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GEOMETRIC RIGIDITY FOR INCOMPATIBLE FIELDS

AND AN APPLICATION TO STRAIN-GRADIENT PLASTICITY

STEFAN MÜLLER, LUCIA SCARDIA, AND CATERINA IDA ZEPPIERI

Abstract. In this paper we show that a strain-gradient plasticity model arises as the Γ-limit
of a nonlinear semi-discrete dislocation energy. We restrict our analysis to the case of plane
elasticity, so that edge dislocations can be modelled as point singularities of the strain field.

A key ingredient in the derivation is the extension of the rigidity estimate [10, Theorem 3.1]
to the case of fields β : U ⊂ R2 → R2×2 with nonzero curl. We prove that the L2-distance of β
from a single rotation matrix is bounded (up to a multiplicative constant) by the L2-distance
of β from the group of rotations in the plane, modulo an error depending on the total mass of
Curlβ. This reduces to the classical rigidity estimate in the case Curlβ = 0.

Keywords: Γ-convergence, rigidity estimate, nonlinear plane elasticity, edge
dislocations, strain-gradient plasticity.

2000 Mathematics Subject Classification: 49J45, 58K45, 74C05.

1. Introduction

The permanent (or plastic) deformations of metals rely on the presence of many types of
defects in their atomic structure. Dislocations are one type of such defects and they play a
prominent role in the so-called plastic slip, the relative slip of atomic layers that alters perma-
nently the lattice structure of a metal. For this reason there is an increasing interest and effort
in the derivation of plasticity models from dislocation models, both in the mathematical and in
the mechanical engineering communities (see e.g. [4, 6, 11, 12, 13, 15, 16]). Clearly, the large
freedom in the choice of the dislocation model has a strong influence on the method of derivation
and on the resulting plasticity theories, and therefore requires some care.

In most of the cases the starting point is a semi-discrete (mesoscopic) dislocation model in
which the dislocations are modelled individually, while the underlying atomic lattice is averaged
out. This simplification is supported by the fact that at low strains the interatomic distance (of
the order of few tenth of a nanometer) is much smaller than the typical distance between two
dislocations (few microns). For straight and parallel edge dislocations the natural setting is that
of plane elasticity. Indeed in this case only the two components of the strain on the slip plane
are relevant and the positions of the dislocations are completely identified by the intersection of
the dislocation lines with an orthogonal plane; i.e., by their trace on a two-dimensional domain
Ω. Moreover, in semi-discrete models the dislocation energy is usually assumed to be quadratic
(see, e.g., [4, 9, 11, 19]). More precisely, the energy is given by

1

2

∫
Ωε(µ)

Cβ : β dx, (1.1)
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where C ∈ R4×4 is the elasticity tensor, β : Ω → R2×2 denotes the elastic part of the strain
of a planar deformation, and Ωε(µ) is obtained from Ω by removing discs of radius ε > 0, the
so-called core regions, around each dislocation, on which the measure µ (the dislocation density)
is supported. The dislocation density µ is a measure of the amount of disturbance in the lattice
due to the presence of dislocations, and is related to the incompatibility of the strain β; i.e., to
Curlβ. Notice that in this linear setting the ε-regularisation of the energy (1.1), although not
ideal, is necessary to prevent the blow-up of the energy at the dislocations. Moreover, also the
assumption of a linear relation between stress and strain, which is equivalent to assuming small
deformations, is debatable. Indeed, few atoms away from a dislocation the use of the quadratic
energy (1.1) is justified, since the presence of dislocations causes a very local lattice distortion.
However, this description is not satisfactory close to the dislocations, where the strains are
too large for the linear approximation to hold. Moreover, in presence of a “large” number of
dislocations, the question of reducing to the small-strains case is more subtle. Considering a
more general, nonlinear dislocation energy is therefore desirable. This general principle triggered
the analysis done in [20], where the authors considered a nonlinear dislocation energy of the form∫

Ω
W (β) dx (1.2)

where the energy density W : R2×2 → [0,+∞) satisfies the usual assumptions of nonlinear
elasticity (e.g. stress-free reference configuration and frame indifference). In addition, W is
required to satisfy mixed growth conditions (considered also in e.g. [17]) ensuring that far from
dislocations the energy is essentially quadratic; i.e., W (β) ∼ dist2(β, SO(2)), whereas close to
the defects W (β) ∼ |β|p, for some p ∈ (1, 2). Therefore W (β) is integrable also close to the
dislocations, thus the ε-regularization needed in the linear case is no longer necessary.

In [20] the authors considered the case of a finite number N of fixed edge dislocations located

at points x1, . . . , xN with Burgers vectors εb̂1, . . . , εb̂N , where |b̂i| = 1 and ε > 0 is proportional
to the interatomic spacing, and analysed the asymptotic behaviour of the scaled energies

1

ε2| log ε|

∫
Ω
W (β) dx (1.3)

in the limit as ε tends to zero, by Γ-convergence. In (1.3), the strain β and the dislocation density

which is encoded in the measure µ =
∑N

i=1 εb̂iδxi are coupled via the relation Curlβ = µ. In
[20] it was shown that the energies (1.3) give rise in the limit to the line-tension plasticity model
described by

1

2

∫
Ω
C∇u : ∇u dx+

N∑
i=1

ψ(RT b̂i), (1.4)

where C = ∂2W
∂F 2 (I), ψ is given in terms of an asymptotic cell formula, ∇u is the limit of a

sequence of suitably renormalized strains, and R is a rotation whose presence is characteristic
of the nonlinear setting. Hence, although in the ε-energy (1.3) the strain β and the dislocation
density µ are coupled, their limit objects are decoupled in the limit energy (1.4), that depends
on a curl-free strain ∇u. The decoupling is typical of this dilute regime (see also [4, 11]) and

is due to the fact that the strains β “live” on a scale ε
√
| log ε| while the dislocation densities

µ on the smaller scale ε. As a consequence, in this regime, the limit procedure yields a pair of
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macroscopic decoupled variables and therefore two corresponding decoupled terms in the limit
energy.

In analogy with the linear case [11], in order to overcome the degeneracy of the dilute regime,
in the present paper we consider a scaling of the nonlinear energy (1.2) of order ε2| log ε|2.
Loosely speaking, considering this different scaling corresponds to considering a system of | log ε|
dislocations. Then, our aim is to derive in the limit as ε tends to zero a strain-gradient model
for plasticity; i.e., a model in which the energy depends on an incompatible field, and in which
elastic energy and dislocation energy are coupled.

From a mathematical point of view the transition between a finite and an “infinite” number
of defects is highly nontrivial. Indeed in the linear case it required a rather sophisticated tool,
namely a Korn-type inequality for fields with nonzero curl, see [11, Theorem 11]. Analogously,
in our nonlinear setting, it requires an extension of the rigidity estimate [10, Theorem 3.1] to
the case of incompatible fields. More precisely, in Theorem 3.3 we prove that if Ω ⊂ R2 is open,
bounded, simply connected, and with Lipschitz boundary, then for every β ∈ L2(Ω;R2×2) whose
curl is a measure with bounded total variation there exists a constant rotation R ∈ SO(2) such
that

‖β −R‖L2(Ω;R2×2) ≤ C
(
‖dist(β, SO(2))‖L2(Ω) + |Curlβ|(Ω)

)
, (1.5)

for some C > 0 depending only on Ω. Notice that (1.5) clearly reduces to the classical rigidity
estimate when Curlβ = 0. The above generalised rigidity estimate is one of the main results
of this paper and would appear to be widely applicable. The key ingredients of the proof of
(1.5) are an Lp + Lq rigidity estimate recently proved in [5] and a fine regularity result for
two-dimensional L1-vector fields with divergence in H−2 proved in [3] (see also [2]).

Coming back to our model, in the present paper we treat the case of “infinitely many”
dislocations in the nonlinear setting, although under more restrictive coerciveness assumptions
on the energy density W than in [20]. More precisely, the dislocation energy in our model is
given by ∫

Ωε(µ)
W (β) dx, (1.6)

where the nonlinear energy density W behaves essentially as dist2(β, SO(2)) (see Section 2 for
more details), and the strain β satisfies at any dislocation point xi the incompatibility condition∫

∂Bε(xi)
β · t ds = ε b̂i,

where, as above, b̂i is the direction of the Burgers vector associated to the dislocation located at
xi, and ε is proportional to the interatomic distance. Unlike the case of fixed dislocations studied
in [20], where the dislocation density µ was constant (up to an ε-scaling) and the energy (1.2)

depended only on the strain β, in the present case the distribution of dislocations µ =
∑N

i=1 εb̂iδxi
is a variable of the problem, and therefore the dislocation energy (1.6) depends on both β and
µ. Notice that, due to the quadratic growth of the energy density, also in this nonlinear setting
the ε-regularization of the dislocation energy is needed, as in the linear case [11].

