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Abstract. We consider the Γ-limit of a highly oscillatory Riemannian metric

length functional as its period tends to 0. The metric coefficient takes values

in either {1,∞} or {1, βε−p} where β, ε > 0 and p ∈ (0,∞). We find that for a
large class of metrics, in particular those metrics whose surface of discontinuity

forms a differentiable manifold, the Γ-limit exists, as in the case of a uniformly

bounded sequence of metrics. However, the existence of the Γ-limit for the
corresponding boundary value problem depends on the value of p. Specifically,

we show that the power p = 1 is critical in that the Γ-limit exists for p < 1,
whereas it ceases to exist for p ≥ 1. The results here have applications in both

nonlinear optics and the effective description of a Hamiltonian particle in a

discontinuous potential.

1. Introduction. Let ∅ 6= Ωg ⊂ [0, 1]d be an open and path connected set with
Lipschitz boundary. Suppose further that Rd\(Ωg+Zd) and ∂Ωg are path connected.
We study the sequence of functionals

Fp,ε(u) :=

∫ 1

0

ap,ε

(u
ε

)
‖u′‖ dτ, u ∈W 1,∞ ((0, 1)) , (1)

where

ap,ε(x) :=

{
βε−p if x ∈ Ωg + Zd,
1 otherwise,

(2)

for β > 0 and p ∈ (0,∞). We will also consider a limiting case where ap,ε|p=∞ :=∞
on Ωg + Zd and 1 otherwise.

Functionals of the form (1) naturally arise in the study of Riemannian geometry
and nonlinear optics. In the case of nonlinear optics the values of ap,ε describe
the opacity of the material. Our motivation is to study the effective dynamics of
a Hamiltonian particle. In classical mechanics the motion of a particle with unit
mass is given by

d2x

dt2
= −∇V (x), (3)
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where V is the potential energy function. An alternative description of the motion
of such a particle is given by the Maupertuis principle [5, 4, 17, 20]. The Maupertuis
principle states that, provided V is sufficiently smooth, that the solutions of (3) are
critical points of the functional∫ 1

0

√
2
(
E − V

(u
ε

))
‖u′‖dτ, (4)

up to reparameterisation. The functional (1) could therefore be interpreted as
a model for the motion of a particle in a discontinuous periodic potential. The
discontinuities and large metric values in Ωg+Zd model positional constraints on the
motion of the particle. We are interested in approximating minimum points of the
functional (1) for small ε > 0 in the weak topology ofW 1,∞ ((0, 1)). Determining the
effective description of a Hamiltonian particle in a discontinuous potential has been
posed as a problem in [16]. By determining an effective limit for the functional (1) we
begin to develop an insight into the average motion of a particle in these potentials.
This approach provides an alternative to determining an effective description for the
Hamilton-Jacobi equations that also describe the motion of a Hamiltonian particle.
The homogenisation of the Hamilton-Jacobi equation was first studied in [16].

Effective descriptions for Riemannian metrics that satisfy uniform growth con-
ditions have been studied in [1, 7, 9, 6, 14]. A proof that the Riemannian metrics
are dense with respect to Γ-convergence in the Finsler metrics can be found in [8].
Examples of Finsler metrics obtained as the Γ-limit of a sequence of two phase
Riemannian metrics may be found in [2, 9, 11, 12, 13, 18, 19, 21]. The difference
between the work in [2, 9, 11, 18, 19, 21] and this study is that our metrics are not
uniformly equivalent, in ε, to the Euclidean distance on Rd. Specifically, for a fixed
p, there does not exist α, β > 0 such that∫ 1

0

α‖u′(τ)‖ dτ ≤ Fp,ε(u) ≤
∫ 1

0

β‖u′(τ)‖ dτ (5)

for all ε > 0, where ‖ · ‖ denotes the Euclidean norm. Consequently, in this setting,
the standard theory does not apply.

In this paper we will focus on the computation of the Γ-limit of (1). Specifically
we will show that the Γ-limit of (1) on W 1,∞ ((0, 1)) exists. Furthermore, we show
that this limit can be described by the Γ-limit of a sequence of uniformly bounded
length functionals. We will continue by studying the Γ-limit of the corresponding
boundary value problem. In the literature one usually finds that the Γ-limit for
the boundary value problem follows from the Γ-limit for the unconstrained problem
[7, 9]. The novel observation that we make here is that in the absence of a uniform
growth condition the Γ-limit may no longer exist. The existence of the Γ-limit
depends on the value for p. We show that the value p = 1 is critical in the sense
that for p < 1 the Γ-limit for the boundary value problem exists, whereas for p ≥ 1
the Γ-limit does not exist. For p < 1 we show that the minimum values of Fp,ε
converge and then prove an analogue of [11], that is, the length functionals Γ-
converge if, and only if, the induced distance functions converge locally uniformly.
Contrary, for p ≥ 1, and with an additional geometric assumption, we show that
the Γ-limit fails to exist. Specifically we present a counter-example, namely, the
existence of two sequences of ε such that minimisers of (1) converge to different
limits. By modifying the ideas in [11] we can study the Γ-convergence of Fp,ε. This
work is a natural continuation of the examples at the end of [11] to a more general
class of problems.
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2. High opacity coefficients. In this section the notion of a high opacity coef-
ficient is formulated. The high opacity coefficient provides a lower bound on the
opacity of inclusions that prevents geodesics entering them. Throughout this paper
a set ∅ 6= Ωg ( [0, 1]d is an admissible inclusion if it is path connected, open and
has a Lipschitz boundary. Furthermore we will assume that Ωg has the property
that Ωw := Rd\

(
Ωg + Zd

)
and ∂Ωg are path connected. For notational convenience

set A (x, y) := {u ∈ W 1,∞ ((0, 1)) : u(0) = x, u(1) = y}; where W 1,∞ ((0, 1)) is the
space of all Lipschitz curves on (0, 1) taking values in Rd. For E ⊂ Rd nonempty,
define the mapping dE : E × E × [0,∞)→ R by

dE(x, y;β) := inf
u∈A (x,y)

{∫ 1

0

β‖u′(τ)‖ dτ : u(τ) ∈ E ∀τ ∈ (0, 1)

}
.

