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ABSTRACT 

This paper describes how a new type of solid state microelectrode based on nanostructured 
palladium-hydride (PdH) can be used to monitor pH variations during carbonation of calcium hydroxide 
(Ca(OH)2). The experiments described were carried out under conditions similar to those typical of 
common porous substrates such as cement and lime mortars. In these tests PdH microelectrodes 
were employed to record pH transients during the carbonation within a humid fibrous mesh that 
simulated the porous substrate. To control the carbonation rate, experiments were carried out at 
different carbon dioxide partial pressures (pCO2) and in each case the experimental results were 
compared to theoretical calculations obtained using PHREEQC (pH-REdox-EQuilibrium) software.  
Scanning electron microscopy (SEM) observations and X-ray diffraction (XRD) analysis of the calcium 
carbonate (CaCO3) crystals deposited on the fibrous mesh were used to evaluate characteristics of 
the solid phases precipitated during the reaction. Results demonstrate that these pH microsensors can 
operate reliably in very alkaline environments (pH>12) such as those produced by the dissolution of 
Ca(OH)2. 

1. INTRODUCTION 

One of the most important electrochemical 
measurements is that of the acidity or basicity 
of aqueous solutions. Numerous chemical 
reactions involve pH changes that can highlight 
processes otherwise difficult to monitor such as 
the corrosion of steel bars in reinforced 
concrete. 
The steel reinforcement in concrete is normally 
in a passive state with respect to corrosion due 
to a thin iron oxide layer produced by the highly 
alkaline environment (pH>12) of the concrete 
pore solution. This alkaline environment is 
mainly produced by the Ca(OH)2 contained in 
the cement as well as by the smaller amount of 
other alkaline species such as sodium and 
potassium hydroxides (NaOH and KOH, 
respectively) [1].
Because of the reduced porosity of concrete, 
these hydroxides do not fully carbonate during 
the hardening process and this guarantees an 
almost constant alkaline environment that 
maintains the protective layer around the steel 
reinforcement preventing corrosion [2]. 
However, over time CO2 may penetrate within 
the concrete and cause carbonation of alkali 
and alkaline-earth elements. This eventually 
produces a more acidic environment which 
reduces the passive iron oxide layer and 

increases the risk of corrosion of the underlying 
steel. For this reason monitoring the pH of pore 
waters in steel reinforced concrete structures is 
key to assessing the state of the structures [3]. 
Despite its importance pH remains a difficult 
parameter to determine in many applications, 
including those in the construction industry. In 
this specific case, two of the main factors 
affecting pH measurements are: (1) pHs above 
11 cannot be measured reliably with most of the 
currently used pH sensitive devices including 
the conventional glass electrode, because of 
the alkaline error; (2) pH is hard to measure in 
confined places. The alkaline error is due to the 
fact that in high pH solutions (>11) the hydrogen 
ion activity is so low and the activity of alkali or 
alkaline-earth metal ions (mainly contained in 
the glass of the membrane) is so high that the 
ordinary pH electrode begins to respond to 
these ions rather than to the hydrogen ions. To 
take this effect into account correction tables 
are available as well as special electrodes 
(although the correction tables are preferred, [3, 
p.126]). These special electrodes use alkali-
glass membranes that are less sensitive to ions 
such as Na+ and Li+. However, none of the 
glass membranes currently available has zero 
alkaline error [4]. For instance, the Sentek P11-
PB (PH0043) combination type electrode, sold 
as suitable for measurements within the pH 
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range 0-14 and, in particular, for measuring the 
pH in cement, returned a pH of 12.8 in a pure 
Ca(OH)2 aqueous solution whose pH at 20ºC, 
according to theoretical calculations and to 
some measurements carried out with a solid 
state electrode, had to be 12.56. 

2. A NEW WAY OF MONITORING pH IN 
BUILDING MATERIALS: THE NANO-
STRUCTURED PdH MICROELECTRODES 

In order to overcome limitations of traditional pH 
electrodes, a new type of electrode can be 
exploited for monitoring pH variations in cement 
and lime mortars: the nano-structured PdH 
microelectrode. 
This solid state electrode operates by exploiting 
the insertion of hydrogen in the palladium (Pd) 
structure. This absorption leads to a phase 
change by forming palladium hydride (PdH). 
The maximum amount of hydrogen that can be 
absorbed within the Pd film is relatively large 
(up to 0.6 H per Pd atom). The crystalline 
structure formed is dictated by the quantity of H 
absorbed. Two phases are obtained: the α
phase, when the H:Pd ratio is below 0.02, and 
the β phase when the ratio is above 0.6 In 
between these limits, the PdH consists of a 
mixture of the two phases [5, p.8341]. Under 
these latter conditions, the PdH behaves as a 
hydrogen electrode yielding a Nernstian 
dependence of potential on pH, independent of 
the Pd:H ratio. 
Despite the publication of extensive studies of 
H insertion / extraction in Pd, only one report 
was published in 2006 regarding a PdH micro-
pH sensor [6, p.266]. This was probably due to 
the fact that the potentiometric response of PdH 
microelectrodes is generally worse than that of 
large PdH electrodes. Generally the smaller the 
electrode, the more unstable is its 
potentiometric response. 
However, the nanostructure introduced in 2006 
by Imokawa and colleagues avoids these 
problems [6, p.266] and allows the PdH micro-
electrodes to be successfully used in a number 
of applications. The nanostructure, in fact, 
increases the H absorption rate and allows a 
rapid, stable, reproducible and almost 
theoretical potentiometric pH response in de-
aerated solutions. Furthermore, thanks to these 
characteristics, the electrode can be reloaded 
with hydrogen quickly, thereby allowing 
repeated pH measurements [6, p.271]. 