In order to obtain in the limit a strain-gradient model we consider the rescaled functionals

1

ε2| log ε|2

∫
Ωε(µ)

W (β) dx, (1.7)
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and analyse their asymptotic behaviour via Γ-convergence as ε tends to zero.
As in [20] also here the key idea is to rigorously reduce to the linear setting in the spirit of [7].

To this end it is necessary to show that, in particular, sequences of strains with equibounded
energies converge to constant rotations of the plane (minimisers of the nonlinear energy). In
the case of an infinite number of dislocations, however, the compactness of the strains does
not follow from the corresponding result in [20]. It follows instead from the generalised rigidity
estimate (1.5), which allows us to perform a second order Taylor expansion of the energy around
a rotation, and to get a quadratic functional in terms of a renormalised strain. At this point the
final step of our approach is to apply previous results known for linear energies to the linearised
functional. Then, as in [11], the Γ-limit is a strain-gradient plasticity energy (see Theorem 4.6)
and has the form

1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ(R,Curlβ) dx,

where β is the limit of suitably scaled strains and R ∈ SO(2) is the limit of the sequence of
constant rotations provided by the generalised rigidity estimate (see Proposition 4.3). Concern-

ing the densities of the two terms in the energy, the elasticity tensor C equals ∂2W
∂F 2 (I), while

the plastic energy density ϕ is defined in terms of an asymptotic cell formula and is such that
ϕ(R, ·) is positively 1-homogeneous and convex.

This paper is organised as follows: Section 2 is devoted to the introduction of the necessary
notation and to the definition of the mesoscopic dislocation model. Then, the two main results,
namely the generalised rigidity estimate and the Γ-convergence result, are treated in Sections 3
and 4, respectively.

2. Notation and setting of the problem

In this section we introduce the nonlinear mesoscopic dislocation energy associated to the
(elastic part of the) deformation strain in presence of a system of straight and parallel edge
dislocations. In this setting the dislocations are modelled by points in the plane.

Let Ω ⊂ R2 be a simply connected, bounded, Lipschitz domain representing a horizontal
section of an infinite cylindrical crystal. Let S := {b1, b2} be a set of admissible (renormalised)
Burgers vectors for the crystal; i.e., b1, b2 ∈ R2 are two linearly independent vectors depending
on the crystalline structure, e.g., for a square lattice S = {e1, e2}. We also consider

S := SpanZS,

the span of S with integer coefficients; i.e., the set of (renormalised) Burgers vectors for multiple
dislocations. Every dislocation is then characterised by a point xi ∈ Ω and by a vector ξi ∈ S.

For the given crystal, let ε > 0 denote the interatomic distance. We assume that the distance
between two distinct dislocations is bounded from below in terms of an intermediate scale
ρε � ε, with ρε → 0 as ε → 0. This assumption implies that dislocations are well separated
(with respect to the atomic spacing ε); i.e., there is a scale separation between ε, the scale of
the atomic lattice, and the scale of the dislocations distribution, represented by ρε. We refer
the reader to the recent paper [9] where the assumption of well separation for the dislocations is
overcome in the case of a quadratic energy of type (1.1) and for finite number of defects. Here
we also require that (cfr. [11])
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(1) limε→0 ρε/ε
s = +∞, for every fixed s ∈ (0, 1);

(2) limε→0 | log ε|ρ2
ε = 0.

Under this assumptions on the hard-core scale ρε, we will show that in the limit the energy can be
decomposed into two contributions: a self energy concentrated in the hard-core regions Bρε(xi)
and an interaction energy essentially all stored outside the union of the hard-core regions.

We define the class Xε of the admissible dislocation densities as

Xε :=
{
µ ∈M(Ω;R2) : µ =

M∑
i=1

ε ξiδxi , M ∈ N, Bρε(xi) ⊂ Ω,

|xj − xk| ≥ 2ρε for every j 6= k, ξi ∈ S
}
, (2.1)

where M(Ω;R2) denotes the space of vector-valued Radon measures on Ω and, for every i, δxi
denotes the Dirac mass centred at xi.

For given µ ∈ Xε and r > 0 we define

Ωr(µ) := Ω \
⋃

xi∈ supp(µ)

Br(xi). (2.2)

The class of admissible strains associated with any µ ∈ Xε is given by those β ∈ L2(Ωε(µ);R2×2)
satisfying

Curlβ = 0 in Ωε(µ) and

∫
∂Bε(xi)

β · t ds = ε ξi, for i = 1, . . . ,M,

where the equality Curlβ = 0 is intended in the sense of distributions.1 The vector t above
denotes the oriented tangent vector2 to ∂Bε(xi) and the integrand β · t is intended in the sense
of traces (see [8, Theorem 2, pag. 204]).

Then, in this mathematical setting, an admissible µ measures the failure of the condition of
being a gradient for the strain β and the presence of dislocations can be detected by looking at
the topological singularities of β.

Let SO(2) := {R ∈ R2×2 : RTR = I, detR = 1} be the set of rotations in R2×2. The elastic
energy density W : R2×2 → [0,+∞) satisfies the usual assumptions of nonlinear elasticity,
namely

(i) W ∈ C0(R2×2), W ∈ C2 in a neighbourhood of SO(2);

(ii) the reference configuration is stress-free; i.e., W (I) = 0;

(iii) W is frame indifferent; i.e., W (RF ) = W (F ) for every F ∈ R2×2 and R ∈ SO(2).

Moreover, W satisfies the following growth condition:

(iv) there exists two constants C1, C2 > 0 such that for every F ∈ R2×2

C1dist2(F, SO(2)) ≤W (F ) ≤ C2 dist2(F, SO(2)).

1For a matrix β ∈ R2×2, Curlβ is the vector field of R2 defined as Curlβ = (∂1β12 − ∂2β11, ∂1β22 − ∂2β21).
2We choose t = ν⊥ to be a counterclockwise π/2-rotation of the outward normal ν to ∂Bε.
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The lower bound in (iv) states that the energy wells are non-degenerate and is widely used in
nonlinear elasticity. The upper bound, however, is rather restrictive as it allows for orientation
reversing deformations and for infinite compression. Although partially unsatisfactory, the upper
bound in (iv) is heavily used in the proof of the Γ-convergence result (Theorem 4.6) to guarantee
that the energy along the recovery sequence is linear, up to a small error.

Due to the quadratic growth (iv) the energy associated to an admissible pair (µ, β) is well
defined only away from the dislocations, as in the linear case, namely in the domain Ωε(µ):∫

Ωε(µ)
W (β) dx.

In what follows it is useful to extend the admissible strains β to the whole domain Ω. There
are different possible extensions compatible with our model. Here we decide to consider β = I
in the discs Bε(xi). Therefore, from now on the class of admissible strains associated with a
measure µ ∈ Xε is given by

ASε(µ) :=
{
β ∈ L2(Ω;R2×2) : β ≡ I in ∪Mi=1 Bε(xi), Curlβ = 0 in Ωε(µ),∫

∂Bε(xi)
β · t ds = ε ξi, for i = 1, . . . ,M

}
. (2.3)

By (ii) we can rewrite the energy associated to an (extended) admissible strain β ∈ ASε(µ) as

Eε(µ, β) :=

∫
Ω
W (β) dx.

For our purposes, as in the linear case [11], the relevant scaling for the energy is ε2| log ε|2;
therefore we consider the scaled nonlinear dislocation energy given by

Eε(µ, β) :=


1

ε2| log ε|2
Eε(µ, β) if µ ∈ Xε, β ∈ ASε(µ),

+∞ otherwise inM(Ω;R2)× L2(Ω;R2×2).
(2.4)

Then, as in [11], we notice that this is the only scaling of the energy for which the strain β and
the measure µ are of the same order in ε. This results into a coupling of their limit rescaled
objects, and therefore to a strain-gradient plasticity model (Theorem 4.6).

3. Rigidity estimate for fields with prescribed curl

In this section we prove a generalised rigidity estimate for vector fields with nonzero curl.
This result provides a quantitative estimate of the distance of a two-dimensional matrix-valued
field from a constant rotation in terms of its distance from the set of rotations of the plane, like
the classical rigidity estimate [10] in two dimensions, with an additional term depending on the
total mass of the curl.

Before proving the desired result, for the reader’s convenience we state here a variant of the
Rigidity Estimate recently proved in [5]. To this end, we first recall some useful notation.
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Let U ⊂ Rn be a measurable set. We denote by L2,∞(U ;Rm) the space of weak-L2 functions;
i.e., f ∈ L2,∞(U ;Rm) if and only if f is measurable and there exists a constant C > 0 such that

Ln(
{
x ∈ U : |f(x)| > λ

}
) ≤ C2

λ2
, for every λ > 0.

