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1. Introduction 

The question how technological transitions occur is an old one (Schumpeter, 1943). 
Nevertheless, it is only since the turn of the century that the study of transitions has gained 
momentum (Grübler, 1998; Rip and Kemp, 1998; Geels, 2002). The increased attention can 
be understood in the light of the pressing need to reform energy, housing, transportation, 
agriculture and health sectors given resource scarcity, climate change and environmental 
justice. It is commonly agreed that such reforms necessitate fundamental changes in the socio-
technical systems that are currently dominant in these sectors. In this context, one speaks of 
the need for sustainability transitions (Grin et al., 2010; Markard et al., 2012). 

A common notion underlying transition thinking is that of “technological regime” (Nelson 
and Winter, 1977) and “lock-in” (Arthur, 1989). A lock-in into a technological regime can be 
defined as a state in which one technology is dominant in a particular application domain, and 
resistant to competing alternatives, even if the latter can be considered socially desirable 
(David, 1985). Underlying the lock-in phenomenon are increasing returns to adoption: a 
technology tends to be more attractive, the more fellow users already use a technology.  

To further our understanding of the mechanisms underlying technological lock-in, and the 
possibilities to successfully introduce alternative technologies to promote transitions, we look 
into various threshold models in complexity theory. Such models identify “tipping points” 
that lead a system to transit from one state (here one dominant technological regime) to 
another state (here, an alternative technological regime). Understanding the nature of such 
tipping points is important as it may be informative regarding transition policies at the level of 
individual actors, groups of actors, and government. 

In the past two decades, several complexity-theoretic models of technological transitions have 
been proposed. Reviewing these contributions, it becomes clear that the sources of 
technological lock-in may vary, and that the possible mechanisms leading towards 
technological transitions are multiple. In the built up of a substantively interpretable theory of 
technological transitions, we find it helpful to clarify the various assumptions of different 
models and how these models are related. Hence, a systematic review of elementary models 
of technological transitions is useful in order to discern the various mechanisms underlying 
causing transitions or the absence thereof in empirical work. What is more, our review also 
serves as a “menu” for future modelling exercises that can take one or more elementary 
models as a basis, and elaborate on these to fit more specific contexts. 
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Our paper is structured around seven core models of technological transitions. Each of these 
addresses the same question (the conditions under which a population of agents switches from 
a technology to an alternative technology) but from different angles. We start in Section 2
with the hyperselection model, which includes the classic Fisher-Pry substitution model as a 
special case. The hyperselection model contains a tipping point that specifies the critical mass 
required for a new technology to successfully replace the old. One can also derive such 
tipping points using a modified Arthur-model of increasing returns to adoption (Section 3), or 
using an informational cascade model (Section 4), or else a coordination game model (Section 
5). The widespread notion of technological transitions as a co-evolutionary process between 
various interdependent technologies is taken up in Section 6 where we discuss the NK-model, 
which in turn bears resemblances with game theory. In Section 7 we go into transitions as 
percolation processes in social networks. We finally go into sociologically-inspired transition 
models in Section 8. We end with a comparison of the various models and discuss the 
usefulness in probing the complex phenomenon on technological transitions theoretically and 
empirically and discuss their relevance for the study of technological transitions in general 
and sustainability transitions in particular. 

2. Hyperselection

Bruckner et al. (1996) developed a general model of substitution, considering the case of an 
already existing technology 1 with �� users, and an innovative technology that enters the 
market with �� early adopters. The model assumes a constant number of adopters � � �� �
��, which suggests that the two technologies are perfect substitutes. Because of this 
assumption the innovative technology can succeed only by substituting the old one. The 
dynamics of substitution, then, follows from the differential equation: 

���
�	 � 
�� � 
������ � ���� ,  � � 1,2

Here the coefficients �� and 
� set the growth rate of each technology, and, hence, reflect the 
quality of each technology. To assure that N is constant, the decay rate must fulfil the 
condition: 

�� �

�� � 
������ � 
�� � 
������

�

There are three stationary points �����	 � 0� for the population of adopters 
��, ���, which are 


0,1�, 
1,0� and ��������������� , �������������� �. The model is a general model as it can distinguish 

between the case of linear growth (
� � 
� � 0) and non-linear growth (�� � �� � 0). The 
linear model corresponds to the classic selection model of substitution (Fisher and Pry, 1971), 
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while the non-linear case captures self-reinforcing growth rates reflecting increasing returns to 
adoption where a technology becomes more attractive the more it is already used (Arthur, 
1989). In the latter case, one speaks of hyperselection. 

