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Abstract 

Purpose: To explore the potential of non-invasive reverse iontophoresis transdermal 

extraction of iohexol as a marker of glomerular filtration rate. 

Methods: A series of in vitro experiments were undertaken to establish the feasibility of 

iohexol reverse iontophoresis and to determine the optimal conditions for the approach.  

Subsequently, a pilot study in paediatric patients was performed to provide proof-of-

concept. 

Results: The iontophoretic extraction fluxes of iohexol in vitro were proportional to the 

marker subdermal concentration and the reverse iontophoretic technique was able to track 

changes dynamically in simulated pharmacokinetic profiles. Reverse iontophoresis sampling 

was well tolerated by the four paediatric participants. The deduced values of the iohexol 

terminal elimination rate constant from transdermal reverse iontophoresis sampling agreed 

with those estimated by conventional blood sampling. 

Conclusions: Reverse iontophoretic transdermal extraction fluxes mirrored the subdermal 

concentration profiles of iohexol, a relatively large neutral marker of glomerular filtration 

both in vitro and in vivo. The efficiency of extraction in vivo was well predicted by the in vitro 

model used.  

 

Keywords: iontophoresis, iohexol, GFR, non-invasive monitoring, transdermal sampling 
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1. Introduction 

The assessment of kidney function is essential to several clinical procedures, including dose 

and fluid individualization, the assessment of nephrotoxicity, and the evaluation of chronic 

kidney disease (CKD) progression (1,2). Glomerular filtration rate (GFR), normally considered 

the best marker of kidney function, is assessed through different approaches (3). For 

example, estimated GFR is typically based on serum creatinine measurements and is widely 

used due to its simplicity and practical convenience (2). However, not all the non-GFR 

determinants of creatinine concentration are accounted for in this approach limiting its 

usefulness for some patient populations (2,4). On the other hand, measured GFR, based on 

the urinary or plasma clearance of exogenous filtration markers, is more informative but not 

routinely used due to the complexity of the procedure involved (2). Measured GFR is 

recommended, however, for staging CKD, for elderly and paediatric patients, for obese 

individuals and those with BMI < 18.5 Kg.m
-2

, for those suffering from severe malnutrition, 

end-stage renal failure, cirrhosis, and in pregnant women. GFR is also measured when the 

kidney function is changing rapidly, or there is a nonstandard intake of creatinine or creatine 

(vegetarian diet and dietary supplements), and prior to the administration of renally 

eliminated nephrotoxic drugs, and before kidney donation (1-3, 5-7). 

Inulin is considered the gold standard for GFR measurement but its practical use has several 

limitations.  Therefore, alternative GFR markers have been proposed including iohexol 

(2,3,5,8), which is a non-radioactive, uncharged, and non-expensive X-ray contrast medium 

with low toxicity. Iohexol distributes to the extracellular space, is less than 2% plasma 

bound, and is excreted completely unmetabolized in urine exclusively by glomerular 

filtration (2,3,5,8). Iohexol has been described as the best alternative to inulin for precise, 
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accurate and relatively rapid determination of GFR and, being easily assayed by HPLC, has 

become the most commonly used contrast media for GFR measurements in Europe 

(1,4,6,8). Additionally, iohexol has been used for GFR measurements in paediatric (9,10), 

elderly (> 70 yr old) (11), and Type I and II diabetic (12) populations. In 2002, iohexol testing 

was considered (13) to be the standard method to assess GFR in Sweden, with 30 hospitals 

performing the procedure; the Lund University Hospital carried out 1500 iohexol 

determinations/year. At the Great Ormond Street Hospital in London, the number of iohexol 

procedures conducted per year ranges from 350 to 1000. 

However, GFR measurement requires the intravenous administration (IV bolus) of iohexol 

followed by repeated blood sampling to characterize the clearance of the marker. This is an 

additional invasive procedure, therefore, to the numerous tests performed on certain 

paediatric patients (1,5,14). Venipuncture and IV cannula insertions are the most frequent 

causes of pain in hospitalized children (15), causing significant distress as well as increasing 

anxiety and fear with respect to future medical interventions (15,16). These procedures are 

often stressful for parents and carers too, and may be challenging to perform for the health 

care provider.  

Reverse iontophoresis (RI) employs low intensity electrical current to enhance molecular 

transport across the skin, and has been used to non-invasively sample both drugs and 

clinical markers such as lithium and glucose across the skin (17-21). The potential of RI to 

diagnose and monitor CKD via the in vivo monitoring of urea has also been explored (22,23). 

RI discriminated between healthy and CKD patients and was able to track the decline in 

systemic urea during haemodialysis.  

As stated above, the measurement of GFR requires the clearance of the selected marker to 

be determined once its systemic distribution has been completed (5,14). Such 
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pharmacokinetic profiling has been demonstrated for lithium (24), the apparent elimination 

rate of which was shown to be directly proportional to the RI extraction flux.  While lithium 

is a small cationic drug, iohexol is a much larger (821.14 Da), neutral compound, the 

iontophoretic transport of which occurs by electroosmosis alone (18), the same mechanism 

that operates when RI is used for glucose monitoring (17,18,20,21). The challenge of the 

research described here is to demonstrate that RI is a valid non-invasive tool to exploit the 

use of iohexol as a marker of GFR. Following a series of in vitro experiments to establish the 

feasibility and optimal conditions of the procedure, a pilot study in paediatric patients was 

performed to provide the proof-of-concept. 

 

2. Materials and methods 

2.1 Chemicals 

Iohexol (98% pure), acetaminophen (≥99%), silver wire (99.99%), and silver chloride 

(99.999%) were purchased from Sigma Aldrich (Gillingham, UK). Tris base (α, α, α-Tris-

(hydroxymethyl)-aminomethane), sodium chloride, and potassium chloride were from Acros 

(Geel, Belgium). Hydrochloric acid (37 %w/w), methanol, acetonitrile (HPLC grade) and 

trifluoroacetic acid were obtained from Fisher Scientific (Loughborough, UK). All reagents 

were at least analytical grade and deionised water (resistivity ≥ 18.2 MΩ.cm, Barnsted 

Nanopure Diamond
TM

, Dubuque, IA) was used for the preparation of all solutions. 

2.2 In vitro experiments 

2.2.1 Skin 

Abdominal fresh pig skin was obtained from a local slaughterhouse and dermatomed 
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(Zimmer™ Electric Dermatome, Dover, Ohio; nominal thickness 750 μm). Skin sections were 

wrapped individually in Parafilm™ and kept frozen (-20°C) until use. Just before the 

experiment, the skin was thawed at room temperature for 30 minutes and visible hairs were 

carefully cut with scissors. The skin was then mounted directly onto the diffusion cells. 