To simplify notation further we set dE(x, y) := dE(x, y; 1).

Definition 2.1 (High Opacity Coefficient). Let Ωg be an admissible inclusion. A
high opacity coefficient for the set Ωg is a number λ ∈ (0,∞) such that for all
x, y ∈ ∂Ωg and β > λ,

d∂Ωg
(x, y) < dΩg

(x, y;β). (6)

The computation of the high opacity coefficient for a square can be found in [9,
Example 16.2]. The high opacity coefficients for other sets have been considered in
[12, 13]. It would be an interesting problem to determine a class of Ωg where (6)
does not hold. It is reasonable to conjecture that if ∂Ωg were to have a cusp then
(6) would fail to hold.

The following lemma provides a sufficient condition on Ωg to ensure the existence
of a high opacity coefficient.

Lemma 2.2. Let Ωg be an admissible set. If ∂Ωg is connected and differentiable
then there exists a high opacity coefficient λ for Ωg.

Proof. By assumption ∂Ωg is a differentiable manifold, therefore it can be equipped
with a Riemannian metric dΩg

[15, Theorem 1.4.1]. The manifold has the distance
function d∂Ωg

. The distance function is bi-Lipschitz equivalent to the Euclidean
distance [15, Corollary 1.4.1] since ∂Ωg is compact. That is to say that there exist
positive constants c and C such that,

c‖x− y‖ ≤ d∂Ωg
(x, y) ≤ C‖x− y‖, (7)

for x, y ∈ ∂Ωg. It follows trivially that

dΩg
(x, y;β) ≥ inf

u∈A (x,y)

∫ 1

0

β‖u′(τ)‖dτ = β‖x− y‖. (8)

The inequality in (8) follows from the fact that dΩg
(x, y;β) is an infimum over a

smaller space than A (x, y). Choosing β > λ := C then combining (7) and (8)
proves (6).

The above lemma is sufficient for a broad class of problems, including those that
have physical applications in optics and dynamics. For example, in the dynamical
context a discontinuity in the potential, such as that considered here, serves as a
microscopic positional constraint. Boundaries of Ωg of less regularity are still of
mathematical interest but are not studied here.

The following lemma states that if the variation of a is sufficiently large, then
minimising curves do not enter the high opacity regions. It will be exactly the high
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opacity coefficient which provides the measure of what sufficiently large means in
this context.

Lemma 2.3. Let Ωg be an admissible set with a high opacity coefficient λ. Define
the function

a(x) :=

{
β if x ∈ Ωg + Zd,
1 otherwise,

(9)

for β > λ, and the Riemannian length functional

L(u) :=

∫ 1

0

a(u(τ))‖u′(τ)‖ dτ. (10)

For any x, y ∈ Ωw, let u be a geodesic joining x to y. It then follows that u(τ) ∈ Ωw
for all τ ∈ (0, 1).

Proof. Suppose that graph(u) ∩
(
Ωg + Zd

)
6= ∅, then there exists x ∈ Zd such

that G(x) := graph(u) ∩ (Ωg + x) 6= ∅. Set TG(x) := {τ ∈ (0, 1) : u(τ) ∈ G(x)},
s = inf TG(x) and t = supTG(x).

As Ωg is open, it follows that s < t, to see this, observe by assumption that
TG(x) 6= ∅ and therefore there exists t′ ∈ TG(x). By definition u(t′) ∈ G(x) ⊂
Ωg + x, hence there exists ρ > 0 such that Bρ(u(t′)) ⊂ Ωg + x, since Ωg + x is
open. By the continuity of u there exists δ > 0 such that σ ∈ (t′ − δ, t′ + δ) implies
that u(σ) ∈ Ωg + x. By construction s ≤ t′ − δ < t′ + δ ≤ t, hence s < t. By the
continuity of u it holds that u(s), u(t) ∈ Ωw.

Further, it holds that, since u(σ) ∈ Ωg + x for all σ ∈ (s, t),∫ t

s

a(u(τ))‖u′(τ)‖ dτ =

∫ t

s

β‖u′(τ)‖ dτ ≥ dΩg (u(s), u(t);β).

As β > λ, using the invariance of length under reparameterisations, it holds that,∫ t

s

a(u(τ))‖u′(τ)‖dτ =

∫ t

s

β‖u′(τ)‖ dτ > d∂Ωg
(u(s), u(t);β). (11)

Since ∂Ωg is compact, it follows by the Hopf-Rinow Theorem [10, Theorem 2.5.28]
the infimum in the definition of d∂Ωg is obtained by some ũ ∈ A (u(s), u(t)). Define
the function v by

v(τ) :=

{
ũ(τ) if τ ∈ (s, t)

u(τ) otherwise,

and using (11) gives that L(u) > L(v). Hence u is not a geodesic.

3. Statement of the mathematical problem. Let Ωg satisfy the hypotheses of
Lemma 2.3 and let the high opacity coefficient be denoted by λ. Let the metric
coefficient ap,ε : Rd → R be given by (2) for β > λ, p ∈ (0,∞) and β/λ > εp > 0.
The requirement that β/λ > εp ensures that Lemma 2.3 holds for all ε. Extend
this definition to the case when p =∞ by setting,

a∞,ε(x) :=

{
+∞ if x ∈ Ωg + Zd,
1 otherwise,

(12)

for ε > 0. For the remainder of this paper we will assume β > λ is fixed. The aim
of this paper is to study two Γ-convergence problems for Fp,ε, where Fp,ε is defined
in (1):

P1.: The Γ-convergence of Fp,ε on W 1,∞ ((0, 1)).
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P2.: The Γ-convergence of Fp,ε on A (x, y).