In the case of linear growth there are only two stationary points, 
0,�� or 
�, 0�, one stable 
and one unstable, depending on whether �� is smaller or larger than ��, respectively. 
Whenever the new technology is a better one than the old technology, meaning that �� � ��, 
it will always substitute the old technology, since the only stable equilibrium is 
0,��, as it is 
shown in the phase diagram: 

As shown by Bruckner et al. (1996), the case of linear growth is equivalent to the classic 
Fisher-Pry model (Fisher and Pry, 1971; Grübler, 1998). The only difference between the two 
models holds that the Fisher-Pry model is expressed in the shares of two technologies rather 
than in absolute numbers. 

In the case of exponential growth (�� � �� � 0), we have three stationary points: 
0,��, 

�, 0� and � ���

����� ,
���
������, with the latter being unstable. The phase diagram becomes: 

In this case, we have a threshold value specifying the minimum number of adopters of 
technology 2 that is required to ‘unlock’ society from technology 1 and cause a transition to 
technology 2. This threshold value, or critical mass, will be smaller for larger differences in 
quality between the new 
� and the old technology 
�, and will be larger for larger values of 
N. The model shows that a superior technology will not automatically substitute an inferior 
technology. Rather, the problem underlying transitions is a problem of coordination, that is, 
the problem to have a critical mass of agents adopting the new technology simultaneously. 
This coordination problem, then, becomes more difficult, the more agents are present in a 
population. 

Finally, one can also consider the general case, where the growth rate is a mix of linear and 
quadratic growth, with again two stable stationary states 
0,�� and 
�, 0�, and one unstable 

stationary state ��������������� , �������������� �. As for the case of non-linear growth, the unstable 

equilibrium gives the critical mass that adopters of technology 2 must reach in order for this 
technology to be selected, as evidenced by the phase diagram: 
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Whenever the population of adopters of the new technology is above the threshold, a 
transition takes place. The speed of transition can be derived from the differential equation. 
For a given size of the population, the better the new technology is with respect to the old one 
(the larger the coefficients �� and 
� with respect to �� and 
�) the faster the transition will 
take place. 

Bruckner et al. (1996) also go into a stochastic version of the model, which can be studied 
analytically using a Master equation approach. In the stochastic version, the results remain 
intact in that the probability of a transition depends on the difference in quality and the total 
size of the population. 

3. Adoption 

Arthur (1989) proposed a model of competing technologies under increasing returns. 
Increasing returns to adoption is a salient feature of technology, since the value of using a 
technology generally increases with the number of fellow adopters. This positive externality 
is due to learning effects, both among producers and users, the advantages of using common 
standards and infrastructure, and the provision of complementary goods, services and 
institutions supporting the dominant technology. This model is similar to the hyperselection 
model in that both address increasing returns to adoption. But Arthur models individual 
adoption decisions explicitly, while in the hyperselection model decisions are captured 
directly on the macroscopic scale in a single differential equation. 

In Arthur’s model there are two technologies A and B competing for adoption. Adopters exist 
in two types (R or S) that have an equal share in the population. Type R prefer technology A, 
while type S prefer technology B. Returns from adoption of technologies A and B are �� and 
�� respectively, for type R, while �� and �� are the returns for type S. Preferences are such 
that �� � ��, and �� � ��. Beside preferences, a feedback mechanism makes the return to 
depend also on previous adoptions. If �� and �� are the number of previous adopters the two 
technologies, the overall returns are given in Table 1. 

 Technology A Technology B 
R-agent �� � ��� �� � ���
S-agent �� � ��� �� � ���
�� � ��, �� � ��,  �� � ��, �� � ��, � � �, � � 0, � � 0

Table 1. Payoff function for Arthur’s model of competing technologies 
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When coefficients r and s are positive, the more one technology is adopted, the higher its 
return to any agent. This is a mechanism of positive feedback. In this model R-agents and S-
agents arrive in random order, and R-agents switch to technology B choosing against their 
own preference for A once the dominance of technology B passes the following threshold:  

�� � �� � 
�� � ���/� 

while S-agents switch to technology A instead of following their preference for B when the 
dominance of technology A passes the following threshold:  

�� � �� � 
�� � ���/� 

I 
Arthur’s model explains well why a process of competing technologies tends to end in a state 
where one of the technologies is dominant, even if agents differ in their preferences regarding 
technologies. This is a direct consequence of increasing returns. If returns would be 
decreasing with the number of previous adopters, technologies would always share the market 
as agents would always follow their own preferences and a 50-50 distribution of market 
shares will result.i