2.2.2 Iontophoresis 

Iontophoretic experiments (n = 4-12) used Ag/AgCl electrodes connected to a power supply 

(KEPCO 1000M, Flushing, NY, USA), which delivered direct, constant current. Electrode and 

subdermal solutions were magnetically stirred. 

Fixed-subdermal concentration extraction: The skin was sandwiched between the two 

compartments of side-by-side diffusion cells (0.71 cm
2
, 3 ml) with the stratum corneum 

facing the cathode compartment. The skin was first hydrated for 30 minutes in the presence 

of a 7.4 pH, 25 mM Tris buffer in both compartments (no iohexol). The subdermal solution 

also contained 133 mM NaCl and 4 mM KCl. 

After the 30-minute hydration period, the cathode compartment was emptied and refilled 

with fresh buffer. The anode solution was replaced with one of 5 iohexol concentrations 

ranging from 0.15 to 2.44 mM in the same buffer, reflecting the clinical range found in GFR 

measurements. A 0.36 mA current was applied for 6 hours. Every hour, the current was 

stopped; 1 ml from the cathode solution was withdrawn for analysis and replaced by fresh 

buffer solution. A passive diffusion control was also performed using the highest 

concentration of iohexol (2.44 mM). 

Subsequently, the effect of a 3-hour iontophoretic pre-treatment of the skin on iohexol 

extraction was examined. For this, the skin was hydrated as before and then exposed to 
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0.36 mA for 3 hours. Acetaminophen (7.5 mM) was present in the anode solution during this 

pre-treatment allowing electroosmotic flow to be monitored. After the pre-treatment, the 

anode solution was replaced by Tris buffer (25 mM Tris, 133 mM NaCl, 4 mM KCl; pH 7.4) 

containing 2.44 mM iohexol and 7.5 mM acetaminophen. The current was then re-applied 

for a further 6 hours and hourly samples were taken. A passive diffusion control was 

performed in a separate experiment using skin, which had been exposed to a 3-hour 

constant current pre-treatment (0.36 mA) in the absence of iohexol. 

Pharmacokinetic simulations used side-by-side three compartment diffusion cells (1.02 

cm
2
). Anode and cathode electrode chambers (1.9 ml) were each separated from a central 

compartment (3.75 ml) by a piece of skin oriented so that the stratum corneum faced the 

electrode chambers. The electrode chambers contained 25 mM Tris (pH 7.4) in the cathode, 

and 90 mM NaCl (necessary for electrochemical reactions) in 25 mM Tris buffer (pH 7.4) in 

the anode compartment. The subdermal compartment was continuously infused with Tris 

buffer (25 mM Tris, 133 mM NaCl, 4 mM KCl, pH 7.4) using a syringe pump (Genie 8, Kent 

Scientific Corporation, Torrington CT, USA) to allow the progressive clearance of iohexol 

from the subdermal compartment. Two sets of experiments were performed: 

The skin was hydrated for 30 minutes (no iohexol) after which the solutions were refreshed 

and 0.31 mM iohexol was introduced into the subdermal compartment. At his point, the 

syringe pump started to infuse the subdermal compartment at 1.5 ml/h rate (i.e., simulation 

of a mono-exponential decay of iohexol) and a 0.5 mA constant current was applied for 6 

hours. Every 30 minutes, the current was stopped and the entire cathodal solution was 

replaced with fresh buffer. Samples (10 μl) were also collected from the subdermal 

compartment at the mid-point of each iontophoretic sampling period. 
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The second set of experiments pre-exposed the skin to 3 hours of constant current (0.5 mA) 

in the absence of iohexol. After the pre-treatment period, all solutions were refreshed and 

iohexol (at 1.22 or 6.04 mM) was introduced into the subdermal compartment. Constant, 

direct current (0.5 mA) was applied for 6 hours. One experiment simulated another mono-

exponential profile decay from an initial 1.22 mM subdermal concentration using a syringe 

pump flow of 1.0 ml.h
-1

. The final experiment simulated a two-compartment IV bolus decay 

from an initial subdermal concentration of 6.04 mM and the pump flow rate was modified 

from 3.0 ml.h
-1 

in the first three hours to 1.0 ml.h
-1

 for the subsequent three hours. In all 

cases, samples were collected from both the subdermal and cathodal compartment as 

before. 

2.2.3 Sample analysis 

Iohexol and acetaminophen were quantified simultaneously by HPLC with UV detection (254 

nm). The method was modified from a previous publication [25] and used an HPLC system 

(Dionex, Sunnyvale, CA) comprising a P680 pump with ASI-100 autosampler, TCC-100 

thermostated column compartment, PDA-100 diode array detector, and an Acclaim 120, 

C18 (150 x 4.6 mm, 5 μm) reversed-phase column (Dionex, UK) thermostated at 60°C. The 

mobile phase, 13.5 mM trifluoroacetic acid (pH 2.2): methanol (95:5 v/v), was pumped 

through the system at 1 ml/min.  

2.2.4 Data analysis and statistics 

Data analysis and regressions were performed using Graph Pad Prism V.5.00 (Graph Pad 

Software Inc., CA, USA). Unless otherwise stated, data are represented as the mean ± 

standard deviation (SD). Statistical significance was set at p < 0.05. 
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Extraction fluxes (JIOX) were calculated as the amounts transported during an extraction 

period divided by the duration of the sampling interval. The apparent convective solvent 

flow or extraction efficiency (κIOX) for a given subdermal concentration of iohexol (CIOX) and 

extraction flux (JIOX) was estimated as: 

JIOX = κIOX x CIOX     Eq.1 

The corresponding, equivalent, calculation and equation were used to estimate JACM and 

κACM. The slopes of linear regressions of Eq. 1 corresponding to different iontophoresis times 

during the fixed concentration experiments were compared by an ANCOVA test. 

Comparison of fluxes at different times used repeated-measures ANOVAs followed by a 

Tukey’s post-test. Two-way repeated measures ANOVAs followed by Bonferroni post-test 

were used to evaluate the effect of skin pre-treatment on extraction fluxes and to compare 

the iontophoretic extraction efficiencies of iohexol and acetaminophen. When relevant, the 

values of κIOX are reported normalized by the current intensity to facilitate comparison 

among different experimental conditions.  