The Γ-convergence in both cases is with respect to the strong L∞ ((0, 1)) topology.
The main tool behind our arguments is to compare the Γ-convergence of Fp,ε with
the Γ-convergence of the functionals

Fε(u) :=

∫ 1

0

a

(
u(τ)

ε

)
‖u′(τ)‖ dτ, (13)

where the metric coefficient is given by

a(x) :=

{
β if x ∈ Ωg + Zd,
1 otherwise.

(14)

The computation of the Γ-limit in this case relies on the fact that the functionals
Fε are uniformly bounded in ε. By [9, Theorem 15.4] functionals (13) Γ-converge
to a functional of the form

F0(u) :=

∫ 1

0

ψ(u′(τ)) dτ, (15)

where the convex function ψ is given by the asymptotic homogenisation formula

ψ(ξ) = lim
ε→0

inf
u∈A (0,ξ)

∫ 1

0

a

(
u(τ)

ε

)
‖u′(τ)‖ dτ. (16)

The function ψ is also 1-homogeneous and convex as demonstrated in [8]. Further-
more, it holds that

min
u∈A (ξ1,ξ2)

∫ 1

0

ψ(u′(τ)) dτ ≤
∫ 1

0

ψ(ξ2 − ξ1) dτ = ψ(ξ2 − ξ1).

Note that the minimum exists by [9, Theorem 7.2]. In addition it holds that for
any u ∈ A (ξ1, ξ2)

ψ(ξ2 − ξ1) = ψ

(∫ 1

0

u′(τ) dτ

)
≤
∫ 1

0

ψ(u′(τ)) dτ (17)

by Jensen’s inequality. Then taking the minimum over all u ∈ A (ξ1, ξ2) in (17) we
get, by [9, Theorem 7.2],

lim
ε→0

dε(ξ1, ξ2) = ψ(ξ2 − ξ1). (18)

where dε the distance function induced by Fε is given by

dε(ξ1, ξ2) = min
u∈A (ξ1,ξ2)

Fε(u).

The proof that dp,ε is a distance function can be found in [15, Lemma 1.4.1]; the
fact that the minimum exists by the Hopf-Rinow Theorem [10, Theorem 2.5.28].

4. Γ-convergence on W 1,∞((0, 1)). In this section we address problem P1. That
is we determine that the sequence Fp,ε Γ-converges on W 1,∞ ((0, 1)) with respect
to the strong L∞ ((0, 1)) topology for p ∈ (0,∞]. Let Ωg satisfy the hypotheses of
Lemma 2.3 and let the high opacity coefficient be denoted by λ. First we need a
technical lemma which states that given ε > 0 and u ∈ W 1,∞ ((0, 1)) there exists

a curve no further than
√
dε away from graph(u) that does not enter the high

opacity regions of the Riemannian length density, that is to say that graph(u) ∩
ε
(
Ωg + Zd

)
= ∅. We remark that the results of this subsection generalise the

examples of [11], in the sense we consider a class of sets Ωg.
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Lemma 4.1. Let u ∈W 1,∞ ((0, 1)), then for each ε > 0 there exists

uwε ∈W 1,∞ ((0, 1))

such that graph(u) ⊂ εΩw and ‖u− uwε ‖∞ ≤
√
dε.

Proof. Fix u ∈ W 1,∞ ((0, 1)) and ε > 0. Since ‖u‖∞ < ∞, it follows that there
exist x1, ...,xn ∈ Zd such that graph(u) ⊂ ∪ni=1ε([0, 1]d + xi). Fix i ∈ {1, ..., n}
and define Gi := graph(u) ∩ ε (Ωg + xi). Let Gji be a connected component of Gi;
there exists finitely many such connected components since u is Lipschitz. Now fix
j. Set TGji := {τ ∈ (0, 1) : u(τ) ∈ Gji}, s

j
i = inf TGji and tji = supTGji . Choose

i such that TGji 6= ∅; if TGji = ∅ for all i, j then set uwε = u and we are done.

Applying the argument of Lemma 2.3, sji < tji and u(sji ), u(tji ) ∈ ∂(ε(Ωg + xi)).

Since ∂Ωg is path connected there exists a Lipschitz curve joining u(sji ) to u(tji ) in

∂(ε(Ωg + xi)) denoted as wji . The fact that wji is Lipschitz continuous follows from
the smoothness of ∂Ωg [15, Chapters 1 and 8]. Then set

uwε (τ) :=

{
wji (τ) if τ ∈ (sji , t

j
i )

u(τ) otherwise.

It is clear from the construction that graph(u) ⊂ εΩw. Note that, since Ωg is

assumed to be open, Ωw is closed. It remains to check that ‖u−uwε ‖∞ ≤
√
dε. Fix,

τ ∈ (si, ti) for some i ∈ {1, ..., n}, then

‖uwε − u‖∞ = ‖wi − u‖∞ ≤ εdiam(cl(Ωg + xi)),

since u(τ), wi(τ) ∈ cl(ε(Ωg + xi)) for all τ ∈ (sji , t
j
i ). It is immediate that

diam(cl(Ωg + xi)) ≤
√
d

and therefore taking the supremum over all τ gives the required estimate. The fact
that uwε ∈W 1,∞ ((0, 1)) follows from the regularity of u, wi and ∂Ωg.

The following lemma shows that for the Γ-convergence of Fε it is possible to
choose a recovery sequence that never enters the higher opacity region.

Lemma 4.2. For each u ∈ W 1,∞ ((0, 1)) and each sequence (εk)∞k=1 converging to
0, there exists a sequence (uεk)εk>0 ⊂W 1,∞ ((0, 1)), converging in L∞ ((0, 1)) to u,
such that

1. limk→∞ Fεk(uεk) = F0(u), and,
2. graph(uεk) ⊂ εkΩw for all k

where F0 is given by (15) and (16).