The lock-in model is often invoked in the study of technological transitions, but the model is 
not about transitions in stricto sensu (Frenken and Verbart, 1998). It models competing 
technologies among agents that did not adopt a technology before, while in the case of 
technological transitions, we start with a state in which all agents already have adopted the 
same technology in the past (Technology 1), and a new, and superior, technology becomes 
available (Technology 2). We can re-formulate Arthur’s model as a model of transitions in the 
following way. We assume that all agents have the preferences, and that new technology 2 is 
preferred over old technology 1. We get payoffs as in Table 2. 

 Technology 1 Technology 2 
any agent � � ��� � � ���

� � �, � � 0
Table 2. Modified Arthur-model of technological transitions

There are N agents in the population. We can now consider the question of technological 
transition as the question under what conditions agents using technology 1 all switch to 
technology 2. Hence, the starting point in the analysis of a technological transition is the state 
�� � �. The question becomes how many agents have to switch simultaneously from 
technology 1 to 2 such that all remaining agents using technology 1 will follow suit, and also 
switch to technology 2. This will happen once the payoff of using technology 2 will be greater 
than the payoff of using technology 1, that is, when � � ��� � � � ���. Given that �� �
� � ��, we get, as tipping point: 
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�� �
�
2 � 
� � ��/2� 

And the phase diagram becomes: 

The tipping point specifies the critical mass of users of the new technology 2, which is 
required to cause a full technological transition. Once this critical mass of users is achieved, 
all other users will follow suit. We can derive a number of properties of the tipping point: 

1. If 
� � �� is positive and infinitesimally small, half of the agents must switch from 1 
to 2 for a full transition to occur 

2. If the sensitivity for increasing returns (r) is very large, just more than half of the 
agents must switch from 1 to 2 for a full transition to occur 

3. The more the quality of the new technology 2 exceeds the quality of the old 
technology 1, the fewer agents needed to switch from 1 to 2 for a full transition to 
occur 

4. For “an entrepreneur”, that is a single agent, to cause a transition, she must introduce a 
new technology b with sufficiently high quality such that one agent is already 
sufficient as a critical mass. The threshold is given by: � � � � �
� � 2�. 

This modified Arthur-model has also been the basis for a recent model by Frenken et al. 
(2012). In their model, agents adopt a technology by maximizing utility according to Table 2. 
That is, at each moment in time they compute the payoff for each technology given the 
number of fellow adopters and choose the one with the highest payoff. An additional feature 
of the model holds that at each moment in time, a fraction of agents engage in the 
development of a new technology, with higher quality. New technologies start a new branch 
of incremental innovations. Later on, branches can be recombined through recombinant 
innovation, which occurs when agents occupying different branches develop a joint invention 
through collaboration.ii A second additional feature in the model are switching costs, that 
agents have to pay when they change technology, and that are proportional to the 
technological distance between two technologies. The distance between technologies is 
determined by the genealogy of their ancestors. Then, recombinant innovations create “short-
cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a 
result, recombinant innovations speed up technological progress allowing transitions that are 
impossible with only branching innovations. Their model replicates some stylised facts of 
technological change, such as persistent technological lock-in, experimental failure with new 
branches and occasional punctuated change (“transitions”).
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4. Coordination game 

Game theory refers to a class of economic models of strategic interaction where players 
choose between strategies, and the payoff they receive from each strategy depends on the 
strategies chosen by others. At an abstract level, there is an immediate connection between 
game theory and technological transitions: agents tend to remain locked into inferior 
technologies, since the payoff of adopting a new technology is too low, given that others will 
continue using the old technology. 

One way of representing this coordination problem underlying technological transitions is as a 
coordination game between two players. Imagine that there are two alternative technologies. 
The technologies are only useful when both players adopt the same technology due to 
compatibility requirements. Think, for example, of telecommunication equipment that only 
functions if both players use a technology adhering to the same technical standard. Or think of 
a car producer and a fuel company facing the choice between gasoline and hydrogen to fuel 
car engines. Hence, increasing returns exist from adopting the same technology. However, the 
coordination game model is different from the other models of increasing returns to adoption 
already discussed (Bruckner et al., 1996; Arthur, 1989), in that the advantages of using the 
same technology stem from bilateral interaction only. In this sense, increasing returns in 
coordination games are local, rather than global in nature. 