In the case of experiments simulating a mono-exponential decay, the linear sections of the 

semi-logarithmic representation of the subdermal concentrations (CIOX) versus time and of 

the extraction fluxes (JIOX) versus time were fitted to the equations:  

lnCIOX = lnC0,IOX – Ke × t    Eq.2  

and   

lnJIOX = ln(κIOX × C0,IOX) – Ke × t   Eq.3 
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Ke, C0,IOX and (κIOX.C0,IOX) were obtained by fitting the experimental data to Eqs. 2 and 3. κIOX 

was estimated from CIOX and JIOX. The in vitro “volume of distribution” (Vd) and clearance (Cl) 

were determined using: 

C0,IOX  = D/Vd      Eq.4   

and   

Ke = Cl/Vd      Eq.5 

where D is the amount of iohexol introduced into the subdermal compartment of volume 

(Vd) at t = 0. An additional, model independent, estimation of clearance was made using: 

Cl = D/AUC0
∞

      Eq.6 

AUC0
t
 was calculated by the trapezoidal rule and AUCt

∞
 was determined as the ratio 

between the last measured concentration and the rate constant (Ke).  

When the experiment involved a change in the pump flow rate the subdermal IOX 

concentration was described by: 

CIOX = Zi=1,2 × exp(-Ki=1,2 × t)   Eq. 7 

where Z1 and K1 apply at t = 0 - 3 hours, and Z2 and K2 apply at t = 3 - 6 hours. The semi-

logarithmic representation of the data from these experiments exhibits two linear sections, 

which were fitted independently to find the values of Z1, Z2, K1 and K2.        

Statistical comparison of the kinetic parameters obtained from the subdermal concentration 

and iontophoretic extraction data were performed with two-tailed Mann-Whitney tests. 

2.3 In vivo pilot study 
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2.3.1 Subjects 

Four children (9.1, 13, 7.4, and 12 years old; 1 female and 3 males) undergoing a routine 

iohexol GFR test at Great Ormond Street Hospital for Children (GOSH) participated in the 

study. Approval was granted from the Institute of Child Health/Great Ormond Street 

Hospital Research Ethics Committee, and prior written consent and assent from the parent 

and child, respectively, were obtained before beginning the study. Participants did not have 

any skin condition, such as eczema, irritated or damaged skin. 

2.3.2 In vivo experimental protocol  

The routine GFR test involved the bolus intravenous administration of 2 ml of Omnipaque 

300 (Nycomed Amersham plc, Bucks., UK), equivalent to 1294 mg iohexol. Subsequently, 

two 1 mL blood samples were taken from the subject at approximately 3 and 4 hours post-

injection (Figure 1.b). The samples were analysed for iohexol by the GOSH clinical chemistry 

laboratory. 

Reverse iontophoresis was carried out in parallel on the non-dominant arm of the 

participant. The arm was first cleaned with an alcohol wipe and then allowed to dry. 

Constant, direct current (Figure 1.a) was delivered from a “Phoresor II auto” device (PM850, 

Iomed, Salt Lake City, Utah) to the electrode patches (Iogel small, Iomed) affixed to the 

subject’s skin. The anode was a dispersive pad (22.6 cm
2
) incorporating a silver/silver 

chloride electrode in karaya gel. The cathode (7.2 cm
2
) was a silver chloride electrode 

integrated into a dried gel, which was hydrated with 1.3 ml of ultrapure water. The Phoresor 

delivered 0.5 mA (0.07 mA/cm
2
 at the cathode sampling site) for 5 hours except for 

participant 3 for whom the applied current was 0.3 mA, beginning 0.5 hours after the 
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intravenous dose of iohexol. Both patches were refreshed after 2 and 4 hours of current 

passage, and the cathodal patch was additionally replaced at 3 hours (Figure 1.b). When the 

patches were exchanged, the current was interrupted briefly. 

Participants completed a short questionnaire just after the start of iontophoresis and 

towards the end of the experiment. The questionnaire used the Wong-Baker faces pain 

scale [26] to indicate the level of sensation experienced during iontophoresis. Subjects were 

also asked whether transdermal iontophoresis was preferred over blood sampling. 

Figure 1 

 

0 1 2 3 4 5 6

0

0.5

Skin sampling

Time (h)

Blood samplingIV administration
of iohexol

Start of
iontophoresis

Phoresor

CathodeAnode

1.a 1.b

 

 

Figure 1: Left panel: Experimental set-up used in the in vivo RI pilot study. Iohexol was 

extracted at the cathodal patch. Right panel: Timeline for the in vivo study starting with IV 

administration, the times at which iontophoresis was started and transdermal and blood 

samples were taken are also indicated. 

 

2.3.3 In vivo sample analysis 

The cathodal patches were immersed in 7 ml of water and shaken at 240 rpm (HS260 Basic, 

IKA, Sigma Aldrich, Gillingham, UK) for 24 hours. The extracts were filtered by centrifugation 
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(45 minutes at 7500 RCF) using Amicon ultrafiltration tubes (MWCO 5 kDa, Millipore, 

Watford, UK). 

Iohexol was quantified by HPLC. The method used a Shimadzu system (LC-2010A HT, Kyoto, 

Japan) comprising an autosampler, a UV diode array detector set at 254 nm, and a HiQ-

SilTM C18 (250 x 4.6 mm, 5 μm) reversed-phase column (Jasco, UK) thermostated at 40°C.  

The mobile phase, water:acetonitrile (70:30, %v/v), was pumped at 1 ml/min flow rate. The 

effective run for each injected sample (20 μl) was 7 minutes and a wash step 

(water:acetonitrile, 20:80, %v/v) for 38 minutes followed by a 10 minute column re-

equilibration with mobile phase. 

Sodium and potassium in the extracts were analysed by ion chromatography with 

suppressed conductivity detection. The method, based on previous work [27], used an IC 

system (Dionex, Sunnyvale, CA) comprising a GP-50 gradient pump, an AS-50 autosampler 

and thermal compartment, and an ED-50 electrochemical detector. The mobile phase, 20 

mM methanesulfonic acid, was pumped at 1 ml/min through a Dionex IonPacTM CS12A 

(250 x 4 mm) column thermostated at 30°C and connected to a Dionex CSRS Ultra II 

suppressor (4 mm) set at a current of 80 mA. 

2.3.4 Calculations and statistical analysis of in vivo data 

Data analysis and regression were performed using Graph Pad Prism V.5.00 (Graph Pad 

Software Inc., CA, USA). The slope and intercept of regression lines are expressed as the 

best-fit value ± standard error of the regression (SE). The extraction fluxes of sodium and 

potassium at different times of iontophoresis were compared using repeated-measures 

ANOVA test. The level of significance was set at p < 0.05. The blood concentrations of 
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iohexol were plotted at the exact times of blood sampling; whereas the transdermal 

extraction fluxes were plotted at the midpoint of the respective extraction interval. As the 

sampling times of blood measurements did not coincide with the sampling times of reverse 

iontophoresis, the corresponding plasma concentrations, when correlated to iontophoretic 

extraction fluxes, were adjusted by interpolation (i.e., using the individual value of β 

determined through blood sampling). 

Sodium and potassium transport numbers were calculated using Faraday’s law : 

Jj = [I x tj]/{F x zj}    Eq. 8 

where I is the intensity of current applied, F is Faraday’s constant, and Jj, tj and zj are the 

iontophoretic flux, transport number and valence, respectively, of the ion “j” (17-19). 