Proof. Let K ⊂⊂ Rd be such that graph(u) ⊂ int(K). By [11, Theorem 3.1]
the metrics induced by Fεk , denoted dεk , converge locally uniformly to the metric
induced by the norm ψ as k →∞. Therefore, it is possible to choose (Mk)∞k=1 ⊂ N
converging to infinity such that

lim
k→∞

Mk sup
ξ1,ξ2∈K

|dεk(ξ1, ξ2)− ψ(ξ2 − ξ1)| = 0.
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Let πMk
= {τ0, ..., τMk

} be a partition of [0, 1] such that |τj − τj+1| = 1/Mk for
j = 1, ...,Mk. Define the function uεk by

uεk = uwεk+

argminw∈W 1,∞
0 ((0,1))

∫ τi

τi−1

a

(
u(τ) + w(τ)

εk

)
‖u′(τ) + w′(τ)‖ dτ (19)

on [τi−1, τi], where uwεk is given by Lemma 4.1. The minimiser of (19) exists by the
Hopf-Rinow Theorem [10, Theorem 2.5.28]. Fix k and t ∈ [0, 1] and suppose that
τ ∈ [τi−1, τi]. Then∥∥uεk(τ)− uwεk(τ)

∥∥ ≤ ‖uεk(τ)− uεk(τi−1)‖+
∥∥uεk(τi−1)− uwεk(τ)

∥∥ ,
= ‖uεk(τ)− uεk(τi−1)‖+

∥∥uwεk(τi−1)− uwεk(τ)
∥∥ , (20)

using the fact that uwεk = uεk on πMk
. By the bound on a (14) it holds that

‖uεk(τ)− uεk(τi−1)‖ ≤ dεk(uεk(τ), uεk(τi−1))

≤ dεk(uεk(τi), uεk(τi−1)) ≤ β ‖uεk(τi)− uεk(τi−1)‖ . (21)

Since uwεk → u uniformly by Lemma 4.1, it follows that the sequence uwεk is equicon-
tinuous by the converse of the Arzelá-Ascoli Theorem. Therefore, fix η > 0 then
there exists δ > 0 such that |x − y| < δ implies that ‖uwεk(x) − uwεk(y)‖ < η for all
k. Consequently there exists K ∈ N such that k ≥ K implies |πMk

| < δ, therefore
for k ≥ K, combining (20) and (21),∥∥uεk(τ)− uwεk(τ)

∥∥ ≤ βη + η.

Consequently, since η was arbitrary, ‖uεk − uwεk‖∞ → 0 as k → ∞, and since uwεk
converges to u in L∞ ((0, 1)) it holds that uεk → u in L∞ ((0, 1)). It remains to
show that uεk has the desired properties. Observe that∫ 1

0

ψ(u′(τ)) dτ ≥
Mk∑
i=1

ψ(u(τi)− u(τi−1))

≥
Mk∑
i=1

dε(uεk(τi), uεk(τi−1))−

Mk∑
i=1

|ψ(u(τi)− u(τi−1))− dε(uεk(τi), uεk(τi−1))| . (22)

The first inequality in the above holds since the length functional with density ψ
gives rise to an induced metric d(x, y) = ψ(x− y), the equality following from (18).
By construction it is true that

Mk∑
i=1

dε(uεk(τi), uεk(τi−1)) = Fε(uεk),

furthermore, since there exists k0 such that graph(uεk) ⊂ K for all k ≥ k0,

Mk∑
i=1

|ψ(u(τi)− u(τi−1))− dε(uεk(τi), uεk(τi−1))|

≤Mk sup
ξ1,ξ2∈K

|dεk(ξ1, ξ2)− ψ(ξ2 − ξ1)|.
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Hence by (22), the choice of (Mk)∞k=1 and the liminf inequality,∫ 1

0

ψ(u′(τ)) dτ ≥ lim sup
k→∞

Fε(uεk) ≥ lim inf
k→∞

Fε(uεk) ≥
∫ 1

0

ψ(u′(τ)) dτ.

The last thing we need to show is that graph(uεk) ⊂ εkΩw for all k. By the
construction, as given in (19), uεk is constructed as a piecewise geodesic curve
joining points along uwεk . By Lemma 2.3 these geodesic pieces do not enter Ωg +Zd,
hence the result holds.

Theorem 4.3. Let Ωg satisfy the hypotheses of Lemma 2.3 and let the high opacity
coefficient be denoted by λ. Let β > λ, then

Γ(L∞ ((0, 1)))− limFp,ε(u) = F0(u), ∀u ∈W 1,∞ ((0, 1)) ,∀p ∈ (0,∞]

where F0 is defined by equations (15) and (16).

Proof. Fix p ∈ (0,∞] and let (εk)∞k=1 be a sequence converging to 0. Without
relabelling, pass to the subsequence where εpk < β/λ for all k. Let uεk → u in
L∞ ((0, 1)). Since ap,εk ≥ a, by our choice of ε, it follows that

lim inf
k→∞

Fp,εk(uεk) ≥ lim inf
k→∞

Fεk(uεk) ≥ F0(u),

the second inequality being the liminf inequality for the Γ-convergence of Fεk . Ap-
plying Lemma 4.2 we obtain a sequence uεk converging to u in L∞ ((0, 1)) where
limk→∞ Fεk(uεk) = F0(u) and graph(uεk) ⊂ εkΩw for all k. Since ap,εk = a on Ωw
it follows that

lim
k→∞

Fp,εk(uεk) = lim
k→∞

Fεk(uεk).

Hence the sequence Fp,εk Γ-converges by the Urysohn property of Γ-convergence [9,
Proposition 7.11].

