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Abstract  

The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A 

contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are 

commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen 

variability and often cannot be carried out at physiological levels of loading. The present study aimed to 

evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. 

This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics 

under physiological levels of loading. 

The simulator allowed the knee to move in six degrees of freedom under quadriceps actuation and 

included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones 

and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological 

relevance and repeatability of the simulator, measurements were made of the quadriceps force and the 

force, contact area and pressure within the patellofemoral joint using load cells, pressure sensitive film, 

and a flexible pressure sensor. 

The results were in agreement with those previously reported in the literature, confirming that the 

simulator is able to provide a realistic physiological loading situation. Under physiological loading, 

average standard deviations of force and area measurements were substantially lower and comparable 

to those reported in previous cadaveric studies respectively. The simulator replicates the physiological 

environment and has been demonstrated to allow the initial investigation of factors affecting 

patellofemoral biomechanics following total knee arthroplasty.  



 
 

Introduction  

Increasing life expectancy, coupled with growing rates of obesity, is fuelling an unprecedented growth in 

total knee arthroplasty (TKA) procedures across the developed world.1 Procedures in the USA alone are 

predicted to increase sevenfold, from around 400,000 per year in 2003 to 3.48 million in 2030.1 While 

survival rates at 15 years are frequently reported to be in excess of 80%,2-4 patient expectations are 

increasing, and 20% are not satisfied with their new joint.5 Up to a third of patients report that their 

joint does not feel normal following TKA.6  

The patellofemoral joint (PFJ) is implicated as a factor in 20% of revision cases,3 and up to 25% of 

unrevised patients report difficulties with everyday extension activities or anterior knee pain (AKP).7 The 

exact causes of AKP are not fully understood. It is thought that changes in PFJ loading magnitudes and 

patterns may be contributing factors, causing changes to tissue homeostasis, initiating bone 

remodelling, and stimulating intraosseous nerve cells.8-11  

In vivo studies provide the most physiologically relevant assessment of the mechanics of the human 

body. However, they are often purely qualitative, time consuming, and limited in scope. In vitro studies, 

although not without their own limitations, allow for more invasive investigations into parameters that 

influence the biomechanics of the PFJ.12-19 In vitro studies are most commonly carried out using 

cadaveric knees, which are characterised by high inter-specimen variability and are susceptible to 

damage under physiological levels of loading.12 This limits the number of variables that can be assessed 

on a single specimen or the level of load under which tests can be carried out.12-19  

Simulators using non-cadaveric knee models are commonly used for wear testing and have previously 

been employed to assess the PFJ following TKA.20, 21 Any synthetic joint model will be simpler than the 



 
 

human knee and may be limited by the absence, or simplification, of some soft tissue structures.21, 22 

However, use of non-cadaveric models reduces inter-specimen variability, allows systematic assessment 

of the influence of a single parameter on the PFJ, and the completion of extended testing under 

physiological loads.21, 22  

Previous non-cadaveric knee models have replaced the action of the collateral ligaments, two of the 

primary stabilising structures within the knee, with a purely compressive force.21, 22 This maintains joint 

integrity but does not replicate the natural guiding role of the ligaments.22 Non-cadaveric knee models 

also commonly do not include the flexor mechanism,20, 21 despite the biomechanical significance of 

hamstring co-contractions.23-27  

A novel non-cadaveric knee simulator, which includes synthetic models for the collateral ligaments and 

the hamstring complex, has been developed. The present study aimed to evaluate the physiological 

relevance of the new simulator through comparisons with previous cadaveric studies. The study also 

aimed to assess the importance of testing under physiological loading conditions when assessing PFJ 

biomechanics. 



 
 

Methods & Materials  

The simulator is a derivative of the Oxford Knee Rig and designed to allow the knee joint to move in all 

six degrees of freedom (Figure 1). The simulator is intended to model the squatting motion of an 

average UK female, and is the development of a previously reported study.28 

[Insert Figure 1 Revised.png] 

Figure 1: Kinematic test rig, with pertinent features highlighted 

Motion at the knee joint is induced by a single quadriceps actuator (SKF Care 33A, SKF, Luton, UK) 

mounted with a Q angle of 16°.29 For the purposes of this study, the knee was actuated against two 

different simulated body weights; the first replicated a physiological peak flexion moment of 43 Nm,30-32 

and the second a reduced level of loading (approximately 19Nm peak moment). This reduced level of 

loading accommodated the load rating of one of the sensors (Pliance, Novel, Munich, Germany) and 

replicated the loading often used in cadaveric testing.12-19, 33 The level of simulated body weight was 

modified by altering the counterweight on the knee simulator (Figure 1).  It was also possible to position 

the knee at fixed flexion angles to allow static testing.  