The terminal rate constant (β) was estimated from the iohexol concentrations (Cp,IOX, t1 and 

Cp,IOX, t2) in the blood samples withdrawn at approximately 3 (t1) and 4 (t2) hours post-

injection using the relationship: 

Ln(Cp,IOX, t1 / Cp,IOX, t2) = β × (t2 – t1)  Eq. 9 

The extraction fluxes of iohexol (JIOX) were anticipated to follow the changes in the marker’s 

blood levels (i.e., JIOX = κ × Cp,IOX) once iohexol had reached the equilibrium of distribution 

across the extracellular fluid (~2-3 hours post-injection).  Hence, 

Ln(JIOX,t1 / JIOX,t2) = β × (t2 – t1)   Eq. 10 

β was also estimated after calibration of iohexol’s iontophoretic extraction flux (JIOX) with 

that of a potential internal standard candidate (JIS, either sodium or potassium), 

simultaneously extracted with iohexol.  In other words, {JIOX/JIS} = κ’ × Cp,IOX, and therefore: 
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ln{(JIOX, t1)/JIS, t1) /(JIOX, t2/JIS,t2)} = β × (t2 – t1) Eq. 11 

where JIS is expected to be constant given the constant systemic concentration of the 

internal standard (18, 19, 28). Finally, the in vivo efficiencies of iohexol extraction, κ and κ’ 

were estimated. 

 

3. Results 

3.1 In vitro experiments 

Fixed subdermal concentration extraction: Passive extraction fluxes of iohexol (0.06 ± 0.04 

nmol/h over 6 hours for a 2.44 mM subdermal concentration) were negligible compared to 

the nearly 80 times higher iontophoretic fluxes. Moreover, even when a smaller subdermal 

concentration (0.15 mM, i.e., one-sixteenth of that used in the passive diffusion experiment) 

was iontophoresed, an extraction flux of 0.31 ± 0.08 nmol/h was observed. Clearly, 

therefore, iontophoresis offers a much more efficient sampling technique than passive 

diffusion. 

Iohexol fluxes in fixed subdermal concentration experiments increased with time for each 

concentration tested (Figure 2, left panel) and appeared to be reaching a plateau after 6 

hours.  The right panel of Figure 2 shows the linear correlation found between iohexol 

subdermal concentration and iontophoretic extraction flux; the proportionality improves 

with time of iontophoresis (e.g., r
2
 = 0.88 at 6 h). In other words, the extraction efficiency 

(κIOX µl.h
-1

) stabilizes with time (Table I). No significant differences (ANCOVA test) between 

the slopes from the fourth hour of iontophoresis were found after which the pooled average 

value of κIOX was 1.81 ± 0.13 µl.h
-1

 (mean ± SE) or 5.03 µl.h
-1

.mA
-1

.  
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Figure 3 shows the effect of a 3 h - 0.36 mA iontophoresis pre-treatment on iohexol 

extraction and that of ACM, which was used as a marker of electroosmotic flow.  The pre-

treatment slightly increased the total extraction flux of iohexol and values measured at 2 

through 5 hours were significantly higher than without pre-treatment (p < 0.001 (2 h) and p 

< 0.05 (5 h)) (Table I). However, there was no statistical difference at 6 hours. A small 

increase (p < 0.001) in the passive diffusion, from J6h = 0.06 ± 0.04 to 0.24 ± 0.04 nmol/h was 

found when the skin was pre-iontophoresed but the resulting contribution remained 

negligible compared to the electrotransport.  Overall, the pre-treatment shortened the time 

for iohexol fluxes to plateau by about 1 hour. The extraction efficiencies for IOX and ACM 

differed significantly (Table I). For example, κIOX,6h = 1.96 ± 0.51 µl.h
-1

 (5.4 ± 1.4 µl.h
-1

.mA
-1

) 

and κACM,3h = 3.21 ± 0.74 µl.h
-1 

(8.9 ± 2.0 µl.h
-1

.mA
-1

).  It should be noted that κIOX,6h and 

κACM,3h correspond to 6 hours of skin current exposure and extraction time for both 

analytes).  

 “Pharmacokinetic profile simulation” extraction experiments: Three distinct experiments 

were performed.  In the first, IOX was gradually cleared, using a constant syringe pump 

flow-rate, from the subdermal compartment in simulation of a first-order elimination 

process (Figure 4A).  The second was an identical study except that the skin was subjected 

to a 3-hour iontophoretic pre-treatment (0.5 mA), prior to the initiation of IOX clearance 

(Figure 4B).  In the third experiment (for which the skin was again pre-treated 

iontophoretically as before), IOX was eliminated in a biphasic manner by altering the 

perfusion of the subdermal compartment after 3 hours (Figure 4C). The simulated kinetic 

parameters for each experiment were estimated by sampling the subdermal concentration 

(CIOX) as a function of time and then compared to those deduced from the iontophoretic 
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extraction fluxes (JIOX) (Table II). In all cases, there was a remarkably good agreement 

between the two determinations. 

Extrapolation of the linear data of the plots in Figures 4A and 4B to t = 0 yields intercepts 

equal to the initial subdermal concentrations (C0,IOX) of the analyte: 0.29 (±0.02) mM and 

1.23 (±0.05) mM for no pre-treatment and iontophoresis pre-treatment, respectively, which 

are very close to the initial concentrations of the marker in the subdermal compartment 

(see Materials and Methods).  Similarly, the values estimated for the volume of distribution 

and the clearance are comparable to the volume of the subdermal compartment and to the 

flow rate provided by the syringe pump.  

3.2. In vivo pilot study 

This pilot study examined the potential use of RI as a non-invasive sampling tool for IOX. For 

this, RI sampling was compared to the reference blood sampling method currently adopted 

in clinical practice. IOX was successfully extracted by transdermal RI. The blood 

concentrations of the marker and its iontophoretic extraction fluxes are presented semi-

logarithmically in Figure 5 as a function of time post-injection. All extraction fluxes 

correspond to a current intensity of 0.5 mA except in the case of subject 3 for whom the 

applied current was lowered to 0.3 mA from the 5
th

 minute post-current initiation. 

The cathodal extraction fluxes of sodium and potassium ions were also measured at each 

iontophoretic sampling interval. Sodium extraction rates in the first interval (361 ± 22 µg.h
-

1
.mA

-1
) were significantly lower than the subsequent measurements (544 ± 123 µg.h

-1
.mA

-1
), 

while potassium fluxes showed no statistical difference at any of the sampling intervals 

(mean value: 206 ± 38 µg.h
-1

.mA
-1

).  