To illustrate the coordination game as a model of technological transitions, consider the 
example of Table 3 where the payoff associated with the old technology is 1 when used 
collectively and the payoff from using the new technology is 4 when used collectively. If an 
agent decides to switch from the old to the new technology, she will have to incur switching 
costs equal to 2. Hence, the net payoff for each player if both adopt the new technology is 
equal to 2. If only one player adopts the new technology, this player will receive no payoff 
while still incurring the switching costs of 2 resulting in a net payoff of -2. The other player 
still using of the old technology, then, will receive no reward but does not incur any cost 
either, resulting in a payoff of 0. The payoff matrix becomes: 

Technology 2 Technology 1
Technology 2 (2, 2) (-2, 0) 
Technology 1 (0,-2) (1, 1) 

Table 3. The coordination game; an example 

There are two Nash equilibria for which no player has an incentive to change strategy once 
this equilibrium is attained: both adopting technology 1 and both adopting technology 2. 
Obviously, both adopting the new technology 2 is socially optimal. Nevertheless, as long as 
both players still use the old technology, neither of them has an incentive to change strategy 
individually since such unilateral switch from using the old to using the new technology 
would entail a utility loss from 1 to -2. This is a classic “coordination problem”.iii
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The classic two-player setting in game theory is a highly stylized model, since players are 
many in most empirically relevant settings. Then, players’ interactions are better described 
with a population approach and assuming an evolutionary selection dynamic (Maynard Smith 
and Price, 1973). In evolutionary game theory players are matched randomly, play a bilateral 
game, and are matched again randomly, play a bilateral game etc. Each player is identified by 
a strategy, and better strategies reproduce faster (e.g., through imitation), depending on the 
payoff they generate, which in turn depends on the relative abundance of other strategies.  

In such a population setting, the best strategy for each player depends on the distribution of 
strategies among other players. If there are N agents in the population, we can write the 
fraction of agents using the technology 2 as n and the fraction of agents using the old 
technology 1 as (1-n). The expected payoff adopting the new technology becomes n(2) + (1-
n)(-2) = 4n-2, while the expected payoff from adopting the old technology equals n(0) + (1-
n)1 = 1-n. Hence, the tipping point is given by the equality of the two payoffs, which yields 
n=0.6. This is also the mixed strategy equilibrium of the 2x2 stage game. 

Technology 2 Technology 1
Technology 2 (b-c, b-c) (-c, 0) 
Technology 1 (0,-c) (a, a) 

Table 4. The coordination game; general respresentation 

In general the coordination game for technological transitions can be expressed by the payoffs 
matrix in Table 4, where b and c are the reward and cost of the new technology 2, 
respectively, while a is the payoff from coordination on the old technology 1. The expected 
payoff adopting the new technology 2 becomes n(b-c) + (1-n)(-c) = nb-c, while the expected 
payoff from adopting the old technology 1 equals n(0) + (1-n)a = (1-n)a. Hence, the tipping 
point (or mixed strategy equilibrium) is given by the equality of the two payoffs, which is 

� � ���
���. This means that, for a population with N agents, ���������	 agents have to adopt the 

technology 2 in order for the others to follow suit. The phase diagram becomes: 

Again, as in the models by Arthur (1989) and Bruckner et al. (1996), we have a tipping point 
defining the minimal number of agents required to move from the old inferior technology to 
the new superior technology for a full technological transition to occur. Notice that lower 
costs c and/or higher rewards b from the new technology make easier to reach the transition 
threshold. In order to analyse the exact transition dynamics, and the speed at which a 
transition takes place, the model must be equipped with a full evolutionary framework, 
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meaning an explicit specification of the mechanism describing how strategies reproduce. In 
Evolutionary Game Theory this is called the revision protocol. Common examples are 
Replicator dynamics, Best Response dynamics, and Logit dynamics (Samuelson, 1997). 

Kandori et al. (1993) explain how a population can transit from the old technology to the new 
technology without any explicit coordination of adoption decisions. Their evolutionary game 
theory model assumes that players can adjust their choice according to some payoff-
dependent learning mechanism, and also assume that learning is in turn subject to 
perturbations (“mutations”). That is, agents occasionally mutate their strategy by adopting the 
other technology. Then, it can happen by chance that multiple agents mutate in a row such 
that the population of agents transits from one equilibrium to the other. Hence, in an 
evolutionary setting the population perpetually fluctuates between all using the old 
technology and the new technology. Yet, overall more time is spent with using the new, 
superior technology compared to the old, inferior technology. 