A 3 mm steel cable was used to model the patella and quadriceps tendons.28 Cotton webbing was glued 

to the cable above and below the patella construct to reduce friction and distribute the load when the 

tendon contacted the femoral component in deep flexion (Figure 1).34, 35 

Collateral and popliteofibular ligaments are modelled using a synthetic analogue, which a previous study 

had demonstrated to have appropriate tensile properties.36 The proximal  attachments points of all 

three ligaments were aligned with the cylindrical flexion axis of the knee.37 The distal insertion points of 



 
 

the ligaments were based on locations reported in the literature.38-41 The hamstring mechanism of the 

knee joint is also simulated using two constant force springs with a stiffness of 50 N each.42 The two 

springs were attached to the simulator to represent the actions of the biceps femoris, and the combined 

action of the semitendinosus and semimembranosus muscles.43-46 Preliminary tests during the 

development of the simulator indicated that addition of the hamstring model significantly increased the 

required quadriceps force during extension of the knee. 

For the purposes of this study all tests were carried out using Scorpio NRG PS size 7 (Stryker, NJ, USA) 

femoral and tibial components, which were cemented on to medium size synthetic bones (Sawbones, 

Pacific Laboratories, WA, USA) by an orthopaedic surgeon using the recommended surgical protocol. A 

concentric dome patella button was used for all tests (Scorpio, Stryker). Mediolaterally, the dome was 

mounted centrally with regards to the quadriceps tendon to represent an optimal in vivo placement. 

The patella was located using the three polyethylene pegs on the back of the patella button. In order to 

allow changes of position, the patella button was not cemented in place. In order to allow changes of 

position, the patella button was not cemented in place. The proximodistal position of the patella button 

was based on a normal modified Insall-Salvati index of 2.47 In order to achieve this, the patella construct 

was positioned so that the distance from the distal pole of the patella button to the tibial attachment of 

the patella tendon was twice the proximodistal length of the patella implant. An alignment jig was 

developed to allow the femur and tibia to be repeatably secured in mounting pots using a low melting 

point alloy. The femoral and tibial components were aligned so as to maintain the geometric 

proportions of the average UK female and a neutral mechanical axis.30 The same components were used 

for all tests. Since the number of cycles the implants were subjected to was negligible compared to the 

expected life of a knee implant, factors such as wear should not have had an impact on the results. For 



 
 

dynamic testing both the tibiofemoral joint (TFJ) and the PFJ were lubricated using industrial grease to 

minimise friction.48  

An experimental study was carried out using the simulator to assess the effect of the magnitude of 

loading on the measured PFJ biomechanics and the physiological relevance and repeatability of the 

simulator. The test protocol comprised four stages. Firstly, the rig was extended from 90° to 20° of 

flexion under the reduced level of loading (19 Nm peak moment). During this stage of testing the 

capacitive Pliance X patella sensor array (Novel GMBH, Munich, Germany) was placed within the PFJ to 

assess the joint centre of pressure (COP). The COP measurements were referenced to the centre of the 

patella component. The Novel system sensor was supplied as calibrated by the manufacturer. The 

tibiofemoral (TF) flexion angle, quadriceps force, patella compressive force and PTMA were also 

recorded during this dynamic extension. 

The TF flexion angle was monitored using the known implant dimensions and the measurement of the 

hip joint height relative to the ankle, which was assessed using a displacement transducer (VPA-40, 

UniMeasure, Oregon, USA).28 The quadriceps load and the compressive force on the patella component 

were measured using single axis load cells (Quadriceps: bespoke sensor; Patella: LC8125-312-500, 

Omega, Manchester, UK). In order to measure the force on the patella implant relative to the 

quadriceps tendon, the inner race of the patella loadcell was rigidly attached to the patella implant and 

the outer race rigidly attached to the frame securing the steel cable modelling the patella and 

quadriceps tendons. 