3. MONITORING pH IN BUILDING 
MATERIALS WITH NANOSTRUCTURED PdH 
MICROELECTRODES 

To demonstrate the reliability of these 
electrodes in monitoring pH variation in porous 

building materials some tests were carried out 
in a joint research project between the 
University of Southampton and University of 
Bath (UK). 
In this research, carbonation was studied within 
a thin film of water to simulate the conditions 
existing in a porous media such as concrete 
once most of the liquid water has evaporated. 
Experiments were carried out in a specifically 
constructed PMMA cell under thermostatic 
conditions (23°C) with different Ar:CO2 gas 
mixtures. The saturated solution of Ca(OH)2
used for the tests was absorbed onto small 
strips of cotton lint (3mm wide, 10mm in length) 
wrapped around the reference electrode. This 
cotton mesh was used to trap a thin film of 
solution and simulate carbonation in the 
confinement of a porous medium, as well as 
provide an ionic path between the electrodes 
and capture the solid phases formed during the 
carbonation for subsequent analysis. 
To control the carbonation, the experiments 
were carried out at different pCO2 and in each 
case the experimental results were compared 
to theoretical calculations using PHREEQC. 
The micro-morphology and crystalline structure 
of solid phases precipitated on the mesh fibres 
during the tests were studied using a field 
emission scanning electron microscope (model 
FESEM6301F from JEOL) and an X-ray 
diffractometer (Rigaku Smartlab with a 9 kW 
source and CuKα X-rays). 
Tests were carried out using a three-electrode 
configuration consisting of the PdH micro-
electrode (a 250µm diameter, 2µm thick disc of 
nanostructured Pd electrodeposited on a Pt 
disc as reported in [6]), a platinum mesh 
counter electrode and a saturated calomel 
reference electrode. The microelectrode was 
held by a translation stage and inserted in the 
cell through a specifically made hole in the cell 
lid. The Pt mesh was clamped at the bottom of 
the cell by the cell lid and the reference 
electrode was clamped outside the cell and 
connected to the solution by means of a salt 
bridge. The latter was terminated by a capillary 
tip attached to the microelectrode and held 
circa 2mm away. 
In order to evaluate the Pd microelectrode 
response, the pHs obtained at the beginning 
and end of the tests were compared with 
theoretical values calculated following 
previously reported PHREEQC (a program for 
simulating homogeneous and heterogeneous 
geochemical reactions) protocols [7]. The initial 
condition was for a solution consisting of 1 kg of 
pure water with the addition of sufficient Ca2+

ions to simulate saturation with lime at 
temperatures of 20, 23 and 25°C. The 
equilibrium phases considered for evaluating 
the final pH were: gaseous CO2 at different 
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partial pressures and one of the solid 
polymorphs of CaCO3. The partial pressure of 
CO2 considered was the same used during all 
the experiments. The number of moles of CO2
was set to 1000 in order to model the 
equilibrium with an effectively infinite reservoir. 
Solid CaCO3 phases introduced into the 
simulation were: monohydrocalcite, vaterite, 
aragonite and calcite. These were introduced 
using a saturation index of zero. Simulations 
were performed with the thermodynamic data 
contained in the Lawrence Livermore National 
Laboratory database which was modified by 
adding data for vaterite taken from the SIT 
database, developed for the French National 
Radioactive Waste Management Agency. 

Table 1. Initial and final pH values calculated with 
PHREEQC for the carbonation of a saturated Ca(OH)2

solution at different temperatures and pCO2 (In pH=initial 
pH; Mon=monohydrocalcite; Vater= vaterite; 

Arago=aragonite; Calc=calcite) 
T 

(°C)
In.
pH

pCO2 
(atm)