18 

 

The terminal rate constant of IOX (β) for each subject was calculated from both blood and 

skin sampling data (Table III).  Agreement between the values deduced was generally good: 

for three of the four subjects, β determined by blood sampling and RI differed by no more 

than a factor of 1.4; for the other volunteer (subject 1), the difference was 2.3-fold. The 

direct correlation between the iontophoretic extraction fluxes of iohexol and the 

corresponding blood concentrations (i.e., JIOX = κIOX�Cp,IOX) was reasonable (Figure 6A; r
2
 = 

0.69) with an average (±SD) κIOX value of 11.6 (±3.2) µl.h
-1

.mA
-1

.  Individual κIOX values varied 

over the range 7.5-38.3 µl.h
-1

.mA
-1

, with the results for subject 1 being noticeably smaller 

than those for the other volunteers (Table III).  The correlation improved when the internal 

standard concept (with Na
+
) was used (i.e., {JIOX/JIS} = κNa+’�Cp,IOX; see Figure 6B; r

2
 = 0.89), 

and the mean (±SD) value of κ’Na+ was 27.4 (±4.0) µl.mg
-1

 (Table III).  Performing the internal 

standard calibration with K
+
 resulted in a poorer correlation (r

2
 = 0.49) with κ’K+ = 42.1 

(±17.6) µl.mg
-1

. 

Blood sampling and iontophoresis were well tolerated and all four participants completed 

the trial. Subject 3 expressed discomfort with the original current setting (0.5 mA) and the 

intensity was therefore lowered to 0.3 mA from the 5
th

 minute post-current initiation. Mild 

erythema at the patch application skin sites was noticed in all subjects and was more 

pronounced at the cathodal site. The adhesive material of the cathodal patch caused mild 

irritation to the skin of subject 2.  Sensation to iontophoresis was evaluated by the universal 

Wong-Baker pain scale questionnaire (0 represents no pain; 5 reflects considerable 

discomfort). Current passage provoked the most intense feeling at the beginning of the 

experiment (pain levels were between 0 and 2); however, the sensation diminished 

substantially by the end of the study (pain levels falling to 0 or 1). Discomfort was principally 

attributed to patch removal and the tingling or itching sensation caused by current passage; 
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3 of the 4 subjects reported more tingling/itching below the larger, anode electrode pad.  All 

participants expressed a preference for reverse iontophoresis over blood sampling. 

4. Discussion 

4.1 In vitro experiments 

Iohexol is a hydrophilic (log P = -3.05), polar, neutral compound. The mechanisms 

contributing to its extraction flux during transdermal iontophoresis are passive diffusion and 

electroosmosis. Therefore, iontophoretic extraction towards the cathode was selected as 

the most efficient method for iohexol sampling. This is because, at physiological pH, the net 

charge on the skin is negative and electroosmosis proceeds in the direction of anode-to-

cathode [29]. 

The first objective was to demonstrate a linear correlation between iohexol subdermal 

concentrations representing the clinical range typically observed in patients and the 

iontophoretic extraction fluxes. Table I and Figure 2 reveal that this was indeed the case and 

that the proportionality improved with time of iontophoresis (r
2
 = 0.88 at 6 h). These 

findings are in line with previous studies concerning the RI extraction of other compounds 

[18,24,31,32]. The slopes of this linear relationship (κIOX, μl/h, Table 1) increased with time 

up to 4 hours after which the pooled, average (±SE) was 1.81 (±0.13) μl/h.  

The values of κIOX and κACM at different time points describe the iontophoretic extraction 

efficiency for IOX and ACM (Table 1) and, once stable, are primarily a reflection of the 

magnitude of the electroosmotic flow in the anode-to-cathode direction in the experimental 

conditions tested. The efficiency of extraction was higher for ACM; for example, after 6 

hours of current application, κIOX,6h was 1.96 ± 0.51 µl.h
-1

 (5.4 ± 1.4 µl.h
-1

.mA
-1

) and κACM,3h 

equalled 3.21 ± 0.74 µl.h
-1 

(8.9 ± 2.0 µl.h
-1

.mA
-1

) (Table I, Figure 3). However, these 
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differences are less than 2.5 fold despite the much larger molecular weight of IOX (821.14 

Da) compared to ACM (151.17 Da) and correlate quite well with the ratio of the Stokes radii 

of the two compounds (1.1 nm (33) and 0.36 (34), for iohexol and acetaminophen, 

respectively.  The absolute values of the transport efficiencies measured are also 

quantitatively similar to those determined in previous studies (35, 36) examining a series of 

uncharged polyethylene glycols spanning a wide range of molecular weight.  

 

Figure 2 

 

Figure 2: Left panel: RI extraction fluxes of iohexol as a function of time and subdermal IOX 

concentration. Right panel: proportionality observed between RI fluxes and IOX subdermal 

concentration after 4 hours. The data are represented as the mean ± SD (n = 4-6).  
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glomerular filtration rate is complicated. The 3 h pre-treatment was chosen because: (a) 

ACM fluxes tend to stabilise after ~3 hours of iontophoresis (Figure 3, Table I), and (b) when 

iohexol is used as a renal marker, its systemic distribution phase requires takes 2-3 hours (5, 

14). Data from this distribution phase are not used in the calculation of GFR, and therefore 

the 2 to 3 hour period, from the moment of IOX administration, may profitably be used to 

allow transdermal extraction fluxes to stabilise (5, 14).  However, while the pre-treatment 

slightly increased and accelerated the extraction flux of iohexol (Fig.3, Table I), 3 hours of 

iontophoresis were still required to reach steady extraction kinetics.  The distinction 

between this observation and the behaviour of acetaminophen may reflect that additional 

factors, such as a differential accessibility of the two compounds to all iontophoretic 

transport pathways, contribute to the time necessary to reach steady-state extraction.  

Figure 3 

 

 

 

 

 

 

 

Figure 3: Effect of a 3-hour iontophoresis pre-treatment (0.36 mA) on iohexol (IOX) 

extraction and comparison with acetaminophen (ACM) fluxes. The subdermal 

concentrations of IOX and ACM were 2.44 mM and 7.5 mM, respectively. The symbols 
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representing “IOX without pre-treatment” are slightly nudged to the right for clarity. Data 

are presented as mean ± SD of n= 6-12. 