The patella tendon moment arm (PTMA) was assessed using 2D images. Regular dot markers were 

placed on the simulator to locate the knee joint centre of rotation, the patella tendon and the femoral 

and tibial anatomical axes. A camera (AVT Marlin, AVT, Germany) was used to take sagittal images of the 



 
 

joint at 15 fps during the extension movement. Matlab (Mathworks, MA, USA) scripts were utilised,49 to 

assess each image, automatically locate the markers, and calculate the patella moment arm. Preliminary 

work indicated that this method was accurate to ± 1 mm. 

For the second stage of the testing, Prescale LLW film (Fujifilm Europe GmbH, Düsseldorf, Germany) was 

used to measure the PFJ contact area statically whilst the joint was subjected to the reduced level of 

loading.50 The Pliance sensor was removed and the knee joint positioned at 10° intervals from 20° to 90° 

of TF flexion. At each TF flexion angle the film was placed within the PFJ and load applied for 5 seconds. 

The developed films were scanned using a standard flatbed scanner and a Matlab script was utilised to 

compute the joint overall, lateral, and medial contact areas. This process was calibrated according to the 

manufacturer’s guidelines. 

The third element of the testing involved repeating the dynamic tests at the physiological level of 

loading (43 Nm peak moment), without the Pliance sensor in place. The knee was cycled from 20° to 90° 

of TF flexion for two complete flexion-extension cycles to allow the knee to settle. Measurements of the 

TF flexion angle, quadriceps force, patella compressive force, and PTMA were recorded for the third 

extension cycle. Lastly, the static tests were repeated at the higher level of loading. The full protocol was 

repeated six times. Between each repeat, the femoral and tibial components were repositioned and 

remounted. 

Statistical Methods 

The sample size was six. Data has been reported using mean ± standard deviation to give an indication 

of the variability. Where appropriate, the data were normalised relative to the results at 20° of TF 

flexion. Differences between the normalised results at the two levels of loading (43 Nm and 19 Nm peak 



 
 

moments) were assessed using Wilcoxon signed rank tests (α = 0.05). Non-parametric tests were used to 

assess differences between the loading conditions to reduce the threat of outliers within the relatively 

small sample. 



 
 

Results  

The quadriceps force and patellofemoral compressive force measured under both loading conditions 

decreased non-linearly with extension of the TFJ. The decrease in measured forces from 90° to 20° of 

flexion was not consistent between the two loading conditions. Under physiological loading the average 

quadriceps force decreased during extension on average by a factor of 7.9 ± 0.8 (mean ± standard 

deviation) from a peak of 1555 ± 53 N, and the average patellofemoral force by a factor of 13.6 ±  1.2 

from a peak of 1220 ± 16 N (Figure 2). Conversely, under the lower level of loading, the average 

quadriceps force only decreased by a factor of 5.7 ± 0.7 from a peak of 392 ± 29 N, and the average 

patellofemoral force by a factor of 7.2 ± 0.6 from a peak of 315 ± 14 N (Figure 2).  The normalised 

quadriceps force and the normalised patella compressive force were statistically higher under the 

physiological loading from 90° to 30° of TF extension (Figure 2).   

The average recorded standard deviations were 24.2 N (6% of measured value) for the quadriceps force 

and 10.5 N (4% of measured value) for the patella compressive force. The calculated PFJ pressures 

followed similar patterns to the measured forces (Figure 3). 

Under both loading conditions, the PTMA increased non-linearly with extension by 5 ± 2 mm over the 

tested flexion range. Throughout the TF extension motion, the PTMA under physiological loading was 3 

± 1 mm smaller than that recorded under reduced loading. The normalised PTMA values for the two 

conditions showed no statistical differences (Figure 2).    



 
 

 

Figure 2: Normalised results. * p < 0.05  Reduced Load vs Physiological Load. 

The patterns of measured contact area were also different under the two loading conditions. The 

average standard deviation of the measured contact areas was 0.03 cm2 (12% of measured value). 

Under physiological loading the contact area decreased on average by 5.2 ± 1.2 from a peak of 0.48 ± 

0.05 cm² during the tested range of extension. The decrease was only a factor 2.7 ± 1.0 from a peak of 

0.24 ± 0.04 cm² under the reduced level of loading. The normalised contact area was significantly 

greater under the physiological loading at flexion angles greater than 50° (Figure 2).    
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Figure 3: Variation in patellofemoral contact pressure with flexion angle for each loading condition 

(mean ± standard deviation).  