Final pH
Mon Vater Arago Calc

20 12.56 

0.750 6.389 6.317 6.139 6.087 

0.167 6.805 6.734 6.559 6.508 

0.039 7.215 7.154 6.972 6.921 

23 12.45 

0.750 6.338 6.310 6.135 6.083 

0.167 6.805 6.728 6.555 6.504 

0.039 7.214 7.139 6.968 6.917 

25 12.37 

0.750 6.388 6.306 6.132 6.080 

0.167 6.805 6.724 6.553 6.501 

0.039 7.214 7.135 6.996 6.915 

4. EXPERIMENTAL RESULTS 

Table 1 reports the initial (second column) and 
final pH (last four columns) of a saturated 
Ca(OH)2 solution before and after carbonation 
at different temperatures and pCO2 as calculated 
by PHREEQC. 
Figure 1 shows the potential transient (left axis) 
measured by the electrode during carbonation 
of the solution at 23°C and 0.167atm pCO2. The 
pH values reported on the right axis were 
calculated from the potential transient using the 
potential-pH calibration curve published in [8] 
where the slope, 58.7±0.5 mV/pH, was in good 
agreement with the slope found previously by 
Imokawa and colleagues [6]. 
For the first 27 min, figure 1, the cell was full of 
solution and the microelectrode measured the 
potential in the bulk solution. During this time an 
inert atmosphere of Ar was introduced into the 
cell to prevent carbonation. A rise in potential 
within the first 20 minutes reflected the loss of 
hydrogen from the β phase of the PdH. 
Between 20 and 45 minutes a plateau appeared 
when the α phase started to form. This effect 
lasted while the two phases coexisted. Under 

this condition the electrode potential was only 
determined by the pH allowing the micro-
electrode to act as a pH electrode. 

Figure 1. Potential transient (left axis) and corresponding 
pH (right axis) recorded with a 250 µm diameter nano-

structured PdH microelectrode during the carbonation of a 
saturated Ca(OH)2 solution at 23°C and 0.167 atm pCO2. 

After about 27 minutes from the beginning of 
the experiment, when the bulk measurement 
was considered stable, the microelectrode was 
moved down toward the cotton lint (point A in 
the inset in figure 1). Once in contact, the signal 
stability was checked and, then, the solution 
was removed using a syringe connected to a 
capillary tube (point B in figure 1). After having 
checked once again the stability of the potential 
transient, a mixture of Ar and CO2 with a pCO2 of 
0.167atm was introduced into the cell (point C). 
Soon after, the potential began to rise steeply 
until it reached a second plateau. This steep 
increase reflected the change in pH due to the 
carbonation reaction within the solution trapped 
in the mesh. A new plateau was reached after 
approximately 60 minutes from the beginning of 
the experiment. This reflected the potential (i.e. 
the pH) of a theoretical water solution with no 
free Ca2+ ions, in equilibrium with two phases: a 
CaCO3 solid phase and CO2 gaseous phase. At 
this stage all Ca2+ ions initially in solution were 
bonded to CO3

2- ions in the CaCO3 structure 
and the pH was mainly influenced by the 
solubility of the solid phases formed and by the 
pCO2 (table 1). 
According to the calibration curve in [8], the 
initial pH of the solution was 12.45 (between 
points A and C in figure 1).  A value in perfect 
agreement with the results of the PHREEQC 
calculation (table 1) and quite different from the 
values measured with the glass electrodes in a 
similar solution (about 12.7). In comparison, the 
pH of the plateau formed at the end of 
carbonation was 6.34. The theoretical pH of a 
similar system calculated by PHREEQC, 
assuming formation of calcite, was 6.50 (table 
1). Repetitions of the same test (table 2) led to 
a mean experimental value of 6.46±0.06. The 
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difference between this mean and the 
theoretical value (-0.04) suggests that calcite is 
the most likely phase formed. To ascertain 
which phase had precipitated, the mesh was 
observed using a SEM. 

Table 2. Experimental pH values recorded at the end of the 
carbonation tests of a saturated Ca(OH)2 water solution at 

different pCO2 and at 23°C. 
pCO2 
(atm)

1st 
test

2nd 
test

3rd 
test average St. 

Error
0.750 6.13 6.06 6.17 6.12 0.03
0.167 6.34 6.56 6.47 6.46 0.06
0.039 6.95 6.78 6.85 6.86 0.05

Figure 2. FE-SEM images of the cellulose mesh with 
calcite. The sample was previously coated with chromium 

to avoid charging in the SEM chamber. 

Figure 2 shows the morphologies of the main 
solid phase found on the cotton lint. The 
rhombohedral crystals are characteristic of 
calcite formations while the round particles 
among some of the rhombohedra are 
characteristic of vaterite. Results of the SEM 
analysis were confirmed by X-ray diffraction. 
More details on these tests and the results 
obtained are reported in [8]. 

5. CONCLUSIONS 

This study demonstrates that pH micro-sensors 
manufactured from nano-structured PdH can 
operate reliably in very alkaline environments 
such as those produced by the dissolution of 
Ca(OH)2. The electrodes were successfully 
employed to monitor the pH changes during 
carbonation in a porous substrate exposed to 
different pCO2 and the pH detected in situ was 
found to be in perfect agreement with the 
theoretical calculations made with PHREEQC. 
To our knowledge, these microelectrodes are 
currently the only analytical tool capable of 
monitoring high pH in confined places. For this 
reason these electrodes can be considered 
very valuable for the study of reactions involving 
building materials. 
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