We also set

‖f‖L2,∞(U ;Rm) := inf
{
C > 0: λLn(

{
|f | > λ

}
)1/2 ≤ C, ∀λ > 0

}
.

Notice that ‖ · ‖L2,∞(U ;Rm) is not a norm but only a quasi-norm since the Minkowski Inequality
holds only in the following form

‖f + g‖L2,∞(U ;Rm) ≤ 2‖f‖L2,∞(U ;Rm) + 2‖g‖L2,∞(U ;Rm).

If f ∈ L2(U ;Rm) then clearly f ∈ L2,∞(U ;Rm) and ‖f‖L2,∞(U ;Rm) ≤ ‖f‖L2(U ;Rm); but L2(U ;Rm) (
L2,∞(U ;Rm) as, for example, 1/|x|n/2 belongs to L2,∞(U ;Rm) but not to L2(U ;Rm).

We are now ready to recall the weak rigidity estimate (see [5]).

Theorem 3.1 (L2,∞-rigidity). Let U be a bounded Lipschitz domain of Rn. There exists a
constant C = C(U) > 0 with the following property: For every u ∈ L1(U ;Rn) such that ∇u ∈
L2,∞(U ;Rn×n) there is an associated rotation R ∈ SO(n) such that

‖∇u−R‖L2,∞(U ;Rn×n) ≤ C‖dist(∇u, SO(n))‖L2,∞(U). (3.1)

We prove a technical result we use in what follows.

Proposition 3.2. Let g : R→ R be a bounded function such that |g(t)| ≤ γ|t|α, for some γ > 0
and for some α > 1. Let U ⊂ Rn be a measurable set; if θ ∈ L2,∞(U) then g ◦ θ ∈ L2(U) and

‖g ◦ θ‖L2(U) ≤M‖θ‖L2,∞(U), (3.2)

where M := max{‖g‖L∞(U), 2
α/(1− 4(1−α))1/2}.

Proof. We have ∫
U
|g(θ)|2 dx =

∫
{x : |θ|>1}

|g(θ)|2 dx+

∫
{x : |θ|≤1}

|g(θ)|2 dx. (3.3)

The first term in the right hand side of (3.3) can be easily estimated appealing to the boundedness
of g, in fact ∫

{x : |θ|>1}
|g(θ)|2 ≤ ‖g‖2L∞(U)L

n({x : |θ| > 1}) ≤ ‖g‖2L∞(U)‖θ‖
2
L2,∞(U). (3.4)

For the second term in (3.3) we proceed as follows. Using the growth assumption on g we find∫
{x : |θ|≤1}

|g(θ)|2 dx ≤ 2γ2

∫
{x : 0<θ≤1}

θ2α dx. (3.5)

For δ ∈ (0, 1/2] we have∫
{x : δ<θ≤2δ}

θ2α dx ≤ 4αδ2αLn({x : |θ| > δ}) ≤ 4αδ2(α−1)‖θ‖2L2,∞(U). (3.6)
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Therefore using (3.6) with δ = 1/2k and k ∈ N we get∫
{x : 0<θ≤1}

θ2α dx =
∑
k≥1

∫
{x : 1

2k
<θ≤ 1

2k−1 }
θ2α dx

≤ 4α
∑
k≥0

1

4(α−1)k
‖θ‖2L2,∞(U)

=
4α

1− 4(1−α)
‖θ‖2L2,∞(U).

Finally, combining the last inequality with (3.3)-(3.5) entails the thesis. �

The following theorem is the main result of this section. It states that in dimension two
the rigidity estimate holds true also for vector fields with nonvanishing curl, modulo an error
depending on the total mass of the curl. This result is the nonlinear counterpart of the generalised
Korn Inequality proved in [11, Theorem 11].

Theorem 3.3 (Generalised Rigidity Estimate). Let Ω ⊂ R2 be open, bounded, simply connected,
and Lipschitz. There exists a constant C = C(Ω) > 0 with the following property: For every
β ∈ L2(Ω;R2×2) with µ := Curlβ ∈ Mb(Ω;R2) there is an associated rotation R ∈ SO(2) such
that

‖β −R‖L2(Ω;R2×2) ≤ C
(
‖dist(β, SO(2))‖L2(Ω) + |µ|(Ω)

)
. (3.7)

Proof. Set δ := ‖dist(β, SO(2))‖L2(Ω) + |µ|(Ω).
Notice that for i = 1, 2

µi = curl(βT ei) = −div(J(βT ei)), with J :=

(
0 −1
1 0

)
;

therefore µ ∈ H−1(Ω;R2) and there exists a unique solution to the following problem:{
−∆v = µ in Ω,

v ∈ H1
0 (Ω;R2).

(3.8)

By classical regularity theory for linear elliptic systems with measure data (see e.g. [18] and
references therein) we have

‖∇v‖L2,∞(Ω;R2×2) ≤ C|µ|(Ω). (3.9)

Let β̃ := ∇vJ ; in view of (3.8) we have that Curl β̃ = µ. Hence, Curl (β − β̃) = 0 in Ω, which

implies the existence of u ∈ H1(Ω;R2) such that β − β̃ = ∇u a.e. in Ω. Then we have

dist(∇u, SO(2)) = dist(β − β̃, SO(2))

≤ dist(β, SO(2)) + |β̃|
= dist(β, SO(2)) + |∇v|. (3.10)

This implies, by (3.9) and by the definition of δ, that

‖dist(∇u, SO(2))‖L2,∞(Ω) ≤ Cδ.
Then, Theorem 3.1 provides us with a constant C > 0 and a constant rotation R ∈ SO(2) such
that

‖∇u−R‖L2,∞(Ω;R2×2) ≤ Cδ,
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and as a consequence
‖β −R‖L2,∞(Ω;R2×2) ≤ Cδ. (3.11)

Without loss of generality we may assume that R = I (otherwise we consider RTβ).
Let ϑ : Ω→ [−π, π) be a measurable function such that the corresponding rotation

R(ϑ) =

(
cosϑ − sinϑ
sinϑ cosϑ

)
satisfies

|β(x)−R(ϑ(x))| = dist(β(x), SO(2))

for a.e. x ∈ Ω. Then, (3.11) yields

‖I −R(ϑ)‖L2,∞(Ω;R2×2) ≤ Cδ. (3.12)

Since |I −R(ϑ)| ≥ |ϑ|/2 for a.e. x ∈ Ω, by (3.12) we deduce that

‖ϑ‖L2,∞(Ω) ≤ Cδ. (3.13)

We now consider the linearisation of the rotation R(ϑ) around zero, namely

Rlin(ϑ) :=

(
1 −ϑ
ϑ 1

)
.

Appealing to Proposition 3.2 with g(t) = cos t− 1, or g(t) = sin t− t, from (3.13) we derive the
two following bounds

‖ cosϑ− 1‖L2(Ω) ≤ Cδ and ‖ sinϑ− ϑ‖L2(Ω) ≤ Cδ;
therefore ‖R(ϑ)−Rlin(ϑ)‖L2(Ω;R2×2) ≤ Cδ. Since

‖β −Rlin(ϑ)‖L2(Ω;R2×2) ≤ ‖dist(β, SO(2))‖L2(Ω) + ‖R(ϑ)−Rlin(ϑ)‖L2(Ω;R2×2) ≤ Cδ,
we have

β = Rlin(ϑ) + h, with ‖h‖L2(Ω;R2×2) ≤ Cδ.
Then by the definition of Rlin we deduce

Curlβ = −∇ϑ+ Curlh,

which in its turn implies
div((Curlβ)⊥) = div((Curlh)⊥), (3.14)

where, for a vector a ∈ R2 we use the notation a⊥ := Ja.
Hence we have

‖div((Curlβ)⊥)‖H−2(Ω) ≤ C‖h‖L2(Ω;R2×2) ≤ Cδ. (3.15)

By [3, Theorem 3.1 and Remark 3.3] (see also [2]) if f ∈ L1(Ω;R2) is a vector field satisfying
divf ∈ H−2(Ω), then f also belongs to H−1(Ω;R2) and the following estimate holds true

‖f‖H−1(Ω;R2) ≤ C(‖divf‖H−2(Ω) + ‖f‖L1(Ω;R2)).