While the proof of Theorem 4.3 is nontrivial, as the sequence of functionals are
not bounded uniformly, the convergence of minimisers, and hence the motivation
for computing the Γ-limit, can be determined using a simpler argument. Observe,
by the growth conditions that the minimiser of Fp,ε is the zero function, which is
unique and this converges to the minimiser of F0. The fact that the 0 function is the
unique minimiser of F0 on W 1,∞ ((0, 1)) follows from the growth estimates on ψ [3].
It proves to be more interesting to understand the Γ-convergence of Fp,ε on a smaller
space, typically the space of Lipschitz curves joining two fixed points. The result of
such an analysis may then be applied to problems in nonlinear optics and dynamics.
In this setting, the minimal curves are nontrivial, and to understand their effective
behaviour proves to be more challenging in the context of the unbounded length
functionals we consider here. This is the subject of the next section.

5. Γ-convergence on A (x, y). As before, let Ωg satisfy the hypotheses of Lemma
2.3 and let the high opacity coefficient be denoted by λ. In the previous subsection
it was shown that the length functionals Fp,ε Γ-converge on W 1,∞ ((0, 1)), for all
p ∈ (0,∞]. From this no additional information may be derived to approximate
geodesics joining points. Typically, once the Γ-limit is calculated for the uncon-
strained problem, the Γ-limit with boundary conditions can be calculated as an
extension of the original argument [9, Proposition 11.7]. The extension argument
relies on what is known as the fundamental estimate, which allows one to join the
functions in the argument of the functional, introducing only a small error term.



THE Γ-LIMIT OF TWO PHASE METRIC FUNCTIONALS 9

In this subsection we study the effective description of geodesics joining two
points for the length functional (1). The main, and perhaps surprising, result here
is that the existence of the Γ-limit for Fp,ε depends on the value of p. To prove this
fact we show that the sequence Γ-converges on the space of curves joining any two
points if and only if the induced metric converges locally uniformly; this result is
that of [11] but in the context of non-uniformly bounded two phase metrics. Here
we show that the induced metrics always converge locally uniformly, should the
opacity coefficient grow sufficiently slowly as ε→ 0.

5.1. The induced metrics converge locally uniformly to a norm for p < 1.
In this subsection we consider the case of slowly increasing opacity with ε. Here we
prove that the induced metrics dp,ε converge locally uniformly to a norm. In the
case when p < 1 the following lemma describes the pointwise convergence of dp,ε in
terms of the convergence of dp,ε on εΩw. The latter convergence is easier to prove
as there is more information available about geodesics joining points in εΩw, c.f.
Lemma 2.3. In this section we will make use of the following trivial estimate

‖ξ2 − ξ1‖ ≤ dp,ε(ξ1, ξ2) ≤ β

εp
‖ξ2 − ξ1‖. (23)

Lemma 5.1. Let p < 1, ξ1, ξ2 ∈ Rd, ε > 0 and ξ1,ε, ξ2,ε ∈ εΩw be such that

‖ξ1,ε − ξ1‖ ≤
√
dε, ‖ξ2,ε − ξ2‖ ≤

√
dε. The limit

lim
ε→0

dp,ε(ξ1, ξ2) = lim
ε→0

min
u∈A (ξ1,ξ2)

Fp,ε(u) (24)

exists if and only if the limit

lim
ε→0

dp,ε(ξ1,ε, ξ2,ε) = lim
ε→0

min
u∈A (ξ1,ε,ξ2,ε)

Fp,ε(u) (25)

exists.

Proof. Fix εp ∈ (0, β/λ). Then, using the triangle inequality and (23),

dp,ε(ξ1, ξ2) ≤ β

εp
‖ξ1 − ξ1,ε‖+ dp,ε(ξ1,ε, ξ2,ε) +

β

εp
‖ξ2,ε − ξ2‖

≤ dp,ε(ξ1,ε, ξ2,ε) + 2β
√
dε1−p.

Similarly,

dp,ε(ξ1, ξ2) ≥ dp,ε(ξ1,ε, ξ2,ε)−
β

εp
‖ξ1,ε − ξ1‖ −

β

εp
‖ξ2 − ξ2,ε‖

≥ dp,ε(ξ1,ε, ξ2,ε)− 2β
√
dε1−p.

Therefore

|dp,ε(ξ1, ξ2)− dp,ε(ξ1,ε, ξ2,ε)| ≤ 2β
√
dε1−p. (26)

If the limit (25) exists then taking the limit as ε→ 0 gives that, by (26), the limit
(24) exists. The converse statement is proved in an identical fashion.

The following lemma connects the homogenisation of Fp,ε with that of Fε. The
proof demonstrates that the functionals Fε and Fp,ε give equivalent measures of
length for geodesics. For notational convenience we define for x, y ∈ Rd the space
Aw(x, y) := {u ∈W 1,∞ ((0, 1)) : u(0) = x, u(1) = y, u(τ) ∈ Ωw ∀τ}.
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Lemma 5.2. Let p < 1, ξ1, ξ2 ∈ Rd, ε > 0 and ξ1,ε, ξ2,ε ∈ εΩw be such that

‖ξ1,ε − ξ1‖ ≤
√
dε, ‖ξ2,ε − ξ2‖ ≤

√
dε. For β/λ > ε > 0 it follows that

lim
ε→0

min
u∈A (ξ1,ε,ξ2,ε)

Fp,ε(u) = lim
ε→0

min
u∈A (ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

a(u(τ))‖u′(τ)‖ dτ,

provided either limit exists. Furthermore,

lim
ε→0

min
u∈A (ξ1,ξ2)

Fε(u) = lim
ε→0

min
u∈A (ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

a(u(τ))‖u′(τ)‖ dτ,

provided either limit exists.