5. Informational cascades

A social phenomenon known as informational cascades can be relevant to the understanding 
of technological transitions. Informational cascades refer to the dynamics of expectations 
where each potential adopter forms expectation based on decisions of previous adopters. 
Indeed, the dynamics of expectations regarding the promise of new technologies has been 
studied widely in transition studies (Borup et al., 2006; Van Lente et al., 2013). Informational 
cascades are at the basis of phenomena of herding behaviour, when people act following what 
others do. It is evident how herding in general and informational cascades in particular 
presents a positive feedback mechanism. Although herding sounds like myopic or even 
irrational behaviour, it may well result out of the aggregation of perfectly rational individual 
actions. The point is that it may be perfectly rational for an individual to make a decision 
(adoption of a new technology) following the actions of other agents, disregarding one’s own 
information. This intuition was first developed in two different but equivalently insightful 
models, Banerjee (1992) and Bikhchandani et al. (1992), the latter being an adoption model 
most relevant to the study of technological transitions. 

The model by Bikhchandani et al. (1992) is as follows. Adoption of a certain behaviour leads 
to a future gain V. This may be either 0 or 1 with prior probability 0.5. Adoption bears a cost 
C, with 0<C<1. Agents chose sequentially and are privately informed about the future value 
of the payoff from adoption. Agents do not have an exact information but only a signal telling 
with some positive probability whether this value will be 1 (signal H) or 0 (signal L). For each 
individual the probability of observing a H signal is �� � 0.5 if the future gain is V=1, and 
1 � �� if the value is V=0. The authors consider the special case of identically distributed 
signals, where �� � �. On top of their private information agents also observe choices of 
previous agents and use the information they extract when making their decision on adoption. 

The following example gives the intuition of the mechanism behind the occurrence of an 
informational cascade. Say the first agent of the sequence gets a H signal. Then she adopts, 
since p>0.5. The second agent gets again a H signal. Without hesitating she will adopt as 
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well, since the probability that the signal is right is even larger than p. The third agent gets a L
signal, instead. Based on her information she would refuse adoption. But the action (adoption) 
by the first and the second agent speaks very loud: they must have got two H signals or maybe 
the first got a H signal and the second a L signal. But in this last case the second agent was 
adopting only with probability 0.5. Based on this reasoning the third agent correctly assigns 
more likelihood to the occurrence of a signal sequence (H,H,L) than to the signal sequence 
(H,L,L) and she rationally adopts. This adoption by the third agent is an instance of herding, 
since she disregards her private information. In this way an up cascade takes place, and all 
subsequent agents will adopt irrespective of their signals. A down cascade occurs in the same 
way with just H and L signals reversed. Also note that it is not necessary that only the third 
agent initiates the cascade: if an even number of agents initially receive alternatively H and L
signals, a neutral situation perpetuates and the agent coming after this homogeneous sequence 
find herself exactly in the same situation as the third agent of the example above. 

Bikhchandani et al. also show how informational cascades may be fragile and eventually 
vanish. The idea is that in a herding mechanism positive feedback vanishes as further 
adoptions are less and less informative. The authors show how the release of a small amount 
of public information is enough to end an informational cascade and leave place for a new one 
to start. They further show that the probability of a correct cascade increases as the signal 
becomes more precise and conversely how the probability of a wrong cascade decreases 
instead. Nevertheless, what is instructive is to note that a positive probability of a wrong 
cascade always remains. 

The last result suggests a conclusive consideration about the relevance of information 
cascade models for the issue of technological adoption in general and technological 
transitions in particular. In the context of innovation, private signals may reflect the in-house 
R&D carried out by each individual firms. A firm, then, may adopt a new technology after a 
critical number of other firms already adopted the technology before, even if its own R&D 
results – as a private signal – would suggest the firm not to do so. Hence, a transition towards 
a new technologies may occur even if the new technology is inferior to an existing 
technology. 

6. Co-evolution 

A characteristic feature of many technologies is that they are composed of several 
components that interact in complex ways to produce particular functionalities. The challenge 
for designers is to put together components in a system such that they “fit” together, meaning 
that the components work in complementary, instead of conflicting ways. This design 
problem has been addressed using Kauffman’s NK-model (Kauffman, 1993; Frenken and 
Nuvolari, 2004; Frenken, 2006). NK refers to systems with N components each affected by K
other components. In the NK-model, K is thus the complexity parameter which indicates the 
extent to which the functioning of each component is dependent on other components. 