This estimate clearly extends by density to measures with bounded total variation. Thus, by
applying the previous estimate with f = (Curlβ)⊥, by virtue of (3.15) we have

‖(Curlβ)⊥‖H−1(Ω;R2) ≤ ‖div((Curlβ)⊥)‖H−2(Ω) + |(Curlβ)⊥|(Ω) ≤ Cδ. (3.16)

Eventually, recalling that v solves (3.8), by (3.16) we deduce

‖∇v‖L2(Ω;R2×2) ≤ Cδ,
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and therefore, by (3.10),
‖dist(∇u, SO(2))‖L2(Ω) ≤ Cδ.

Hence the classical Rigidity Estimate [10, Theorem 3.1] provides us with a constant C > 0 and
with a constant rotation R′ ∈ SO(2) such that

‖∇u−R′‖L2(Ω;R2×2) ≤ Cδ,
thus

‖β −R′‖L2(Ω;R2×2) ≤ Cδ
and the thesis is achieved. �

4. Γ-convergence of the nonlinear dislocation energy

In this section we study the asymptotic behaviour of the scaled energies Eε, defined in (2.4),
as ε tends to zero. In the spirit of the Γ-convergence analysis performed in [11, 20], we show that
a linearisation takes place in the limit and that the limit energy is a macroscopic strain-gradient
model for plasticity, namely there is a nontrivial interplay between the interaction and the self
energy.

4.1. Cell formula for the limit self energy. For the definitions and results contained in this
subsection we refer the reader to [11, Section 6].

For later reference, it is convenient to introduce a new class of admissible (scaled) strains.
For 0 < r1 < r2 < 1 and ξ ∈ R2 we define

ASr1,r2(ξ) :=

{
η ∈ L2(Br2 \Br1) : Curl η = 0 in Br2 \Br1 ,

∫
∂Br1

η · t ds = ξ

}
,

where Br denotes the disc of radius r centred at 0. In the special case r2 = 1 we will simply
write ASr1(ξ) instead of ASr1,1(ξ).

We also set

ψ(ξ, δ) := min

{
1

2

∫
B1\Bδ

Cη : η dx, η ∈ ASδ(ξ)

}
, (4.1)

where C = ∂2W
∂F 2 (I).

We recall the following fundamental result (see [11, Corollary 6, Remark 7]).

Proposition 4.1. Let ξ ∈ R2 and δ ∈ (0, 1), and let ψ(ξ, δ) be as in (4.1). Then for every
ξ ∈ R2

lim
δ→0

ψ(ξ, δ)

| log δ|
= ψ̂(ξ),

where ψ̂ : R2 → [0,+∞) is defined by

ψ̂(ξ) := lim
δ→0

1

| log δ|
1

2

∫
B1\Bδ

Cη0 : η0 dx, (4.2)

and η0 : R2 → R2×2 is a distributional solution to{
Curl η = ξ δ0 in R2,
DivCη = 0 in R2.
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Remark 4.2. Assume that ρε satisfies (1) and (2), from [11, Proposition 8] it follows that the
function ψε : R2 → [0,+∞) defined as

ψε(ξ) :=
1

| log ε|
min

{
1

2

∫
Bρε\Bε

Cη : η dx, η ∈ ASε,ρε(ξ)

}
, (4.3)

satisfies

ψε(ξ) =
ψ(ξ, ε)

| log ε|
(1 + o(1)),

where o(1) → 0 as ε → 0, uniformly with respect to ξ. Then, in particular, ψε converges

pointwise as ε→ 0 to ψ̂ given by (4.2).

We are now in a position to define the density ϕ : SO(2)× R2 → [0,+∞) of the self-energy
through the following relaxation procedure:

ϕ(R, ξ) := min

{
M∑
k=1

λkψ̂(RT ξk) :
M∑
k=1

λkξk = ξ,M ∈ N, λk ≥ 0, ξk ∈ S

}
. (4.4)

It follows from the above definition that the function ϕ is positively 1-homogeneous and convex
(see also [11, Remark 9]).

4.2. Compactness. In the next proposition we prove a compactness result for sequences of pairs
(µε, βε) with equibounded energy Eε by means of the generalised Rigidity Estimate Theorem
3.3.

Proposition 4.3 (Compactness). Let εj → 0 and let (µj , βj) ⊂ M(Ω;R2) × L2(Ω;R2×2) be
a sequence such that supj Eεj (µj , βj) < +∞. Then there exist a sequence of constant rotations

(Rj) ⊂ SO(2), a measure µ ∈ H−1(Ω;R2) ∩M(Ω;R2), and a function β ∈ L2(Ω;R2×2) such
that, up to subsequences,

µj
εj | log εj |

∗
⇀ µ in M(Ω;R2), (4.5)

RTj βj − I
εj | log εj |

⇀ β in L2(Ω;R2×2); (4.6)

moreover, Curlβ = RTµ, where R := limj→+∞Rj.

Proof. Let (µj , βj) ⊂M(Ω;R2)×L2(Ω;R2×2) be a sequence such that Eεj (µj , βj) ≤ C for some
positive constant C independent of j, where

µj =

Mj∑
i=1

εjξi,jδxi,j ,

with ξi,j ∈ S, xi,j ∈ Ω such that Bρεj (xi,j) ⊂ Ω and |xi,j − xk,j | ≥ 2ρεj for every i 6= k.

The proof of the compactness is divided into three steps.

Step 1. Weak convergence of the scaled dislocation measures.
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We first show that the sequence µj/(εj | log εj |) is uniformly bounded in mass. We claim that

1

εj | log εj |
|µj |(Ω) =

1

| log εj |

Mj∑
i=1

|ξi,j | ≤ C. (4.7)

Let s ∈ (0, 1) and δ ∈ (0, 1) be fixed parameters. From the bound on the energy it follows that,
for j sufficiently large,

C ≥ 1

ε2
j | log εj |2

∫
Ωεj (µj)

W (βj) dx

≥ 1

ε2
j | log εj |2

Mj∑
i=1

∫
Bρεj (xi,j)\Bδεs

j
(xi,j)

W (βj) dx, (4.8)

where in the last inequality we used the assumption Bρεj (xi,j) ∩Bρεj (xk,j) = ∅ for i 6= k.

For every i ∈ {1, . . . ,Mj} we decompose the annulus Bρεj (xi,j) \ Bδεsj (xi,j) centred at xi,j
into dyadic annuli with constant ratio δ ∈ (0, 1) between inner and outer radii. More precisely,
the annuli are defined as

Ck,ij := Bρεj δk−1(xi,j) \Bρεj δk(xi,j), (4.9)

and we consider only those corresponding to k = 1, . . . , k̃εj , where

k̃εj := bkεjc+ 1 and kεj := s
| log εj |
| log δ|

−
| log ρεj |
| log δ|

. (4.10)

Notice that ρεjδ
k̃εj ≥ ρεjδ

kεj+1 = δεsj ; therefore, for every i ∈ {1, . . . ,Mj} we have

1

ε2
j | log εj |2

∫
Bρεj (xi,j)\Bδεs

j
(xi,j)

W (βj) dx ≥
1

| log εj |2

k̃εj∑
k=1

∫
Ck,ij

W (βj)

ε2
j

dx. (4.11)

Arguing as in [20, Proposition 3.11] we deduce that for every j, i, and k the following estimate
holds true ∫

Ck,ij

W (βj)

ε2
j

dx ≥ ψ(RT ξi,j , δ)− σj , (4.12)

where ψ(·, δ) is defined as in (4.1) and σj is a nonnegative infinitesimal sequence as j → +∞.
Combining (4.8), (4.11), and (4.12) we find that for every δ ∈ (0, 1)

C ≥ 1

ε2
j | log εj |2

∫
Ωεj (µj)

W (βj) dx ≥
1

| log εj |2

Mj∑
i=1

k̃εj∑
k=1

(
ψ(RT ξi,j , δ)− σj

)
≥ 1

| log εj |

Mj∑
i=1

k̃εj
| log εj |

(
ψ(RT ξi,j , δ)− σj

)
≥ 1

| log εj |

Mj∑
i=1

(
s−
| log ρεj |
| log εj |

)(
ψ(RT ξi,j , δ)

| log δ|
− σj
| log δ|

)
,

where in the last inequality we used the relation k̃εj = bkεjc+ 1 ≥ kεj .
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Now, as a first step we let δ → 0 in the previous estimate; this leads to

C ≥ 1

ε2
j | log εj |2

∫
Ωεj (µj)

W (βj) dx ≥
1

| log εj |

Mj∑
i=1

(
s−
| log ρεj |
| log εj |

)
ψ̂(RT ξi,j), (4.13)

with ψ̂ defined as in (4.2). By assumption ρεj � εj , hence (4.13) entails that for j sufficiently
large

C ≥ 1

ε2
j | log εj |2

∫
Ωεj (µj)

W (βj) dx ≥
1

| log εj |

Mj∑
i=1

s

2
ψ̂(RT ξi,j). (4.14)

Since the function ψ̂ is 2-homogeneous (being the pointwise limit of 2-homogeneous functions,
cfr. (4.2)), we have in particular that for every i ∈ {1, . . . ,Mj},

ψ̂(RT ξi,j) = |ξi,j |2ψ̂
(
RT ξi,j
|RT ξi,j |

)
.