Proof. Fix εp ∈ (0, β/λ), then by Lemma 2.3 and the fact that ap,ε = a on Ωw,

lim
ε→0

min
u∈A (ξ1,ε,ξ2,ε)

Fp,ε(u) = min
u∈A (ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

ap,ε(u(τ))‖u′(τ)‖ dτ

= min
u∈Aw(ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

ap,ε(u(τ))‖u′(τ)‖ dτ

= min
u∈Aw(ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

a(u(τ))‖u′(τ)‖ dτ

= min
u∈A (ξ1,ε/ε,ξ2,ε/ε)

ε

∫ 1

0

a(u(τ))‖u′(τ)‖ dτ,

taking the limit as ε→ 0 gives the first part of the result. The second part follows
by identical reasoning to Lemma 5.1 and the above.

The following theorem establishes the pointwise convergence of metrics for p < 1.

Theorem 5.3. Let p < 1. Then the limit

lim
ε→0

dp,ε(ξ1, ξ2) = lim
ε→0

min
u∈A (ξ1,ξ2)

Fp,ε(u) = ψ(ξ2 − ξ1) (27)

exists for all ξ1, ξ2 ∈ Rd, where ψ is as in (16).

Proof. By [3, Proposition 3.2] ψ exists. For each ε > 0, we obtain the existence of

ξ1,ε, ξ2,ε ∈ εΩw be such that ‖ξ1,ε − ξ1‖ ≤
√
dε, ‖ξ2,ε − ξ2‖ ≤

√
dε. The result then

follows by applying Lemmas 5.2 and 5.1.

5.2. The induced metrics fail to converge pointwise for p ≥ 1. In this section
we show that for p ≥ 1 the limit limε→0 dp,ε(ξ1, ξ2) does not exist, in contrast to
the case p < 1. Consequently, the sequence Fp,ε fails to Γ-converge on A (ξ1, ξ2)
for all ξ1, ξ2 ∈ Rd; since otherwise by the fundamental theorem of Γ-convergence
[7, 9] the minimum values would converge. It is possible to make this conclusion by
observing also that the sequence Fp,ε is equicoercive.

The proof relies on a simple geometric assumption. The principle behind the
argument is that we may choose, for a specific pair of end points, two different
sequences of values for ε that subsequently give rise to two different limit values.
Namely, we may choose a sequence where the endpoints lie in εΩw and therefore
using Lemma 2.3 and subsequent results to find a finite limit. However it is also
possible to choose a sequence of values for ε where one of the end points lies in
Ωg + Rd, resulting in the divergence of the length functionals in ε.

A sketch of the argument can be found in figure 1. The argument relies on joining
ξ2 := (1/2, 1/2, · · · ) ∈ Ωg and ξ1 := (0, 0, · · · ) ∈ Ωw for specific choices of sequences
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of values for ε. In particular we choose a sequence εk such that ξ2 ∈ εk
(
Ωg + Zd

)
for

all k. It follows that dp,εk(ξ1, ξ2) = ψ(ξ2−ξ1)+O(ε1−p
k ) as k →∞. We also construct

a sequence such that ξ2 ∈ εkΩw for all k. In this case, as the geodesic never enters
εk
(
Ωg + Zd

)
, it follows that dp,εk(ξ1, ξ2) = ψ(ξ2 − ξ1) as k →∞. Consequently we

get different limit values for two sequences of values for ε. Therefore the Γ-limit
ceases to exist.

Figure 1. An illustration of the proof of Theorem 5.4. The se-
quence ε̃k corresponds to a sequence such that the end points of the
curve lie in εΩw, indicated by the solid curve. The sequence εk cor-
responds to a sequence such that it has an end point in ε

(
Ωg + Zd

)
,

indicated by the dashed curve.

Theorem 5.4. Suppose that ξ2 := (1/2, 1/2, · · · ) ∈ Ωg and that ξ1 := (0, 0, · · · ) ∈
Ωw. Then the limit limε→0 dp,ε(ξ1, ξ2) does not exist.

Proof. Set ε̃k := 1/2k for k ∈ N. If p < ∞ we pass to a subsequence such that
ε̃pk < β/λ. It follows immediately that ξ2 ∈ ε̃kZd ⊂ ε̃kΩw for all k, since ξ1 ∈ Ωw.
Consequently, by Lemma 2.3 the solution to the problem minu∈A (ξ1,ξ2) Fp,ε̃k(u),
which we denote by wε̃k , is such that graph(wε̃k) ⊂ ε̃kΩw. Applying Theorem 5.3,
with ξ1,ε̃k = ξ1 and ξ2,ε̃k = ξ2 for all ε̃ > 0, it holds that

lim
k→∞

min
u∈A (ξ1,ξ2)

Fp,ε̃k(u) = lim
k→∞

min
u∈A (ξ1,ξ2)

Fε̃k(u) = ψ(ξ2 − ξ1).

We now construct a second sequence converging to a different limit. Set εk =
1/(2k + 1) for k ∈ N. If p <∞ we again pass to a subsequence such that εpk < β/λ.

It follows that ξ2 ∈ εk(Ωg + Zd) for all k. Denote the solution to the problem
minu∈A (ξ1,ξ2) Fp,εk(u), by wεk . It follows by Lemma 2.3 that for each k there
exists τk ∈ (0, 1) such that wεk(τ) ∈ εkΩw for τ ∈ [0, τk] and wεk(τ) ∈ εk(Ωg +
(k, k, · · · )) for τ ∈ (τk, 1] and (k, k, · · · ) ∈ Zd. Since Ωg is open there exists a
ρ > 0 such that Bρ(ξ2) ⊂ Ωg. Hence, for all k, εk(Bρ(ξ2) + (k, k, · · · )) ⊂ εk(Ωg +
(k, k, · · · )). By continuity for each k there exists σk ∈ (τk, 1) such that wεk(σk) ∈
∂ (εk(Bρ(ξ2) + (k, k, · · · ))). Therefore

