents favorable face 

of uncertainty, reflecting the risk seeking behavior of an 

optimistic decision maker. This considers that uncertainty may 

provide opportunity for securing windfall returns. For windfall 

returns
Wr varying from 0.7785 to 2.3, Figs. 3, 6 and 7 show 

the results of optimization for opportuneness  , Ww r  

(35).  , Ww r increases from zero to 1.955 with windfall 

returns as shown in Fig. 3. It means that opportunity of 

securing windfall benefits increases with uncertainty. To attain 

returns as large as
Wr , GenCo has to tolerate a minimum 

uncertainty given by  , Ww r . Thus, if a GenCo desires 

higher windfall benefits, immunity of decision towards 

uncertainty reduces. For example,  , 0.9Ww r  = 0.158 

means that a GenCo can attain return up to 0.90 from its 

trading portfolio, for the market returns rising up to 0.158 

level. As the desire for windfall return increases, energy 

allocation increases in trades with higher variability and vice-

versa, as shown in Fig. 6. This 

happens because contracts with higher variability have 

stronger possibility of favorable price spikes. Allocation in 

Contracts 1, 2 and 3 increases due to their higher variability, 

while allocation decreases in zero and low variability 

Contracts 0, 4 and 5. Allocation in Contract 6 remains nominal 

due to its low return and low variance. 

An increasing desire for windfall returns creates a trade-off 

between windfall and opportunity. It can be explained as 

follows: windfall returns are always accompanied with 

acceptance of higher uncertainty and this decreases the 

possibility of benefit from the opportunity arising due to 

favorable uncertainty. The expected 

returns    ,WR w r r are less than windfall returns, as 

shown in Fig. 7. If opportunistic strategy is selected and price 

spikes do not occur, then the portfolio return would be up to 

its expected value    ,WR w r r . The difference between 

expected return and maximum return is the cost of enabling 

the possibility of higher desired benefit, which a GenCo would 

have to bear if market prices do not change favorably as per its 

aspiration. 

The results highlight that opportunity of higher benefits 

increases with high variability contracts, conversely 

robustness of the decision increases with higher allocation in 

low variability contracts. Thus, there exists a trade-off 

between robustness and opportuneness; if any selected 

decision is highly robust it would not be opportunistic and a 

highly opportunistic decision would be least robust. 

VI.  FRAMEWORK VALIDATION 

The proposed IGDT framework has been validated by 

assuming certain deviations in estimated returns. To analyze 

the robustness of risk averse decisions, market is assumed to 

go down, resulting in r decrement in returns. r is calculated 

using (27), for uncertainty levels  varying from zero to 

1.955 (from robustness curve) and 

weights   Cw r corresponding to critical returns Cr . These 

TABLE IV 

PORTFOLIO RETURNS USING ROBUSTNESS STRATEGY FOR DIFFERENT UNFAVORABLE PRICE MOVEMENTS BASED ON  
  

Cr  
0.0000 0.1033 0.1972 0.2392 0.3137 0.3953 0.4307 0.6196 0.6946 0.8288 1.9550 

0.78 0.7789 0.7195 0.6659 0.6420 0.5994 0.5529 0.5327 0.4249 0.3821 0.3056 -0.3370 

0.70 0.7780 0.7200 0.6673 0.6437 0.6018 0.5560 0.5362 0.4300 0.3879 0.3126 -0.3200 

0.63 0.7389 0.6826 0.6314 0.6085 0.5679 0.5235 0.5042 0.4012 0.3603 0.2873 -0.3265 

0.60 0.7319 0.6772 0.6274 0.6052 0.5656 0.5224 0.5036 0.4035 0.3637 0.2926 -0.3043 

0.55 0.7513 0.7001 0.6535 0.6327 0.5957 0.5552 0.5376 0.4439 0.4067 0.3401 -0.2188 

0.50 0.7328 0.6851 0.6418 0.6225 0.5880 0.5504 0.5341 0.4469 0.4123 0.3504 -0.1694 

0.48 0.6558 0.6200 0.5875 0.5730 0.5472 0.5190 0.5068 0.4414 0.4154 0.3690 -0.0207 

0.40 0.6022 0.5736 0.5476 0.5360 0.5153 0.4928 0.4829 0.4306 0.4098 0.3727 0.0607 

0.38 0.5545 0.5315 0.5105 0.5011 0.4844 0.4662 0.4583 0.4161 0.3994 0.3694 0.1178 

0.37 0.4669 0.4542 0.4428 0.4376 0.4285 0.4186 0.4143 0.3912 0.3820 0.3656 0.2281 

0.34 0.4005 0.3923 0.3847 0.3814 0.3754 0.3689 0.3660 0.3509 0.3549 0.3471 0.3438 