Under both loading conditions, at least 65% of the contact area was on the lateral aspect of the patella 

button throughout the tested flexion range. The COP, which could only be measured under the reduced 

load, was also consistently on the lateral aspect of the patella button (Figure 4). The COP tracked 

inferiorly with extension (Figure 4). The COP measurements were subject to relatively high standard 

deviations, averaging 4.7 mm. 
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Figure 4: Variation in the COP location, relative to the centre of the patella button, with TF flexion 

angle under reduced loading (mean ± standard deviation).  
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Discussion  

The present study aimed to assess the repeatability and physiological relevance of a novel knee joint 

simulator which was developed to facilitate extended non-cadaveric in vitro investigations, under 

physiological loads, of the effect of specific parameters on PFJ biomechanics following TKA. This was 

achieved through comparisons with in vitro data in the literature (Table 1). The effect of the level of 

applied load on PFJ biomechanics was also assessed. 

The quadriceps force required to complete a task after TKA is a good indicator of the ability of a patient 

to carry out activities of daily living.51, 52 The PFJ compressive force and the magnitude of joint contact 

area following TKA are also important to assess as they indicate the potential risk of long term pain and 

failure.8-11 The simulator facilitated measuring these variables with good repeatability. The recorded 

standard deviations of quadriceps and patella compressive force were substantially lower than those 

reported using cadaveric models (St.Dev. of peak quadriceps force 53 N vs 156 N; St.Dev. of peak patella 

compressive force 17 N vs 278 N).53 The reported contact area measurements also demonstrated 

comparable variability to those previously reported using the same measurement method and cadaveric 

specimens (St.Dev. of peak contact area 0.06 cm² vs 0.02 - 0.03 cm²).15, 54 The demonstrated low 

variability supports the assertion that the presented simulator would allow differences, in terms of joint 

forces and contact areas, between test conditions to be demonstrated using as many or fewer 

specimens than comparable cadaveric systems. The COP measurements were subject to high 

measurement variability. This was likely due to the low sensor density of the Pliance system and would 

limit the power of future studies assessing COP differences between test conditions. 

 



 
 

Table 1: Pertinent details of literature studies to which the results achieved using the developed 

simulator were compared 

Reference Experimental Methods Implant System Outputs 

Anglin, Brimacombe 
(2010) 12 

Oxford knee rig 
Sub-physiological loading 

(peak quadriceps force 
of 450N) 

Cadaveric 

Nex Gen Legacy PS 
(Zimmer, Warsaw, IN, 
USA) with a  central 
dome patella 

Contact force and COP 
measured using I-
Scan 5051 pressure 
sensor (Tekscan, 
Boston, Mass) during 
TF flexion 

Browne, Hermida 
(2005) 53 

Oxford knee rig  
40 Nm peak flexion 

moment 
Cadaveric knees 

Scorpio CR (Stryker) 
with concentric dome 
patella component 

Quadriceps force and 
Patella compressive 
force monitored 
during TF flexion 

Fornalski, McGarry 
(2012) 54 

Oxford knee rig 
Sub-physiological loading 
Cadaveric 

Encore Total Knee 
Arthroplasty System 
CS (Encore Medical 
Corporation, Austin, 
TX) with resurfaced 
patella 

Contact area measured 
using Fujifilm 

Heegaard, Leyvraz 
(2001) 33 

3D finite element PFJ 
model 

IB2 Total Condylar 
Prosthesis (Zimmer) 
with concentric dome 
patella 

Patella contact 
pressure and COP 
calculated during TF 
flexion 

Lee, Gerken (1997) 
15 

Oxford knee rig 
Sub-physiological loading 
(peak quadriceps force of 
200N) 
Cadaveric 

Kirshener Performance 
System (Kirshner 
Medical corporation, 
MD, USA) 

Contact area measured 
using Fujifilm 

Müller, Lo, Wünschel 
et al (2009) 55 

Oxford knee rig 
Ankle reaction force varied 

from 25 to 250 N 
Cadaveric 

n/a 
Quadriceps force 

measured during TF 
flexion 

Ostermeier and 
Stukenborg-Colsman 
(2011) 56 

Fixed femur rig 
Isometric extension  

against a constant 
31Nm extension 
moment 

Cadaveric Knees 
Hamstrings loaded 

Triathlon PS (Stryker) 
with no patella 
resurfacing 

Quadriceps force 
monitored during TF 
extension 

Present Study 

Oxford knee rig 
Physiological quadriceps 

actuation against a 
peak flexion moment of 

Scorpio PS (Stryker) 
with dome patella 

Quadriceps force, 
patella compressive 
force, patella contact 
pressure and COP 



 
 