Fp,εk(wεk) ≥ dp,ε(ξ1, wεk(τk)) + dp,ε(wεk(σk), ξ2), (28)
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since any geodesic curve is locally geodesic. By construction ‖wεk(τk)−ξ2‖ ≤
√
dεk

and wεk(τk) ∈ εkΩw. Set ξ1,εk = ξ1 and ξ2,εk = wεk(τk) for all k. Applying Theorem
5.3 it follows that

lim
k→∞

dp,ε(ξ1, wεk(τk)) = lim
k→∞

dεk(ξ1, ξ2) = M. (29)

The quantity dp,ε(wεk(σk), ξ2) is the distance between the centre of the ball

εk(Bρ(ξ2) + (k, k, · · · ))
and a point on its boundary. As the ball εk(Bρ(ξ2) + (k, k, · · · )) is contained in Ωg
it follows that

dp,ε(wεk(σk), ξ2) =
β

εpk
‖wεk(σk)− ξ2‖ = βε1−p

k ρ. (30)

Combining (28), (29) and (30) then taking the limit k →∞ gives that

lim
k→∞

Fp,εk(wεk) ≥

{
∞ if p > 1,

M + βρ if p = 1.

Hence there exists sequences (ε̃k)∞k=1 and (εk)∞k=1 converging to 0 such that M ≥
M + βρ. Since β, ρ > 0 the result is shown.

5.3. The equivalence of Γ-convergence and metric convergence for p < 1.
In this section we show that the boundary value problem Γ-converges if and only if
the induced metrics converge locally uniformly. This extends the theory of [11] to
a class of non-uniformly bounded two-phase Riemannian length functionals. That
is, when the sequence dε fails to satisfy C1‖ξ2 − ξ1‖ ≤ dε(ξ1, ξ2) ≤ C2‖ξ2 − ξ1‖
uniformly in ε for all ξ1, ξ2 ∈ Rd.

The following lemma shows that we can improve the bounds on the induced
metric so that dp,ε is almost uniformly equivalent to the Euclidean metric.

Lemma 5.5. Let p < 1, ε > 0 and ξ1, ξ2 ∈ Rd. Then there exists C1, C2 > 0 such
that

‖ξ1 − ξ2‖ − C1ε ≤ dp,ε(ξ1, ξ2) ≤ β‖ξ1 − ξ2‖+ C2ε
1−p.

Proof. Let u be a geodesic joining ξ1 to ξ2. By Lemma 2.3 it follows that the set
T := {τ ∈ (0, 1) : u(τ) ∈ ε

(
Ωg + Zd

)
} takes one of the forms

∅ or [0, τ1) or (τ2, 1] or [0, τ1) ∪ (τ2, 1] or [0, 1]

for some τ1, τ2 ∈ (0, 1) with τ1 < τ2. Suppose first that T = [0, τ1) ∪ (τ2, 1]; the
cases when τ2 = 1 or τ1 = 0 following in an identical fashion. It holds that

Fp,ε(u) = dp,ε(ξ1, u(τ1)) + dp,ε(u(τ1), u(τ2)) + dp,ε(u(τ2), ξ2). (31)

Observe that by construction ‖ξ1 − u(τ1)‖ ≤
√
dε and ‖ξ2 − u(τ2)‖ ≤

√
dε, and

hence by the growth condition (23) it follows that

dp,ε(ξ1, u(τ1)) ≤ β
√
dε1−p and dp,ε(u(τ2), ξ2) ≤ β

√
dε1−p.

Using Lemma 2.3 and the fact that u(τ1), u(τ2) ∈ εΩw, it follows that ap,ε(u(τ)) =
a(u(τ)) for all τ ∈ [τ1, τ2] and hence dp,ε(u(τ1), u(τ2)) = dε(u(τ1), u(τ2)). By the
triangle inequality and (23) we have

dε(u(τ1), u(τ2)) ≤ dε(ξ1, ξ2) + β (‖ξ1 − u(τ1)‖+ ‖ξ2 − u(τ2)‖)

≤ β‖ξ2 − ξ1‖+ 2β
√
dε.
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Consequently

dp,ε(ξ1, ξ2) = Fp,ε(u) ≤ β‖ξ2 − ξ1‖+ 2β
√
dε1−p + 2β

√
dε.

Continuing from (31) and applying the triangle inequality with Lemma 2.3, we have
that

Fp,ε(u) ≥
∫ τ2

τ1

ap,ε

(
u(τ)

ε

)
‖u′(τ)‖ dτ = dp,ε(u(τ1), u(τ2))

= dε(u(τ1), u(τ2)) ≥ dε(ξ1, ξ2)− dε(ξ1, u(τ1))− dε(ξ2, u(τ2)).

From (23) it follows that

Fp,ε(u) ≥ ‖ξ2 − ξ1‖ − 2β
√
dε.

Hence the bounds are illustrated. The remaining case when T = [0, 1] follows in a
similar manner.

The following lemma improves pointwise convergence to local uniform conver-
gence as in the uniformly bounded case. The key is that we are still close to the
uniformly bounded case, due to the improved growth bounds of Lemma 5.5.

Lemma 5.6. If the metrics dp,ε converge pointwise to d then they converge locally
uniformly.

Proof. The proof is as for [11, Proposition 2.3], mutatis mutandis, using the bounds
in Lemma 5.5.

We are now in a position to prove one of our main homogenisation results, using
a modification of the method in [11, Theorem 3.1].

Theorem 5.7. If p < 1, then the sequence of functionals Fp,ε defined on A (ξ1, ξ2)
Γ-converge with respect to the L∞ ((0, 1)) norm topology to F0 as defined in equations
(15) and (16), for all ξ1, ξ2 ∈ Rd.