 
TABLE V 

PORTFOLIO RETURNS USING OPPORTUNITY STRATEGY FOR DIFFERENT FAVORABLE PRICE MOVEMENTS BASED ON   

  

Wr  
0.0000 0.0936 0.2884 0.4820 0.6104 0.6747 0.9305 1.1855 1.4396 1.5669 

0.78 0.7789 0.8318 0.9430 1.0535 1.1267 1.1634 1.3094 1.4549 1.5999 1.6725 

0.85 0.7787 0.8321 0.9442 1.0555 1.1294 1.1663 1.3135 1.4601 1.6063 1.6795 

1.00 0.7779 0.8322 0.9460 1.0591 1.1342 1.1717 1.3213 1.4703 1.6188 1.6931 

1.15 0.7768 0.8317 0.9469 1.0614 1.1374 1.1753 1.3267 1.4775 1.6277 1.7030 

1.25 0.7760 0.8313 0.9475 1.0630 1.1395 1.1778 1.3304 1.4825 1.6340 1.7099 

1.30 0.7758 0.8320 0.9437 1.0547 1.1283 1.1652 1.3119 1.4580 1.6037 1.6767 

1.50 0.7741 0.8303 0.9480 1.0650 1.1427 1.1815 1.3361 1.4902 1.6438 1.7208 

1.70 0.7724 0.8290 0.9479 1.0660 1.1443 1.1835 1.3396 1.4951 1.6502 1.7278 

1.90 0.7705 0.8276 0.9476 1.0669 1.1460 1.1856 1.3432 1.5002 1.6567 1.7351 

2.00 0.7702 0.8274 0.9475 1.0668 1.1460 1.1856 1.3433 1.5004 1.6571 1.7355 
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calculated values of r  are used in (18) to evaluate actual 

returns r , to finally obtain portfolio return  ,PR w r using 

(17), and shown in Table IV. Each row represents a strategy 

corresponding to return target
Cr , while each column 

represents an uncertainty level. Thus, diagonal elements are 

portfolio returns for  , Cw r  , with maximum sustainable 

uncertainty for trading strategy corresponding to
Cr . The lower 

triangular region represents robust portfolio returns. Each row 

of Table IV represents that if market returns fall within the 

range defined by robustness region, portfolio return would 

never be less than critical return
Cr . Each column of Table IV 

represents that for a certain fall in market prices, portfolio 

return would always be higher than critical return, for all those 

strategies which cover that fall defined by robustness region. 

To analyze opportuneness in risk seeking decision, it is 

assumed that market prices would favorably increase and 

returns would rise up to r r . The value of r  is calculated 

for different  (zero to 1.955 from opportuneness curve) and 

trading strategy   Ww r , corresponding to desired windfall 

returns
Wr . These are used to calculate portfolio 

return  ,PR w r  from (17), and are shown in Table V. 

Diagonal elements of the table represent portfolio returns 

obtained with  , Ww r   and trading strategy 

corresponding to
Wr . Thus, by selecting opportunity strategy, 

GenCo can have returns as large as
Wr , if market moves 

favorably up to  , Ww r . The selected strategy can enhance 

portfolio returns, with increasing market movement. 

VII.  CONCLUSION 

This paper considers GenCo’s trading portfolio 

optimization for pool and bilateral markets, involving 

congestion and pool price uncertainties. Conventional decision 

making approaches are based on estimated market returns, 

which may vary from actual ones, and are unable to tackle 

severe uncertainty. To deal with this uncertainty, an Info-gap 

decision theory framework has been developed by quantifying 

information gap existing between estimated and actual values. 

Compared to conventional portfolio theory, this formulation 

offers decisions that are robust towards losses and 

opportunistic towards capturing higher gains. 

The proposed framework has been validated by assuming 

deviations in return estimations. The results from practical 

case study illustrate that the proposed approach can guarantee 

portfolio return under unfavorable price change within the 

robustness region. Also, it enables a GenCo to take advantage 

of opportunity for attaining windfall returns, caused due to 

favorable price spikes. The results provide a range of 

decisions for GenCo to select the most appropriate. These 

decisions are evaluated for different criteria, such as trade-offs 

existing between reward and robustness, opportunity and 

windfall gain, and robustness and opportuneness, for optimal 

portfolio selection. To secure a minimum level of benefits, as 

well as to capture higher gains, a GenCo has to bear some 

cost, depending on its desire for robustness or opportunity 

characteristics of the selected decision. This work can be 

extended for trading decision making of GenCo in different 

markets influenced by external market uncertainties, and 

involve multiple types of contracts. 
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IX.  APPENDIX A 

 T T 1 2min :
r

w r r C r 


     

As the minimization problem is convex, Lagrange method is 

applied for optimization. So, the first order optimality 

condition for the associated Lagrangian problem is  
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