43Nm 
Hamstrings modelled 

measured during TF 
extension 

The simulator was able to replicate physiological knee joint loading situations which were comparable to 

more commonly used cadaveric systems. In agreement with a previous in vitro cadaveric study on the 

same implant,53 the required quadriceps force decreased with extension under physiological levels of 

loading. The recorded quadriceps force fell with increasing extension as a result of the body weight 

moment arm decreasing, and a reduction in the effective patella moment arm. The recorded peak 

quadriceps force achieved using this simulator and a physiological peak flexion moment (1555 N ± 53 N 

at 90° flexion), was higher than previously reported because measurements were made during TF 

extension, rather than flexion.53 The magnitude of quadriceps force measured using the developed 

simulator was consistent with work carried out using an alternative simulator and a similar single radius 

implant design.56  

The patellofemoral compressive force also decreased with extension but appeared to level out slightly in 

deeper flexion. This has also been shown in in vitro cadaveric studies,12, 53 and highlights that the 

simulator was able to replicate the physiological contact of the quadriceps tendon with the distal femur 

in deeper flexion. This reduced the load carried by the PFJ.34, 35 The patellofemoral compressive force 

decreased by a greater amount than the quadriceps force during extension (13.5 vs 7.9 under 

physiological motion) because of the superioinferior motion of the joint contact point (Figure 4), which 

altered the effective patella moment arm.32 Similar to the peak quadriceps force, the recorded peak 

patellofemoral compressive force under physiological loading was higher than that previously reported 

using the same implant, as a result of taking measurements in extension rather than flexion. The peak 

force was consistent with in vivo estimates.32 



 
 

Throughout the extension movement there was greater contact on the lateral aspect of the patella and 

the PFJ COP was lateral (Figure 4). This is in distinct contrast to the more even loading generally seen in 

the native knee, but has been previously reported in TKA studies with alternative implants.33 The PFJ 

COP was also consistently superior, becoming more inferior with increasing extension. This is again 

consistent with previously reported cadaveric studies.12 These results suggest that the simulator has 

modelled a sufficient number of soft tissue structures to facilitate the replication of physiological 

patellofemoral biomechanics.  

The pressure within the PFJ following TKA is a strong indicator of the risk of wear of the implanted 

patella button and pain within the joint.9, 57, 58 Previous studies, have used the Pliance system14, 18 or the 

K-Scan and I-Scan systems (Tekscan, Boston, USA)17, 19, 59 to measure contact area and pressure 

dynamically within the PFJ. However, these were not suitable for use in this study due to the low sensor 

density and relatively large thickness (2 mm) of the Pliance sensor, and the limited pliability and high 

expense of the Tekscan systems.60, 61 

Preliminary testing indicated that dynamic and static contact area measurements showed no notable 

differences. This is consistent with literature reports that the presence, or lack thereof, of motion does 

not affect PFJ kinematics.62 The resultant force vector on the patella button was unlikely to have 

corresponded directly with the measurement axis of the single-axis load cell positioned behind the 

button. However, compression was assumed to be the largest component of force in the joint. Dynamic 

PFJ contact pressures were therefore calculated at 10° intervals of extension, for both loading situations, 

using the recorded compressive force and contact area values.  

The contact area and pressure within the PFJ, following TKA with the Scorpio NRG system, or its 

predecessor the Scorpio system, have not previously been assessed. The geometry of the femoral and 



 
 

patella components has a significant effect on the contact within the PFJ comparisons with 

measurements made using different implant systems are therefore not valid.63, 64 The pattern of 

recorded contact area under physiological loading was however consistent with modern kinematic 

understanding showing a consistent reduction with TF extension as the patella component traversed 

through the intercondylar notch, into the trochlear groove and, closer to full extension, superior to the 

groove.35, 65 The estimated pressure values were therefore considered to give a fair indication of the 

loading magnitude on the patella component during testing and the potential risk of long term in vivo 

component failure and pain.9, 57, 58 

The results associated with the two loading conditions, i.e. the reduced and physiological loading levels, 

suggest that they are not comparable. The measurements of quadriceps forces, patellofemoral 

compressive forces and patellofemoral contact areas all demonstrated distinctly different patterns 

between the two loading conditions. The normalised values for the quadriceps forces, patellofemoral 

compressive forces and patellofemoral contact areas were statistically significantly different under the 

two levels of loading in deeper TF flexion (60 - 90°) (Figure 2). Similarly, the measured forces and areas 

increased with extension by approximately a factor of 2 more under physiological loading rather than 

under reduced loading. This has been previously reported for quadriceps forces using a cadaveric model, 

but has not been demonstrated with regards to the patella compressive force or contact area.55 