In case of minimum complexity (K=0), each component functioned independently from other 
components. Hence, each component can be optimized independently and in parallel as the 
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system if fully “decomposable” (Simon, 1969, 2002; Frenken, 2006). By contrast, in the case 
of maximum complexity (K=N-1), the fitness of a component depends upon the choice of 
design of all other components. It follows that the fitness value of a component is different for 
different configurations of other components. Hence, to simulate the fitness landscape of such 
a complex system, one can simply draw a random fitness value �� if for each component i for 
each possible design configuration (Figure 1). 

Figure 1. Simulation of a fitness landscape of a N=3 system with K=2. 

Two types of search strategies can be distinguished on fitness landscapes: centralized and 
decentralized search. Centralised search represents a single agent, such as a firm (Frenken and 
Nuvolari 2004) or a government (Alkemade et al., 2009) who experiments with different design 
configurations which are evaluated on the basis of the global fitness W. Decentralised search 
refers to the co-evolutionary case where multiple actors are innovating, each being responsible 
for one of the N elements. In this case, each actor evaluates an innovation on the basis of its 
own element fitness (��). The co-evolutionary nature of this process stems from the fact that a 
mutation by one actor affects the fitness of other actors and vice versa (Kauffman and Johnson 
1991; Caminati, 2006). Such interdependencies typically exist in value chains where the payoff 
of a technology depends on the choices made by other firms in the value chain (Press, 2008; 
Adner, 2012) as well as in large firms where departments exerts high levels of autonomy 
(Kauffman and Macready, 1995; Siggelkow and Levinthal 2003; Rivkin and Levinthal, 2003).  

If we assume local search (i.e., a mutation occurs only in one element at the same time), local 
optima are those design configurations with global fitness superior to neighbouring designs. 
In the example of Figure 1, the local optima are 010 and 111. Centralized search can end up in 
different local optima depending on the starting point in the landscape and the particular 
sequence of mutations that follow. Search is “path-dependent” on the initial starting point of 
search and the sequence of searches that follow. Considering decentralized search, however, 
local optima correspond to Nash equilibria, i.e. design configurations with element fitness 
values that cannot be improved through unilateral mutation. In figure 1, these equilibria are 
100 and 111. For such configurations, it holds that no actor has an incentive to switch its own 
technology. 



12 

As a model of technological transition – that is a move from one local optimum to a better 
local optimum – the fitness landscape model highlights that to ‘unlock’ a technological 
system, a change in governance may by itself already be sufficient. Consider a centralized 
governance system (left) currently locked into in the suboptimal state 010. Changing the 
governance into a decentralized system (right) would mean that the superior technology 111 
suddenly becomes accessible via 110. However, success is not warranted, since any other 
transition path leads to the sub-optimum 100. Reversely, if a decentralized system is lock into 
the sub-optimum 100, changing the governance system into centralized search would open up 
a transition path to 111 via 110. Again, success is not warranted as other paths lead to the sub-
optimum 010. 

The more general lesson holds that there is no ex ante optimal governance structure to support 
technological transitions. Adner (2012) calls this a ‘ecosystem perspective’ to innovation 
strategy, where the innovating firm should recognize that they are part of a complex 
technological system. A go-alone strategy often fails when complementary innovations by 
other parties fail to occur. Among Adner’s (2012) empirical examples is the famous case of 
Nokia’s 3G handset, which failed as content providers did not come up with the necessary 
complementary innovations such as video streaming, location based services, and automated 
payment systems. 

7. Percolation

A generic model of diffusion is the percolation model. Percolation is the diffusion of a liquid 
through a porous material layer. The density of the material regulates porosity, and this 
regulates diffusion. If one increases the density, porosity decreases, and eventually 
percolation stops. This process shows a phase transition, whit a sudden passage from 
diffusion to a no-diffusion regime. A typical percolation process occurs in making coffee. But 
several other natural phenomena can be described as percolation, like the spread of fire in a 
wood. In the context of technology diffusion, the percolation model represents the word-of-
mouth process in social networks accompanying the diffusion most new technologies 
(Solomon et al., 2000; Hohnisch et al., 2008; Cantono and Silverberg, 2009; Campbell, 2012). 
Word-of-mouth here means that an agent who adopts a new technology will recommend the 
new technology to its acquaintances in the social network. 