 

The next series of experiments aimed to investigate iohexol RI extraction under dynamic 

conditions as the marker was progressively cleared from the subdermal compartment. First, 

a mono-exponential elimination process was simulated, with and without the 3-hour, 0.5-

mA pre-treatment prior to the bolus administration of iohexol into the subdermal 

compartment. The resulting subdermal concentration profiles are in Fig.4, panels A-B, and 

show that, once the iohexol extraction stabilized (i.e., κiox is constant), the extraction flux 

data mirrored the corresponding subdermal concentration profile (in accord with Eqs 3 and 

2, respectively) and the deduced terminal rate constants (Ke) were indistinguishable (Table 

II).  Notably, for the experiments without and with iontophoretic pre-treatment, the 

deduced values of κiox were 4.8 (±0.5) µl.h
-1

 (9.6 (±1.0) µl.h
-1

.mA
-1

) and 5.3 (±0.4) µl.h
-1

 (10.6 

(±2.0) µl.h
-1

.mA
-1

), respectively, and not significantly different from one another. In these 

dynamic conditions, the pre-treatment clearly shortened the time required for κ to stabilise 

(Fig.4, panels A and B). 

In addition, RI sampling allowed good estimation of the other, simulated in vitro kinetic 

parameters (Table II).  This ability has been demonstrated previously in a similar study that 

considered the use of RI for lithium monitoring (24). In contrast to iohexol, however, lithium 

is a small cation extracted almost exclusively, and much more efficiently, by 

electrorepulsion, (κLi+ = 43 ± 6 µL.h
-1

) with a much shorter time required to achieve a steady 

flux (24). 
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Because iohexol disposition in vivo is far better described by a two-compartmental model 

(3, 6, 14), the final set of in vitro experiments investigated whether a biphasic clearance of 

the marker from the subdermal compartment (as described by Eq. 7) could be tracked by RI 

and reflected in the measured extraction fluxes. As shown in Figure 4, panel C, reverse 

iontophoresis successfully and rapidly tracked the kinetic profile when the subdermal 

clearance was subjected to a step-change, and the deduced kinetic parameters (i.e., Zi=1,2 

and Ki=1,2, Table II) from the subdermal concentration and RI data were remarkably similar.   

Taken together, the in vitro experiments convincingly demonstrated the ability of RI to track 

changes in the subdermal concentration of iohexol and to estimate relevant 

pharmacokinetic parameters of the marker, providing justification, therefore, for the 

subsequent, in vivo pilot study.  

4.2 In vivo pilot study 

This study compared, in 4 children, iohexol sampling by RI to the reference blood sampling 

method currently adopted in clinical practice. Iohexol was indeed successfully extracted by 

transdermal iontophoresis (Fig. 5) thereby allowing a preliminary assessment of the non-

invasive approach. Sodium and potassium ions, present in the body at relatively constant 

concentrations and extracted simultaneously with iohexol at the cathode, were evaluated as 

possible internal standards with which to calibrate the extraction flux of the marker. 

In agreement with earlier work (19, 37), JNa+ in the first sampling interval (15.7 (±1.0) 

µmol.h
-1

.mA
-1

) was significantly lower than the rather constant, subsequent measurements 

(23.6 (±7.6) µmol.h
-1

.mA
-1

) indicating an increase in transport number of the ion (or fraction 

of charge that it transports) from 0.42 (±0.03) to 0.63 (±0.14). This has been explained by 

depletion of the other ions present in the skin (38). The iontophoretic potassium flux was 
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effectively constant and similar at all sampling intervals with a mean value of 5.3 (±1.0) 

µmol.h
-1

.mA
-1

 corresponding to a transport number 0.14 (±0.03).  Compared to previous in 

vivo results (19, 37), however, the ion fluxes showed a greater variability (coefficients of 

variation of 23% and 19% for sodium and potassium, respectively) amongst the young 

subjects of the present study. Why this occurred is unclear given that the systemic levels of 

these cations are effectively constant. One possibility is that the semi-solid polymeric gel 

used as the cathodal sampling medium was difficult to remove completely at the end of the 

sampling interval, potentially leading to uncertainty that 100% recovery had been achieved. 

Self-evidently, further development of RI for iohexol monitoring will require improved 

formulation of the collection medium to ensure better consistency and reproducible 

recovery. 

Figure 5 shows that, after 2-3 hours of current application, iohexol extraction fluxes 

decreased with time in accord with Eq. 10, and that the overlap with the decay in the blood 

concentrations of the marker (Eq. 9) was reasonably good. Although the number of in vivo 

data points is limited, their consistency with the in vitro results discussed above (Figure 4) is 

noteworthy.  Reassuringly, and perhaps somewhat fortuitously, the 2-3 hours required for 

the systemic distribution of iohexol in vivo (3,14) appear to overlap quite closely with the 

same period needed for electroosmotic flow to stabilise after the initiation of iontophoresis.  

Subsequently, the terminal, elimination phase of the marker from the blood is well-tracked 

by its RI extraction flux from the subdermal interstitial fluid (and characterised by the same 

rate constant “β” (Eqs. 10 and 11)) (14).  The values of the terminal rate constant (β) 

calculated in this way are in Table III.  The RI results are, of course, based on the last three 

sampling intervals, which overlap temporally with the blood samples obtained.   
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Profiles of lnCIOX (open squares) and lnJIOX (filled squares) as a function of time 

corresponding to the “pharmacokinetic profile simulation” extraction experiments: CIOX one 

exponential decline simulation without pre-treatment (panel A) and following a 3 hour 

iontophoresis pre-treatment (panel B) and CIOX two-phase decline simulation with pre-

treatment (panel C). The units for JIOX and CIOX were nmol.h
-1

 and mM, respectively. Data are 

represented as the mean ± SD of n=4-5. 
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For 3 of the 4 subjects, the ratio of the derived values of β from the two approaches (blood 

sampling relative to RI) was less than 1.4; for the fourth patient, the ratio was 2.3 (Table III).   

Because of the numerical method involved in estimating GFR from β (2,5) the ratio of the 

derived values for GFR estimated with blood and skin data mirror closely the ratios shown in 

Table III. The value of β determined by blood sampling is based on two measurements only 

and, self-evidently, any error in the evaluation of these samples will be manifest in the 

calculated β.  Two advantages of the less invasive RI approach, therefore, are that the 

estimate of clearance can be based on multiple measurements rather than just two and that 

additional sampling times are easier to implement for patients with poor renal function. 

Table III also shows the values of β determined when the iontophoretic extraction fluxes of 

iohexol were normalized using those of two potential internal standards (Na
+
 and K

+
).  While 

it appears that this strategy did not improve the overall precision of the estimates, the ratios 

of the derived values of β were consistently closer to unity.  In general, β estimated by skin 

sampling was lower than that calculated from blood sampling.  While the small number of 

subjects involved in this study precludes a definitive explanation for this observation, it is 

worth noting that RI samples the subdermal interstitial fluid rather than the blood and that 

the equilibration of iohexol concentrations within these two compartments may not be 

instantaneous (6,14,39). 