Set c̄ := inf |ξ|=1 ψ̂(ξ), from (4.14) we finally deduce

C ≥ c̄

| log εj |

Mj∑
i=1

|ξi,j |2 ≥
c̄

| log εj |

Mj∑
i=1

|ξi,j |, (4.15)

where the last inequality follows from the fact that since ξi,j ∈ S = spanZS, |ξi,j | are bounded
away from zero. Therefore the claim (4.7) follows.

Step 2. Weak convergence of the scaled strains.
In view of the growth condition (iv) we have

Cε2
j | log εj |2 ≥ C

∫
Ω
W (βj) dx ≥ C

∫
Ω

dist2(βj , SO(2)) dx. (4.16)

The idea is to apply the generalised rigidity estimate Theorem 3.3 to a suitable modification of
βj . The estimate cannot be applied directly to the strains βj since it is not clear whether the
crucial bound |Curlβj |(Ω) ≤ Cεj | log εj | holds true. Indeed, on the one hand the total variation
of the measure µj is bounded by Cεj | log εj | by Step 1; on the other hand, however, Curlβj is
related to the measure µj , but it is not exactly µj and therefore it does not necessarily satisfy the

same bound. To overcome this problem, in what follows we construct new strains β̃j satisfying

|Curl β̃j |(Ω) = |µj |(Ω), and hence the crucial bound.
For every xi,j in the support of µj , set Ci,j := B2εj (xi,j) \Bεj (xi,j) and consider the function

Ki,j : Ci,j → R2×2 defined as follows

Ki,j(x) :=
εj
2π
ξi,j ⊗ J

x− xi,j
|x− xi,j |2

,

where J , as above, is the clockwise rotation of π/2. Then we have∫
Ci,j

|Ki,j |2 dx ≤ C
∫
Ci,j

dist2(βj , SO(2)) dx. (4.17)

Indeed, a straightforward calculation gives∫
Ci,j

|Ki,j |2 dx = Cε2
j |ξi,j |2,
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while a scaling argument (see [20, Proposition 3.3 and Remark 3.4]) shows that

Cε2
j |ξi,j |2 ≤

∫
Ci,j

dist2(βj , SO(2)) dx,

and hence (4.17).
By construction Curl (βj−Ki,j) = 0 in Ci,j and

∫
γ(βj−Ki,j) ·t ds = 0, for every i = 1, . . . ,Mj

and for every closed curve γ ⊂ Ci,j surrounding Bεj (xi,j). Hence, there exist Mj functions

ui,j ∈ H1(Ci,j ;R2) such that βj −Ki,j = ∇ui,j in Ci,j , for every i = 1, . . . ,Mj .
In view of (4.17) we have∫

Ci,j

dist2(∇ui,j , SO(2)) dx ≤ C
∫
Ci,j

(
dist2(βj , SO(2))+|Ki,j |2

)
dx ≤ C

∫
Ci,j

dist2(βj , SO(2)) dx,

therefore the classical rigidity estimate applied to ui,j provides us with a constant rotation
Ri,j ∈ SO(2) such that∫

Ci,j

|∇ui,j −Ri,j |2 dx ≤ C
∫
Ci,j

dist2(∇ui,j , SO(2)) dx ≤ C
∫
Ci,j

dist2(βj , SO(2)) dx,

for some C > 0 independent of j.
By standard extension arguments, there exists a function vi,j ∈ H1(B2εj (xi,j);R2) such that

∇vi,j ≡ ∇ui,j −Ri,j in Ci,j and∫
B2εj

(xi,j)
|∇vi,j |2 dx ≤ C

∫
Ci,j

|∇ui,j −Ri,j |2 dx ≤ C
∫
Ci,j

dist2(βj , SO(2)) dx. (4.18)

Now define the field β̃j : Ω→ R2×2 as

β̃j :=

{
βj in Ωεj (µj),

∇vi,j +Ri,j in Bεj (xi,j) for i = 1, . . . ,Mj .

By (4.18) we get∫
Ω

dist2(β̃j , SO(2)) dx ≤
∫

Ω
dist2(βj , SO(2)) dx+

Mj∑
i=1

∫
Bεj (xi,j)

|∇vi,j |2

≤ C
∫

Ω
dist2(βj , SO(2)) dx ≤ Cε2

j | log εj |2.

Moreover, by construction |Curl β̃j |(Ω) = |µj |(Ω); then we are in a position to apply Theorem

3.3 to β̃j to deduce the existence of a sequence of constant rotations Rj ∈ SO(2) such that∫
Ω
|β̃j −Rj |2 ≤ C

(∫
Ω

dist2(β̃j , SO(2)) + (|Curl β̃j |(Ω))2
)
≤ Cε2

j | log εj |2, (4.19)

for some C > 0 independent of j. By the definition of β̃j and by (4.19) we deduce that∫
Ωεj (µj)

|βj −Rj |2 =

∫
Ωεj (µj)

|β̃j −Rj |2 ≤
∫

Ω
|β̃j −Rj |2 ≤ Cε2

j | log εj |2,
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and therefore ∫
Ωεj (µj)

|βj −Rj |2

ε2
j | log εj |2

dx ≤ C,

for every j. Finally, recalling that βj ≡ I in
⋃Mj

i=1Bεj (xi,j) and that from Step 1 we have the
bound Mj ≤ C| log εj |, we deduce that, up to subsequences,

RTj
βj −Rj
εj | log εj |

=
RTj βj − I
εj | log εj |

⇀ β in L2(Ω;R2×2).

Step 3. The limit measure µ belongs to H−1(Ω;R2) and Curlβ = RTµ.
Let φ ∈ C1

0 (Ω) and let (φj) ⊂ H1
0 (Ω) be a sequence converging to φ uniformly and strongly

in H1
0 (Ω) and such that φj ≡ φ(xi,j) in Bεj (xi,j), for every xi,j in the support of µj . Then we

have ∫
Ω
φdµ = lim

j→+∞

1

εj | log εj |

∫
Ω
φj dµj = lim

j→+∞

1

εj | log εj |
〈Curlβj , φj〉

= lim
j→+∞

1

εj | log εj |
〈Curl (βj −Rj), φj〉 = lim

j→+∞

1

εj | log εj |

∫
Ω

(βj −Rj)J∇φj dx

=

∫
Ω
RβJ∇φdx = 〈Curl (Rβ), φ〉 = 〈RCurlβ, φ〉,

from which we deduce the admissibility condition Curlβ = RTµ. Finally, since in Step 2 we
proved that β ∈ L2(Ω;R2×2), we immediately get that µ belongs to H−1(Ω;R2). �

Remark 4.4. Notice that in Proposition 4.3 Step 1 we show that the number of dislocations
Mj corresponding to a pair (µj , βj) with equibounded energy is such that Mj ≤ C| log εj | (see
(4.15)).

In view of Proposition 4.3, it is convenient to give the following notion of convergence for
sequences of pairs (µε, βε).

Definition 4.5. A pair of sequences (µε, βε) ⊂ M(Ω;R2) × L2(Ω;R2×2) is said to converge
to a triplet (µ, β,R) ∈ M(Ω;R2) × L2(Ω;R2×2) × SO(2) if there exists a sequence of rotations
(Rε) ⊂ SO(2) such that

1

ε| log ε|
µε

∗
⇀ µ in M(Ω;R2), (4.20)

RTε βε − I
ε| log ε|

⇀ β in L2(Ω;R2×2), and Rε → R. (4.21)

4.3. Γ-convergence result. We are now in a position to state and prove the main result of
this section, namely a Γ-convergence result for the scaled functionals Eε.

In what follows we additionally assume that Ω has C1,1 boundary. Notice however that the
higher regularity of Ω will be used only in the proof of the limsup inequality.
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Theorem 4.6. The energy functionals Eε defined in (2.4) Γ-converge with respect to the con-
vergence of Definition 4.5 to the functional E defined on M(Ω;R2)× L2(Ω;R2×2)× SO(2) by

E(µ, β,R) :=



1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ

(
R,

dµ

d|µ|

)
d|µ| if µ ∈ H−1(Ω;R2) ∩M(Ω;R2)

and Curlβ = RTµ,

+∞ otherwise,

(4.22)

where C = ∂2W
∂F 2 (I) and ϕ is as in (4.4). Specifically, the following two inequalities hold true.