Imagine N agents and each agent being part of a social network. Two agents that are 
connected in the social network are called neighbours. Word-of-mouth means that when an 
agent adopts a new technology at time t, it will tell to its neighbours in the social network 
about the technology. Then, at time t+1, each neighbour will consider whether to adopt the 
technology, and if it does so, it will tell its neighbours, and so on. 

Of course, if all agents are willing to adopt the technology, the technology will automatically 
diffuse throughout the whole (connected) population. Instead, if only some fraction of agents 
is willing to adopt the technology, once informed about it by a neighbour, a percolation 
threshold exists. In economic terms, the willingness to pay for a technology is expressed by 
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an agent’s reservation price p� which denotes the maximum price the agent is willing to pay. 
Hence, an agent adopts if p� � p. 

Consider the case that agents form a random network as in Figure 2. Further imagine that a 
technology is introduced with p=p* with 0<p*<1. Reservation prices are randomly drawn 
from a uniform distribution between 0 and 1. This means that for a price equal to p* (say, 20 
cents), a percentage of (1-p*) agents is willing to buy (here, 80 percent). Since reservation 
prices are randomly distributed among agents, the reservation price of an agent is uncorrelated 
with the reservation prices of its neighbours. Drawing reservation prices, then, amounts to 
“removing” nodes randomly, in that consumers with a too low reservation price are unwilling 
to buy, do not convey information to their neighbours. Hence, they can be removed from the 
network, and the agents that remain will form the “operational” network. 

Figure 2. Percolation. In a random network (left), white nodes are willing to buy (�� �
�) and filled nodes are unwilling to buy (�� � �) (middle). Widespread diffusion 

happens if an initial adopter is part of a giant connected component (surrounded by 
dotted lines) in the resulting “operational network” (right). 

In the approximation of a large number of nodes, the percolation threshold can be computed 
for a number of special network structures. For instance, a Poisson random network (Erdös 
and Rényi, 1960) with average connectivity of neighbours of 4 has percolation threshold 
�∗ ≃ 0.67, In the case of a regular lattice with connectivity of 4 for all agents, the threshold is 
�∗ ≃ 0.407. As long as the price is below this threshold, almost everyone will be informed 
about the existence of the technology. That is, the information fully “percolates” through the 
social network. This means that all those who are willing to buy, will actually buy the new 
technology. However, if the price exceeds the critical threshold, there will be many agents 
that remain uninformed, who would have been willing to buy. In those cases, diffusion is less 
than what is socially desirable. Notice how the network structure is important: even with the 
same average connectivity, the Poisson random network allows percolation to occur at 
substantially higher prices than the regular lattice, due to the positive variance of connectivity 
in random networks. 

Figure 3 simulates percolation for different prices in a regular lattice of 10,000 agents with 
connectivity 4. To get diffusion started, a seed is used of 10 randomly chosen agents who are 
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given the product for free (that is, who adopt independently from their reservation price). As 
long as the price is rather low, everyone willing to buy will buy the new technology. The 
observations then follow the standard demand curve represented by the straight dotted line. 
However, for higher prices, many potential buyers remain uninformed and the technology 
does not take off. Already at a price of 0.6, almost no agent adopts, even though there is a 
potential market of no less than 40 percent of the population. Hence, the model explains that 
technological transitions (here defined as the event of a new technology being widely adopted 
by those willing to adopt it) may be difficult to predict as there is a fine line between success 
and failure. What is more, the probability of a transition to occur will not only depend on 
price, but also on the number of seeds and connectivity distribution of the network (Zeppini et 
al., 2013).iv

Figure 3. Percolation shows a critical transition. 

The time dimension of a diffusion process governed by a percolation mechanism is rather 
peculiar, in that it presents the typical features of second order critical transitions. In such 
processes, the time required to reach the equilibrium state presents a spike at the threshold 
(Zeppini et al., 2013). This means that both above the threshold, in the non-diffusion regime, 
as well as below the threshold, in the diffusion regime, the adoption process becomes 
increasingly slower the closer the price is to the threshold price. 