The efficiency of iohexol extraction in vivo was evaluated for each of the four subjects based 

upon the two measured blood concentrations and the RI extraction fluxes either without 

(κIOX) or with (κ’Na+ and κ’K+) the use of one of the two putative internal standards (Table III); 

average values of κIOX and κ’Na+ and κ’K (for both Na
+
 and K

+
) were obtained via linear 

regression of these data (Figure 6). The correlation (r
2
 = 0.69) between JIOX and its 
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concentrations in the blood was reasonable yielding a mean value of κIOX of 11.6 (±3.2) µl.h
-

1
.mA

-1
. The positive y-intercept of the regression supports the contention above that iohexol 

RI extraction samples the subdermal interstitial fluid, not the blood. Notably, the in vivo and 

in vitro (measured under dynamic conditions) values of κIOX were in close agreement 

indicative of the relevance and value of the in vitro model used. 

Figure 5 

 

 

 

 

 

 

 

 

Figure 5: Iohexol transdermal iontophoretic extraction fluxes (JIOX, µg.h
-1

, filled squares) and 

blood concentrations (CIOX, µg.ml
-1

, open squares) as a function of time post-injection. The 

blood concentrations of iohexol are plotted at the exact times of blood sampling; whereas 

the transdermal extraction fluxes are plotted at the midpoint of the respective extraction 

interval. The regression lines are also shown for both sampling techniques. The current 

applied was 0.5 mA in all subjects except participant 3 for whom it was 0.3 mA. 
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The internal standard calibration of iohexol extraction fluxes using sodium resulted in a good 

correlation (r
2
 = 0.88) between (JIOX/JIS) and the two measured blood concentrations 

(average κ’Na+ = 27.4 (±4.0) µl.mg
-1

; Figure 6); individual κ’Na+ values, however, ranged 

between 3 and 60 µl.mg
-1

 (Table III). With potassium, the corresponding correlation was 

lower (r
2
 = 0.49) with κ’K+ = 42.1 (±17.6) µl.mg

-1
. As stated above, the selection of the best 

internal standard (or indeed the decision as to whether one is needed at all) awaits further 

study. 

Figure 6 

 

 

 

 

 

Figure 6: Iohexol extraction fluxes (JIOX) (panel A) and ratio of iohexol and sodium extraction 

fluxes (JIOX/JNa) (panel B) as a function of the corresponding iohexol blood concentrations 

(CIOX). The iohexol blood concentrations used in the regressions were corrected for the 

respective times of the middle of each iontophoretic period. Linear regression analysis 

provided the following slopes (±SE) for the relationships: (a) JIOX = κIOX x CIOX (r
2
= 0.69); κIOX = 

11.6 ± 3.2 µl.h
-1

.mA
-1

. (b) JIOX/JNa = κ’Na x CIOX (r
2
=0.89); κ’Na = 27.4 ± 4 µL.mg

-1
. (c) JIOX/JK = 

κ’K.Cblood,IOX (r
2
 0.49); κ’K = 42.1 ± 17.6 µl.mg

-1
.  
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The factor(s) causing variability in RI extraction efficiency (κIOX) in vivo cannot be 

unequivocally determined from the results of this pilot study.  Previous investigations with 

the endogenous, uncharged analytes, glucose and urea, for which ‘reservoirs’ in the skin are 

known, have shown differing levels of inter- and intra-subject variability (18,37,40). The 

variability associated with glucose RI has never been satisfactorily explained, and whether 

the reason is primarily related to electro-osmosis or is specific to glucose, and its 

endogenous and ubiquitous presence in the body, has not been elucidated.  In contrast, the 

RI of exogenously administered, lithium cations was efficient and quite constant across the 

cohort of individuals examined (19). There is at least a possibility, therefore, that the RI of 

iohexol, also an exogenous compound, will show low relative variability; only further work 

involving more frequent RI sampling, in a larger number of subjects with an improved 

sampling methodology, can address this issue. 

It is pertinent at this point to compare the reverse iontophoretic extraction of iohexol and 

glucose, the only analyte for which a device, the Glucowatch Biographer®, based on RI 

extraction, has been developed and marketed (20,21,41). While the same core technology, 

(iontophoresis) and mechanism (electro-osmosis) underlie glucose and iohexol sampling, 

the two applications are distinct. GFR assessment takes place in a hospital setting and there 

is a finite, and very limited number of procedures required per patient; that is, there is no 

need for the ambulatory and continuous monitoring required by a diabetic patient. Thus, 

even if the method investigated here proved to be successful, there would be no need to 

develop an integrated sampling-analytical device such as the Glucowatch Biographer®; the 

investment required would not be justified by either the clinical need or the market size. 

The ultimate aim of this work was to render a current and effective hospital procedure less 

invasive to the fragile patient population in which it is used.  It follows that a more realistic 
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approach to implement iohexol sampling might involve use of a simple (and ideally already 

approved and available) iontophoresis device (e.g., the Phoresor) in combination with 

disposable collection patches from which iohexol can be extracted and subsequently 

analysed in a local clinical laboratory.  

Another factor, which differentiates the RI application to iohexol from that to glucose, is 

that the former is an exogenous compound that is administered on an acute basis for GFR 

assessment. It follows that there is no reservoir of iohexol in the skin, nor any chance that 

one can develop over time.  In contrast, a reservoir of glucose exists in the skin that has to 

be ‘emptied’ before the RI-extracted amounts of the analyte are correlated with systemic 

glycaemia (18, 20,21).  

A third key difference is that the estimation of GFR only requires knowledge of iohexol’s 

terminal elimination rate constant (β) from the blood; absolute systemic concentrations are 

not needed.  Therefore, as long as the value of β determined from the RI-extracted samples 

is the same as that assessed from blood sampling, then the relationship between the 

amounts of the marker drawn across the skin to those in the blood is unimportant.  In 

contrast, for glucose monitoring, it is absolutely essential to be able to relate the RI-

extracted amounts to blood glucose concentrations, and this is only possible (at present) 

with a finger-stick calibration procedure.   

A final, more subtle difference between the uses of RI to sample glucose and iohexol, 

concerns the “lag-time” for changes in blood levels to be manifest in the RI-extracted 

samples.  For glucose monitoring, the values reported by the Glucowatch follows changes in 

systemic concentrations with a delay estimated to be on the order of 15-20 minutes, a 

factor that needs to be recognised when blood levels change rapidly in response to food 
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ingestion and insulin administration (41). In the case of iohexol after an intravenous 

injection, the pharmacokinetics follow a 2-compartment model and 2-3 hours are required 

for the distribution phase to be complete and for the terminal elimination, which directly 

reflects renal clearance, to commence.  RI sampling from this moment will therefore report 

faithfully on the patient’s GFR as long as the kinetics of redistribution from the peripheral 

compartment are rapid, relative to renal clearance.  While this specific information is not 

directly available, the fact that iohexol has proved to be a useful marker for GFR means that 

its elimination cannot be rate-limited by its redistribution (1,6,10,14).    