Γ-liminf inequality: For every (µ, β,R) ∈
(
H−1(Ω;R2) ∩M(Ω;R2)

)
×L2(Ω;R2×2)×SO(2)

with Curlβ = RTµ, and for every sequence (µε, βε) ⊂ M(Ω;R2) × L2(Ω;R2×2) converging to
(µ, β,R) in the sense of Definition 4.5, we have

lim inf
ε→0

Eε(µε, βε) ≥ E(µ, β,R).

Γ-limsup inequality: For every (µ, β,R) ∈
(
H−1(Ω;R2) ∩M(Ω;R2)

)
× L2(Ω;R2×2) ×

SO(2) with Curlβ = RTµ, there exists a sequence (µε, βε) ⊂ M(Ω;R2) × L2(Ω;R2×2) con-
verging to (µ, β,R) in the sense of Definition 4.5, such that

lim sup
ε→0

Eε(µε, βε) ≤ E(µ, β,R).

Remark 4.7. Notice that (4.4) can be equivalently rewritten as

ϕ(R, ξ) = min

{
M∑
k=1

λkψ̂(ζk) :

M∑
k=1

λkζk = RT ξ,M ∈ N, λk ≥ 0, ζk ∈ RTS

}
,

hence ϕ depends on ξ only in terms of RT ξ; therefore ϕ(R, ξ) = ϕ̃(R,RT ξ) for some function ϕ̃.
Then, since the limit strains β satisfy the condition Curlβ = RTµ, thanks to the 1-homogeneity
of ϕ(R, ·) the Γ-limit E can be expressed in terms of β and Curlβ in the following way

E(µ, β,R) =
1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ̃

(
R,

dCurlβ

d|Curlβ|

)
d|Curlβ|.

In particular, if Curlβ ∈ L1(Ω;R2) we have

E(µ, β,R) =
1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ̃(R,Curlβ) dx.

Proof of Theorem 4.6. Γ-liminf inequality.
Let (µ, β,R) ∈

(
H−1(Ω;R2) ∩M(Ω;R2)

)
× L2(Ω;R2×2) × SO(2) and (µε, βε) ⊂ M(Ω;R2) ×

L2(Ω;R2×2) be as in the statement and assume that lim infε→0 Eε(µε, βε) = limε→0 Eε(µε, βε).
Suppose moreover that Eε(µε, βε) ≤ C for every ε > 0 (otherwise there is nothing to prove).
This implies in particular that (µε, βε) ∈ Xε × ASε(µε), where Xε and ASε(µε) are defined in
(2.1) and (2.3), respectively.
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Arguing as in [20, Proposition 3.11], we decompose the energy into a contribution far from
the dislocations, in Ωρε(µε) := Ω\∪Mi=1Bρε(xi), and a contribution close to the dislocations; i.e.,

Eε(µε, βε) =
1

ε2| log ε|2

∫
Ωρε (µε)

W (βε) dx+
1

ε2| log ε|2
M∑
i=1

∫
Bρε (xi)

W (βε) dx

=: Eε(µε, βε; Ωρε(µε)) +

M∑
i=1

Eε(µε, βε;Bρε(xi)). (4.23)

We treat the two contributions separately.

Lower bound far from the dislocations. For the energy contribution far from the dislocations
we perform a linearisation of the energy at scale ε| log ε| around the identity matrix. By a Taylor
expansion of order two we get W (I + F ) = 1

2 CF : F + σ(F ), where σ(F )/|F |2 → 0 as |F | → 0.
Then, setting ω(t) := sup|F |≤t |σ(F )|, we have

W (I + ε| log ε|F ) ≥ 1

2
ε2| log ε|2CF : F − ω(ε| log ε||F |), (4.24)

with ω(t)/t2 → 0 as t→ 0. Now, let

Gε :=
RTε βε − I
ε| log ε|

,

and define the characteristic function

χε :=

{
1 if x ∈ Ωρε(µε) and |Gε| ≤ ε−1/2

0 otherwise in Ω.
(4.25)

By the boundedness of (Gε) in L2(Ω;R2×2) and in view of the definition of ρε that ensures that
Ωρε(µε) has asymptotically full measure, it easily follows that χε → 1 boundedly in measure.
Therefore, from (4.21) we deduce that

G̃ε := χεGε ⇀ β in L2(Ω;R2×2). (4.26)

Using the frame indifference of W and (4.24) we get

Eε(µε, βε; Ωρε(µε)) ≥
1

ε2| log ε|2

∫
Ω
χεW (βε) dx

=
1

ε2| log ε|2

∫
Ω
χεW (RTε βε) dx

=
1

ε2| log ε|2

∫
Ω
χεW (I + ε| log ε|Gε) dx

≥
∫

Ω

(1

2
CG̃ε : G̃ε − χε

ω(ε| log ε||Gε|)
ε2| log ε|2

)
dx. (4.27)

Then, the first term in (4.27) is lower semicontinuous with respect to the convergence (4.26).
On the other hand, the second term converges to zero, which can be easily seen multiplying
its numerator and denominator by |Gε|2. Indeed, |Gε|2 · χεω(ε| log ε||Gε|)/(ε| log ε||Gε|)2 is
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the product of a bounded sequence in L1(Ω) and a sequence tending to zero in L∞(Ω), since

ε| log ε||Gε| ≤ ε1/2| log ε| whenever χε 6= 0. Combining these two facts, we eventually obtain

lim inf
ε→0

Eε(µε, βε; Ωρε(µε)) ≥
1

2

∫
Ω
Cβ : β dx. (4.28)

Lower bound close to the dislocations. We are going to estimate the energy contribution
Eε(µε, βε;Bρε(xi)), for i = 1, . . . ,M . For brevity, we write Bi

r instead of Br(xi) for every r > 0.
Let s ∈ (0, 1) and δ ∈ (0, 1) be fixed and independent of ε; then, for small enough ε,

Eε(µε, βε;Bi
ρε) =

∫
Biρε\Biε

W (βε) dx ≥
∫
Biρε\B

i
δεs

W (βε) dx ≥
k̃ε∑
k=1

∫
Ck,iε

W (βε) dx,

where Ck,iε and k̃ε are defined as in (4.9) and (4.10), respectively. Proceeding as in the proof of
Proposition 4.3, Step 1, we prove that, as in (4.14),

M∑
i=1

Eε(µε, βε;Bi
ρε) ≥

1

| log ε|

M∑
i=1

(
s− | log ρε|

| log ε|

)
ψ̂(RT ξi). (4.29)

By formula (4.4) and by the definition of µε it follows that

1

| log ε|

M∑
i=1

ψ̂(RT ξi) ≥
∫

Ω
ϕ

(
R,

dµ̃ε
d|µ̃ε|

)
d|µ̃ε|, (4.30)

where µ̃ε := µε/(ε| log ε|). Notice that (4.20) entails that µ̃ε
∗
⇀ µ inM(Ω;R2). Since SpanRS =

R2, the convex 1-homogeneous function ϕ is finite on R2 and therefore continuous. Then,
invoking Reshetnyak’s lower-semicontinuity Theorem, (4.29) and (4.30) give

lim inf
ε→0

M∑
i=1

Eε(µε, βε;Bi
ρε) ≥ s

∫
Ω
ϕ

(
R,

dµ

d|µ|

)
d|µ|. (4.31)

Hence the lower bound for the energy follows from (4.28), (4.31), and from the arbitrariness of
s, which can be taken arbitrarily close to 1.

Γ-limsup inequality.
Let (µ, β,R) ∈

(
H−1(Ω;R2) ∩M(Ω;R2)

)
× L2(Ω;R2×2) × SO(2) be such that Curlβ = RTµ.

By standard density arguments we can assume that (µ, β) ∈W−1,∞(Ω;R2)× L∞(Ω;R2×2).
We divide the proof into three steps.

Step 1. µ = ξ dx with ξ ∈ R2.