Proof. Fix ξ1, ξ2 ∈ Rd. Let (εk)∞k=1 ⊂ (0,∞) converge to zero. Fix u ∈ A (ξ1, ξ2)
and let uεk ∈ A (ξ1, ξ2) converge to u ∈ L∞(0, 1) as k →∞, then uεk → u pointwise
as k →∞. Let πN = {τ0, ..., τN} be a partition of [0, 1] such that |τj − τj+1| = 1/N
for j = 1, ..., N . Then

Fεk(uεk) =

N∑
i=1

∫ τi

τi−1

ap,ε

(
uεk(τ)

εk

)
‖u′εk(τ)‖dτ

≥
N∑
i=1

dp,εk(uεk(τi−1), uεk(τi)),

using the invariance of the length functional under reparameterisations. Therefore
applying the triangle inequality for the induced metric, and Lemma 5.5, we obtain

Fεk(uεk) ≥
N∑
i=1

dp,εk (u(τi−1), u(τi))− dp,εk (uεk(τi), u(τi))

− dp,εk (u(τi−1), uεk(τi−1))

≥
N∑
i=1

dp,εk (u(τi−1), u(τi))− β‖uεk(τi)− u(τi)‖

− β‖u(τi−1)− uεk(τi−1)‖ − 2Cε1−p
k .
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Taking the limit as k → ∞ and using the fact that dp,ε converges pointwise by
Theorem 5.3, gives that

lim inf
k→∞

Fεk(uεk) ≥
N∑
i=1

ψ (u(τi)− u(τi−1)) .

Using the 1-homogeneity of ψ, c.f. [8], gives

lim inf
k→∞

Fεk(uεk) ≥
N∑
i=1

ψ

(
u(τi)− u(τi−1)

|τi − τi−1|

)
|τi − τi−1| =

∫ 1

0

ψ(u′N (τ)) dτ,

where uN is the linear interpolation of u on πN . Sending N → ∞, and applying
the dominated convergence Theorem, to prove the lim-inf inequality.

We now show the lim-sup inequality. Fix u ∈ A (ξ1, ξ2). Then choosing a se-
quence (Mk)∞k=1 ⊂ N such that

lim
k→∞

Mk sup
ξ1,ξ2∈K

|dεk(ξ1, ξ2)− ψ(ξ2 − ξ1)| = 0,

where K ⊂⊂ Rd such that graph(u) ⊂ int(K). Let πMk
= {τ0, ..., τMk

} be a
partition of [0, 1] such that |τj−τj+1| = 1/Mk for j = 1, ...,Mk. Define the function
uεk by

uεk(τ) = u(τ)+

argminw∈W 1,∞
0 ((0,1))

∫ τi

τi−1

ap,εk

(
u(τ) + w(τ)

ε

)
‖u′(τ) + w′(τ)‖ dτ (32)

for τ ∈ [τi−1, τi] in the partition πMk
. Clearly, by construction, uεk ∈ A (ξ1, ξ2).

Fix k and t ∈ [0, 1] and suppose that τ ∈ [τi−1, τi]. Then

‖uεk(τ)− u(τ)‖ ≤ ‖uεk(τ)− u(τi−1)‖+ ‖u(τi−1)− u(τ)‖ . (33)

By Lemma 5.5 it holds that

‖uεk(τ)− u(τi−1)‖ ≤ dp,εk(uεk(τ), u(τi−1)) + Cε1−p
k ,

≤ dp,εk(uεk(τi), u(τi−1)) + Cε1−p
k ,

≤ β ‖uεk(τi)− uεk(τi−1)‖+ 2Cε1−p
k ,

= β ‖u(τi)− u(τi−1)‖+ 2Cε1−p
k .

Therefore, letting the Lipschitz constant of u be denoted by Λ,

‖uεk(τ)− u(τ)‖ ≤ β ‖u(τi)− u(τi−1)‖+ ‖u(τi−1)− u(τ)‖+ 2Cε1−p
k

≤ (1 + β)Λ

Mk
+ 2Cε1−p

k ,
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using the fact that |τi − τi−1| = 1/Mk for all k. Hence uεk → u in L∞ ((0, 1)). It
remains to show that uεk has the desired properties. Observe that∫ 1

0

ψ(u′(τ)) dτ ≥
Mk∑
i=1

ψ(u(τi)− u(τi−1))

≥
Mk∑
i=1

dp,ε(uεk(τi), uεk(τi−1))−

Mk∑
i=1

|ψ(u(τi)− u(τi−1))− dp,ε(uεk(τi), uεk(τi−1))| . (34)

By construction it holds that

Mk∑
i=1

dp,ε(uεk(τi), uεk(τi−1)) = Fp,ε(uεk),

furthermore, for ε sufficiently small,

Mk∑
i=1

|ψ(u(τi)− u(τi−1))− dp,ε(uεk(τi), uεk(τi−1))|

≤Mk sup
ξ1,ξ2∈K

|dεk(ξ1, ξ2)− ψ(ξ2 − ξ1)|.

Hence by (34), the choice of (Mk)∞k=1 and the liminf inequality,∫ 1

0

ψ(u′(τ)) dτ ≥ lim sup
k→∞

Fp,ε(uεk) ≥ lim inf
k→∞

Fp,ε(uεk) ≥
∫ 1

0

ψ(u′(τ)) dτ.

Since the choice of the sequence (εk)∞k=1 was arbitrary and the limit is independent
of this choice, and Γ-convergence follows.

It remains to prove the converse.

Theorem 5.8. Suppose that the sequence of functionals Fp,ε defined on A (ξ1, ξ2)
Γ-converge with respect to the L∞ ((0, 1)) norm topology to F0 defined in (15) and
(16) for all ξ1, ξ2 ∈ Rd. Then the induced metrics converge locally uniformly to the
norm ψ, as defined in (16), on Rd.

Proof. Fix ξ1, ξ2 ∈ Rd. Applying the fundamental theorem of Γ-convergence [9,
Theorem 7.2] it follows that dp,ε converges pointwise to ψ. By Lemma 5.6 the local
uniform convergence follows.
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