Overall, the in vivo protocol was well tolerated; all four participants completed the trial and 

preferred RI monitoring over blood sampling. Tingling or itching sensations and erythema 

were similar to those previously reported (19, 22, 37). Feedback from participants and their 

parents included recommendations to improve the RI system to a more compact, integrated 

and fully-portable device. A perceived limitation of the RI approach is that iohexol 

administration remains an invasive procedure. Unfortunately, because of the MW (821.14 

Da) and log P (-3.05) of the marker, neither transdermal nor oral administration of the dose 

required (1.3 g in this study) is feasible.  It was also suggested that a less adhesive patch 

would decrease the discomfort associated with its removal and that the size of the patches 

used was too large for a paediatric subjects. These issues will need to be addressed before 

further clinical studies take place.  

5. Conclusions 

Iontophoresis can successfully track the subdermal concentration profiles of iohexol, a 

relatively large and neutral marker of glomerular filtration, both in vitro and in vivo. The 
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efficiency of extraction in vivo was well predicted by the in vitro model used.  A pilot in vivo 

study identified key issues to be investigated further, including validation of the technique 

in a larger cohort and establishing the consistency of extraction efficiency within and 

between subjects. Practical issues, including the development of comfortable devices 

specifically designed for skin sampling in the paediatric population need to be addressed as 

well before larger in vivo studies can be undertaken.  
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Table I: Reverse iontophoresis extraction efficiencies (mean ± SD, n = 4-12) for IOX (κIOX) and 

for ACM (κACM) in “fixed-subdermal concentration experiments” and according to the 

equations [JIOX = κIOX
 x CIOX] and [JACM = κACM

 x CACM].  JIOX and JACM are the RI extraction fluxes 

and CIOX and CACM are the subdermal concentrations for IOX and ACM, respectively. ACM but 

no IOX was present in the subdermal solution during the 3 hours pre-treatment which 

corresponds to the pre-2 to pre-0 hours sampling intervals. 

 Iohexol 

 
  Time (h)    

1 2 3 4 5 6 

κIOX (µl.h
-1

) 0.28±0.11 0.81±0.28 1.29±0.39
 a

 1.62±0.46
 b

 1.83±0.47
 c
 1.96±0.51

 d
 

κIOX + Pre-treat  (µl.h
-1

) 0.54±0.22 1.57±0.42 2.01±0.42 2.24±0.38 2.36±0.35 2.34±0.37 

 Acetaminophen 

 Time (h) 

 Pre-2 Pre-1 Pre-0    

κACM (µl.h
-1

) 0.78±.031 1.96±0.67 2.60±0.66
a

    

 1 2 3 4 5 6 

 3.07±0.97
b

 3.10±0.83
c
 3.21±0.74

d
 3.39±0.73 3.36±0.62 3.35±0.74 

 

a,b,c 
and 

d
 indicate pairs of κIOX and κACM significantly different (p<0.01) two-way repeated measures ANOVA 

followed by Bonferroni post-test. 
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Table II: In vitro kinetic parameters derived from the “pharmacokinetic profile simulation” 

extraction experiments using either iohexol subdermal concentration (CIOX) or extraction 

fluxes (JIOX) data. See Material and Methods for detailed explanation. 

 
Mono exponential decline experiments 

 

 
 r

2
 ≥ 

Ke
a
 

(h
-1

) 

C0,IOX
 b

 

(mM) 

Vd 
c
 

(ml) 

Cl
 d

 

(ml.h
-1

) 

Cl 
e
 

(ml.h
-1

) 

No 

pre-treat 

CIOX 0.98 0.38 ± 0.05 0.29 ± 0.02 4.02 ± 0.28 1.51 ± 0.14 1.53 ± 0.1 

JIOX 0.94 0.41 ± 0.03 0.36 ± 0.08 3.26 ± 0.63 1.34 ± 0.17 1.31 ± 0.2 

With 

Pre-treat 

CIOX 0.99 0.28 ± 0.01 1.23 ± 0.05 3.71 ± 0.16 1.04 ± 0.05 1.04 ± 0.06 

JIOX 0.90 0.25 ± 0.05 1.21 ± 0.18 3.89 ± 0.63 0.96 ± 0.05 0.96 ± 0.05 

 
Two-phase decline experiment 

  r
2 

≥ 
Z1 

(mM) 

K1 

(h
-1

) 

Z2 

 (mM) 

K2 

(h
-1

) 

With  

Pre-treat 

CIOX 0.99 6.12 ± 0.16 0.80 ± 0.01 1.22 ± 0.27 0.27 ± 0.03 

JIOX 0.97 6.18 ± 0.68 0.74 ± 0.02 1.37 ± 0.30 0.27 ± 0.07 

a
Determined from the slope. 

b
Determined by extrapolation to t = 0. 

c
Calculated from: Vd = Dose/C0,IOX. 

d
Calculated using Cl = Ke.Vd. 

e
Calculated using: Cl = Dose/AUC�

� 
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Table III: Terminal rate constants (β) estimated through blood and skin (best-fit ± SE) 

sampling for four paediatric patients and their corresponding efficiencies of extraction. The 

numbers in parentheses correspond to the ratio (βblood/βskin). See Material and Methods for 

detailed explanation. 

 

Technique 
Terminal rate constant (β, h

-1
) 

S.1 S.2 S.3 S.4 

Blood sampling 0.35 0.56 0.43 0.48 

Skin sampling 

0.15 ± 0.003 

(2.33) 

0.49 ± 0.08 

(1.14) 

0.35 ± 0.09 

(1.23) 

0.35 ± 0.14 

(1.37) 

Skin sampling:  

Normalised with Na
+ 

0.18 ± 0.09 

(1.94) 

0.51 ± 0.07 

(1.10) 

0.42 ± 0.06 

(1.02) 

0.27 ± 0.16 

(1.78) 

Skin sampling:  

Normalised with K
+ 

0.19 ± 0.03 

(1.84) 

0.47 ± 0.1 

(1.19) 

0.52 ± 0.07 

(0.83) 

0.33 ± 0.18 

(1.46) 

 Efficiency of extraction  

S.1 S.2 S.3 S.4 

Κ 

(µL.h
-1

.mA
-1

) 

Individual 

value (n=2) 
7.5 20.9 32.1 38.3 

All subjects (n=8) 11.6 ± 3.18 

κ’Na+  

(µL.mg
-1

) 

Individual 

value (n=2) 
3.3 49.5 32.3 59.9 

All subjects (n=8) 27.4 ± 4.04 

κ’K+ 

(µL.mg
-1

) 

Individual 

value (n=2) 
25.7 95.8 131.6 194.2 

All subjects (n=8) 42.07 ± 17.6 

 

 