Given ξ ∈ R2 and β ∈ L∞(Ω;R2×2) with Curlβ = RT ξ dx, we are going to construct a
sequence (µε, βε) ⊂ Xε × ASε(µε) converging to (µ, β) in the sense of Definition 4.5 and such
that

lim sup
ε→0

Eε(µε, βε) ≤
1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ (R, ξ) dx. (4.32)
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Let ψ̂ be as in (4.2); by (4.4) there exist M ∈ N, ξ1, . . . , ξM ∈ S, and λk ≥ 0, with k = 1, . . . ,M ,

such that ξ =
∑M

k=1 λkξk and

ϕ(R, ξ) =

M∑
k=1

λkψ̂(RT ξk). (4.33)

Set

Λ :=
M∑
k=1

λk, rε :=
1

2
√

Λ| log ε|
;

notice that rε � ρε. By [11, Lemma 14] there exists a sequence of admissible measures defined
as

µε :=
M∑
k=1

ε ξkµ
k
ε , where µkε :=

Mk
ε∑

i=1

δxi,ε ,

with the {xi,ε} such that Brε(xi,ε) ⊂ Ω, |xi,ε − xj,ε| ≥ 2rε for every i 6= j, satisfying

µε
ε| log ε|

∗
⇀ µ weakly in M(Ω;R2) (4.34)

|µkε |
| log ε|

∗
⇀ λkdx weakly in M(Ω). (4.35)

We show that µε converges to µ.
For what follows it is useful to combine the two summations in the definition of µε into just

one sum and to rewrite it as

µε =

Mε∑
i=1

ε ξi,εδxi,ε ;

we also introduce the auxiliary measures

µ̃rεε :=
1

πr2
ε

Mε∑
i=1

ε ξi,ε χBrε (xi,ε) dx, µ̂rεε :=
1

2πrε

Mε∑
i=1

ε ξi,εH1x∂Brε(xi,ε).

Appealing again to [11, Lemma 14] we get

µ̃rεε
ε| log ε|

→ µ strongly in H−1(Ω;R2),
µ̂rεε

ε| log ε|
∗
⇀ µ weakly in M(Ω;R2). (4.36)

To define a recovery sequence for β we first introduce the auxiliary strains

K̃µε
ε :=

Mε∑
i=1

K̃
ξi,ε
i,ε χBrε (xi,ε) with K̃

ξi,ε
i,ε (x) :=

ε

2πr2
ε

RT ξi,ε ⊗ J(x− xi,ε),

where J is the clockwise rotation of π/2. Notice that Curl K̃µε
ε = RT µ̃rεε −RT µ̂rεε .

Now, for every i = 1, . . . ,Mε, let ηεi : R2 → R2×2 be a distributional solution of{
Curl η = RT ξi,εδ0 in R2,

DivCη = 0 in R2,
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where C := ∂2W
∂F 2 (I). In polar coordinates the planar strain ηεi has the form

ηεi (r, θ) =
1

r
ΓRT ξi,ε(θ), (4.37)

where the function ΓRT ξε,i depends on R, ξi,ε and on the elasticity tensor C, and satisfies the

bound |ΓRT ξi,ε(θ)| ≤ C for every θ ∈ [0, 2π) (see e.g. [1]). Let η̂εi (x) := ηεi (x − xε,i), and let η̂ε

be defined as

η̂ε :=

Mε∑
i=1

ε η̂εi χBirε
.

Notice that Curl η̂ε = RT (µε − µ̂rεε ).

We define the recovery sequence βε as

βε := R
(
I + ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
χΩε(µε) + I χ∪Mεi=1B

i
ε
,

where β̃ε := ∇wεJ and wε is the solution to the following system{
−∆wε = ε| log ε|RTµ−RT µ̃rεε in Ω,

wε ∈ H1
0 (Ω;R2).

(4.38)

Notice that βε ∈ ASε(µε). In fact βε ≡ I in ∪Mε
i=1B

i
ε; moreover

(Curlβε)xΩε(µε) =
(
ε| log ε|µ+ µε − µ̂rεε − µ̃rεε + µ̂rεε − ε| log ε|µ+ µ̃rεε

)
xΩε(µε) = 0,

and by construction βε satisfies the circulation condition on ∪Mε
i=1∂B

i
ε.

Now we prove that βε converges to β in the sense of Definition 4.5 with Rε = R; i.e., we

show that RT βε−I
ε| log ε| ⇀ β weakly in L2(Ω;R2×2). To this end we prove the following convergence

properties:

(a)
η̂εχΩε(µε)

ε| log ε|
⇀ 0 weakly in L2(Ω;R2×2);

(b)
K̃µε
ε

ε| log ε|
→ 0 strongly in L2(Ω;R2×2);

(c)
∇wε
ε| log ε|

→ 0 strongly in L2(Ω;R2×2).

Clearly (a), (b), and (c) imply the desired convergence for the sequence βε.

To prove (a), we first notice that the sequence η̂ε
ε| log ε| has bounded L2-norm in Ωε(µε). Indeed,

since |η̂iε| ≤ C
|x−xi,ε| for i = 1, . . . ,Mε, we have

1

ε2| log ε|2

∫
Ωε(µε)

|η̂ε|2dx =
1

| log ε|2
Mε∑
i=1

∫
Birε\Biε

|η̂iε|2dx ≤
1

| log ε|2
Mε∑
i=1

∫
Birε\Biε

C

|x− xi,ε|2
dx

≤ C

| log ε|2
Mε∑
i=1

∫ rε

ε

dr

r
≤ Mε(log rε − log ε)

| log ε|2
≤ C. (4.39)
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Moreover, the L2-norm of η̂ε
ε| log ε| is concentrated in ∪Mε

i=1

(
Bi
ρε \B

i
ε

)
; in fact, similarly as above,

1

ε2| log ε|2

∫
Ωρε (µε)

|η̂ε|2dx ≤
C

| log ε|2
Mε∑
i=1

∫ rε

ρε

dr

r
≤ Mε(log rε − log ρε)

| log ε|2
−→ 0, (4.40)

as ε → 0. Then since the measure of the set ∪Mε
i=1

(
Bi
ρε \B

i
ε

)
tends to zero as ε → 0, the two

properties (4.39) and (4.40) entail (a).
Concerning (b), we have that

1

ε2| log ε|2

∫
Ω
|K̃µε

ε |2dx =
1

| log ε|2
Mε∑
i=1

∫
Birε

1

4π2r4
ε

|ξi,ε|2|x− xε,i|2dx

≤ C Mε

| log ε|2
−→ 0,

as ε→ 0, which proves the claim.
Finally, the convergence (c) follows from the estimate (directly implied by (4.38))∥∥∥∥ ∇wεε| log ε|

∥∥∥∥
L2(Ω;R2×2)

≤ C
∥∥∥∥µ− µ̃rεε

ε| log ε|

∥∥∥∥
H−1(Ω;R2)

and from (4.36).
For what follows it is convenient to notice that, by construction we also have(

RTβε − I
ε| log ε|

− β
)
· t→ 0 strongly in H−1/2(∂Ω). (4.41)

Now it remains to prove (4.32). Recalling that W (I) = 0, we have

Eε(µε, βε) =
1

ε2| log ε|2

∫
Ω
W (βε) dx =

1

ε2| log ε|2

∫
Ωε(µε)

W (βε) dx

=
1

ε2| log ε|2

∫
Ωεs (µε)

W (βε) dx+
1

ε2| log ε|2
Mε∑
i=1

∫
Biεs\Biε

W (βε) dx =: I1
ε + I2

ε ,

where s ∈ (0, 1) is arbitrarily fixed. We are going to perform a linearisation for the term I1
ε

around the identity matrix. Appealing to (i), (ii), and to the frame-indifference of W (iii) we
have

I1
ε =

1

ε2| log ε|2

∫
Ωεs(µε)

W (I + ε| log ε|β + η̂ε − K̃µε
ε + β̃ε)

=
1

ε2| log ε|2
1

2

∫
Ωεs(µε)

C
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
:
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
dx

+
1

ε2| log ε|2

∫
Ωεs(µε)

σ
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
dx, (4.42)

where σ(F )
|F |2 → 0, as |F | → 0.
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We claim that

lim sup
ε→0

1

ε2| log ε|2
1

2

∫
Ωεs(µε)

C
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
:
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
dx

≤ 1

2

∫
Ω
Cβ : β dx+

∫
Ω
ϕ(R, ξ) dx, (4.43)

where ϕ is defined in (4.4). We trivially have

1

ε2| log ε|2
1

2

∫
Ωεs(µε)

C ε| log ε|β : ε| log ε|β dx ≤ 1

2

∫
Ω
Cβ : β dx.

Then we notice that the mixed products in the left-hand side of (4.43) converge to zero as ε→ 0

by (a), (b), and (c), as well as the quadratic terms involving K̃µε
ε and β̃ε. Moreover,

1

ε2| log ε|2
1

2

∫
Ωεs(µε)

Cη̂ε : η̂εdx =
1

ε2| log ε|2
1

2

∫
Ωεs(µε)\Ωρε (µε)

Cη̂ε : η̂εdx+ o(1)

=
1

| log ε|2
Mε∑
i=1

1

2

∫
Biρε\B

i
εs

Cη̂iε : η̂iεdx+ o(1),

as ε→ 0 since we showed in (4.40) that the L2-norm of η̂ε
ε| log ε| is concentrated outside Ωρε(µε).