Increased levels of hip loading resulted in increased levels of friction within the PFJ, which increased the 

required quadriceps force. In deeper flexion, the required quadriceps force also increased due to the 

increased body weight moment, which exacerbated the differences. This pattern was reflected in the 

PFJ compressive force as the two are biomechanically linked. The significantly higher patellofemoral 

compressive force under physiological loading was observed to cause elastic deformation of the 



 
 

relatively soft UHWMPE button which resulted in the higher reported contact areas. Using simple linear-

elastic theory at the peak measured load (1220 N) this deformation can be approximately calculated to 

be in the order of 0.3 mm at the location of contact. 

In contrast, the PTMA results demonstrated similar patterns under both levels of loading. The 

normalised results were not statistically different (Figure 2). There was however a consistent reduction 

in the PTMA, of 3 mm, under the physiological loading. The Pliance sensor array was 2 mm thick, which 

accounted for a proportion of this reduction under the physiological loading when the sensor was not 

used. The remainder of the reduction in PTMA may be attributed to compression of the UHMWPE 

button under the higher loading. The reduced PTMA reported under the physiological loading condition 

will also have contributed to the increased quadriceps forces.  

Many studies carry out testing under less than physiological levels of loading, to protect cadaveric soft 

tissues and sensor systems.12-19, 33 The results of this study however demonstrated that it is important to 

carry out tests under physiological levels of loading, and that this can be achieved using the present 

simulator. 

This study was limited by not including cadaveric testing to provide a direct assessment of the 

physiological relevance of the simulator. However, comparisons to a published cadaveric study using the 

same implant were possible.53 The elimination of cadaveric tissue from the model resulted in improved 

reliability. However, this was at the cost of some physiological relevance. Specifically, the simulator only 

modelled a limited number of the soft tissue structures found in the knee. Specifically, the patella 

retinaculum was not modelled. Such soft tissue structures are only a primary constraint to patella 

motion during early flexion,66 which is not facilitated by the present rig. It would only be feasible to 

account for more soft tissue structures using cadaveric specimens or by increasing complexity in the 



 
 

present simulator and adding further soft tissue analogues. Given the relatively low forces within the PFJ 

during early flexion, and hence the low risk of pain and failure during such movements, the lack of 

patella retinacula is not considered to be a significant limitation for initial biomechanical investigations 

designed to assess the factors which influence the long term risk of pain and component failure 

following TKA. However, it may be prevent the measurement of physiological kinematics. 

The use of a single set-up as opposed to the more common use of multiple cadaveric specimens also 

limits the relevance of results produced using the simulator to the population as a whole. This is an 

inherent limitation of the method but does not prevent its use for initial comparative tests. It may be 

advisable however, to follow up on any hypothesis developed as a result of such initial tests with 

cadaveric investigations. 



 
 

Conclusions  

Cadaveric specimens provide the best in vitro model of the natural knee, but are limited with respect to 

inter-specimen variability and cannot be tested for extended periods of time under physiological loads. 

This study has highlighted the effect of simulated body weight on PFJ biomechanics. The patterns of 

loads and contact areas reported at a substantially reduced level of loading did not correspond to those 

reported under physiological loads. It is therefore important to carry out biomechanical evaluations 

under physiological levels of loading and understand the limitations of testing carried out under reduced 

loading 

The developed simulator allowed the extended assessment of the PFJ after TKA under physiological 

loading. This study also showed, through comparisons with published studies, that the simulator is able 

to model physiological knee motions and loading conditions. The simulator facilitated the assessment of 

forces, areas and pressures within the PFJ, in many cases with a higher degree of repeatability than 

more commonly used cadaveric systems. This study indicated that the simulator would be appropriate 

for use in initial comparative studies to systematically assess, under physiological loads, the effect of 

specific parameters on PFJ biomechanics. 
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