By (4.3) we have that for i = 1, . . . ,Mε

1

| log ε|
1

2

∫
Biρε\B

i
εs

Cη̂iε : η̂iεdx ≤ ψε(RT ξi,ε)(1 + o(1)),

and this leads to

1

ε2| log ε|2
1

2

∫
Ωεs(µε)

Cη̂ε : η̂εdx ≤
1

| log ε|

Mε∑
i=1

ψε(R
T ξi,ε) + o(1), as ε→ 0. (4.44)

Moreover, by (4.33) and (4.35),

lim
ε→0

1

| log ε|

Mε∑
i=1

ψε(R
T ξi,ε) = lim

ε→0

1

| log ε|

M∑
k=1

|µkε |(Ω)ψε(R
T ξk)

= |Ω|
M∑
k=1

λkψ̂(RT ξk) =

∫
Ω
ϕ(R, ξ) dx. (4.45)

Thus, combining (4.44) and (4.45) gives

lim
ε→0

1

ε2| log ε|2
1

2

∫
Ωεs(µε)

Cη̂ε : η̂εdx ≤
∫

Ω
ϕ(R, ξ) dx.

We now prove that the remainder term in I1
ε tends to zero as ε → 0. We notice that, if

x ∈ Ωεs(µ), then

|η̂ε(x)| ≤ sup
i=1,...,Mε

ε|χBirε (x) η̂iε(x)| ≤ Cε1−s; (4.46)
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and

|K̃µε
ε (x)| ≤ sup

i=1,...,Mε

∣∣∣∣χBirε (x)
ε

2πr2
ε

ξi,ε ⊗ J(x− xi,ε)
∣∣∣∣ ≤ C ε

rε
. (4.47)

Moreover, in view of the regularity of Ω, by standard regularity theory for elliptic partial dif-
ferential equations, the following estimate for wε holds true for every 1 < p < ∞ (see, e.g. [14,
Lemma 9.17]):

‖wε‖W 2,p(Ω;R2) ≤ C‖ε| log ε|µ− µ̃rεε ‖Lp(Ω;R2), (4.48)

where the constant C depends on p and Ω. Notice also that

‖ε| log ε|µ− µ̃rεε ‖Lp(Ω;R2) ≤ Cε| log ε|,

for every 1 < p < ∞. By the Sobolev Imbedding Theorem the estimate above together with
(4.48) imply

‖wε‖C1,α(Ω̄;R2) ≤ Cε| log ε|,
for every α ∈ (0, 1). Therefore, in particular,

‖∇wε‖L∞(Ω;R2×2) ≤ Cε| log ε|. (4.49)

Then (4.46), (4.47), (4.49), and the boundedness of β entail∣∣∣ε| log ε|β + η̂ε − K̃µε
ε + β̃ε

∣∣∣ ≤ C (ε| log ε|+ ε(1−s) +
ε

rε
+ ε| log ε|

)
in Ωεs(µε). (4.50)

Hence, setting χε := χΩεs(µε)
and ω(t) := sup|F |≤t |σ(F )|, we have that∣∣∣∣∣∣

∫
Ωεs(µε)

σ
(
ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

)
ε2| log ε|2

dx

∣∣∣∣∣∣ ≤∫
Ω
χε
ω
(
|ε| log ε|β + η̂ε − K̃µε

ε + β̃ε|
)

∣∣ε| log ε|β + η̂ε − K̃µε
ε + β̃ε

∣∣2 ·
∣∣ε| log ε|β + η̂ε − K̃µε

ε + β̃ε
∣∣2

ε2| log ε|2
dx,

and the limit for ε → 0 of the expression above is zero as the integrand is the product of a
sequence converging to zero uniformly (by (4.50)) and a bounded sequence in L1(Ω). Therefore,
combining this fact with (4.42) and (4.43), we get

lim sup
ε→0

I1
ε ≤ E(µ, β,R). (4.51)

Finally, we deal with I2
ε . Using the quadratic upper bound on W (iv) we deduce

I2
ε ≤

1

ε2| log ε|2
Mε∑
i=1

∫
Biεs\Biε

C
∣∣∣ε| log ε|β + η̂ε − K̃µε

ε + β̃ε

∣∣∣2 dx. (4.52)

Similarly as before, due to (a), (b), and (c) the mixed products in (4.52) converge to zero, as

well as the quadratic terms involving K̃µε
ε and β̃ε. In addition,

Mε∑
i=1

∫
Biεs\Biε

|β|2dx ≤ ‖β‖L∞(Ω;R2×2)Mε

(
ε2s − ε2

)
−→ 0, as ε→ 0



24 S. MÜLLER, L. SCARDIA, AND C.I. ZEPPIERI

and

1

| log ε|2
Mε∑
i=1

∫
Biεs\Biε

|η̂iε|2dx ≤
CMε

| log ε|2

∫ εs

ε

1

r
dr ≤ C(1− s);

therefore

lim sup
ε→0

I2
ε ≤ C(1− s). (4.53)

Then, gathering (4.51) and (4.53) leads to the final estimate

lim sup
ε→0

Eε(µε, βε) ≤ E(µ, β,R) + C(1− s),

which entails the claim (4.32), by the arbitrariness of s ∈ (0, 1).

Step 2. µ =
∑L

`=1 ξ
`dxxΩ`, where ξ` ∈ R2 and Ω` ⊂ Ω are Lipschitz pair-wise disjoint

domains such that Ω =
⋃L
`=1 Ω` and |Ω \

⋃L
`=1 Ω`| = 0.

For every ` = 1, . . . , L, let (A`,k)k∈N be an increasing sequence of regular domains such that
A`,k ⊂ Ω` and |Ω` \A`,k| ≤ 1

k .

For fixed k ∈ N and for every ` = 1, . . . , L, we can argue as in Step 1 to construct µ`,kε and

β`,kε , recovery sequences for the energy in A`,k, relative to µ`,k := µxA`,k and β`,k := β|A`,k ,

respectively. Then, we define the sequences (µkε , β̃
k
ε ) in the whole domain Ω as

µkε :=
L∑
`=1

µ`,kε χA`,k , β̃kε :=
L∑
`=1

β`,kε χA`,k +RχΩ\Ak .

where Ak := ∪L`=1A
`,k. Notice that by construction (µkε , β̃

k
ε ) converges in Ω to (µk, βk) :=

(µχAk , βχAk + RχΩ\Ak) in the sense of Definition 4.5. Moreover, µkε is admissible in Ω while,

in general, the sequence β̃kε does not belong to ASε(µkε) since Curl β̃kε 6= 0 in Ωε(µ
k
ε). In fact,

Curl β̃kε may have a contribution concentrated on ∂Ak.

On the other hand, since by (4.41),
(
RT β`,kε −I
ε| log ε| − β

`,k
)
· t → 0 strongly in H−1/2(∂A`,k) for

every ` = 1, . . . , L, we may deduce that∥∥∥∥∥Curl β̃kε xΩε(µ
k
ε)

ε| log ε|

∥∥∥∥∥
H−1(Ω;R2)

≤
L∑
`=1

∥∥∥∥∥RTβ`,kε − Iε| log ε|
− β`,k

∥∥∥∥∥
H−1/2(∂A`,k)

−→ 0, (4.54)

as ε tends to zero. Then, invoking the regularity of ∂Ω and (4.54) we can argue as in Step 1

and add to β̃kε a suitably chosen vanishing sequence, so that the resulting sequence βkε satisfies
Curlβkε xΩε(µ

k
ε) = 0 and it is still a recovery sequence for (µk, βk, R). Hence in particular we

have

lim sup
ε→0

Eε(µkε , βkε ) ≤ 1

2

∫
Ω
Cβk : βk dx+

∫
Ω
ϕ

(
R,

dµk

d|µk|

)
d|µk|.

Moreover, taking into account that, for k → +∞, βk converges to β strongly in L2(Ω;R2×2) and
µk converges to µ strongly in measure, we get

lim sup
k→+∞

lim sup
ε→0

Eε(µkε , βkε ) ≤ E(µ, β,R).
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Then, invoking a standard diagonalization argument we can find an increasing sequence (kε) ⊂ N,
with kε → +∞ as ε→ 0, such that

lim sup
ε→0

Eε(µkεε , βkεε ) ≤ E(µ, β,R).

Finally, it is easy to check that (µε, βε) := (µkεε , β
kε
ε ) is the desired recovery sequence.

Step 3. µ ∈W−1,∞(Ω;R2).

We can argue as in [11, Theorem 12] Step 3 to reduce to the case of locally constant measures,
namely to Step 2 in this proof.
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