 Silverberg and Verspagen (2005) developed an alternative percolation model to represent 
technological innovation as a long series of small innovations punctuated by occasional 
breakthroughs. The nodes in the network, here, represent technologies and technologies that 
are linked are neighbouring technologies. They also start from a lattice, but one which is 
bounded in the horizontal dimension (representing the technological distance between 
technologies) and unbounded in the vertical dimension (representing the performance of 
technologies). At each moment in time, a node is in one out of four possible states: 0 
(technologically impossible), 1 (possible but not yet discovered), 2 (discovered but not yet 
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viable) and 3 (discovered and viable).v Starting from the baseline, agents travel through the 
technology space by local search. As they discover technologies, nodes are switch on 
(changing from 1 into 2). Subsequently, a node turns from 2 into 3 if and only if there exists a 
contiguous path of cells in state 2 or 3 connecting it to the baseline. That is, a technology 
becomes operational ‘when it can draw on an unbroken chain of supporting technologies 
already in use’. Because of the percolation properties of the model, local search will 
occasionally produce avalanches of many sudden innovations, as certain sites cause chain 
reactions of other sites becoming viable. This result, then, can be understood as a theoretical 
explanation for the existence of technological transitions. 

8. Social influence 

Technological transitions are not solely driven by economic logics. Social processes can play 
a key role as well (Rip and Kemp, 1998). One such a process is mimicking, that is, the 
tendency of agents to imitate behaviour of others. An influential model in this context is that 
of Granovetter (1978) who considers binary individual decisions subject to social influence, 
such as the adoption of an innovation. A key feature of his model holds that individuals differ 
in the extent to which they are influenced by decision of others. Heterogeneity is expressed as 
individual thresholds that specify the number of other agents adopting the innovation that is 
required for an individual agent to adopt. That is, there exist different critical mass levels for 
each individual. Granovetter considered two settings: i. Global influence, where people 
thresholds refer to the total number of adopters, with no preferential influence, and ii. Social 
structure, where friends have higher influence than other people on individual decisions. 

Granovetter main focus is how the distribution of individual thresholds influences collective 
behaviour, or in other words how individual decisions aggregate. The aggregation of 
individual decisions brings non-linear effects. In particular, small changes in the variance of 
the distribution of individual thresholds may lead to large changes in aggregate behaviour 
(bifurcations). This means that almost identical distribution of thresholds may lead to 
completely different adoption scenarios. The following theoretical example is instructive: 
consider a population of 100 individuals, where the first has threshold 0 (this is someone who 
adopts irrespective of social influence), the second has threshold 1, the third has threshold 2, 
and so on, until the last individual who adopts only of all the rest of the population (99) have 
adopted. With such a uniform distribution of threshold the outcome is always full adoption, 
since a domino effect occurs, starting from the early adopter and propagating through 
individuals of ever increasing threshold. If we now perturb slightly the distribution by 
changing the threshold of the second individual from 1 to 2, the outcome is that only one 
individual will adopt (the one with threshold 0).  

Granovetter (1978) extended the basic model with an explicit social structure. Here, friends 
have higher influence than strangers. A useful way to model this is to retain the notion of 
unique individual threshold for adoption, and introduce a weight for personal influence. For 
instance, an adopting friend may count as two adopting strangers. The model is enriched with 
a “sociomatrix” representing social structure, and this is equipped with weights that describe 
how much a friend’s action counts more than a stranger’s action. The main result is that social 
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structure may cause a sizeable adoption outcome in cases where that would not be possible if 
all actions count the same.  

In recent years there has been a large research effort in understanding the effect of social 
structure in collective behaviour, and more generally how different diffusion processes take 
place in social networks (for a review, see Vega-Redondo 2007). Here local effects depend on 
the absolute number of neighbours adopting a certain behaviour (e.g., Pastor-Satorras and 
Vespignani, 2001). Local threshold models provide another variant of such models, where the 
number of interest is the relative fraction of neighbours adopting (e.g., Lopez-Pintado, 2008). 
In the first case, a decision maker looks at the absolute number of adopting friends. In the 
second case instead the decision maker “weighs” the number of adopting friends on the size 
of her neighbourhood. The main message from network models of social behaviour is that a 
threshold exists that cause transitions, and this threshold strongly depend on the distribution 
of social ties of agents in a social network. 

9. Discussion 

The seven models all address the phenomenon of a technological transition in terms of a 
substitution process of an old technology being replaced by a new technology. Table 5 
summarises the main features for each model. Typically, the way the models express the 
transition process is in terms of the number of agents adopting the one or the other 
technology. Thresholds, then, refer to the classic notion of the critical mass that is required to 
cause a transition, where critical mass stands for the minimum number of adopters of the new 
technology required to trigger the remaining agents to switch to the new technological as 
well. However, the co-evolutionary model is different, as the threshold thatneeds to be 
crossed is not expressed in terms of a number of agents, but in terms of the fitness of the new 
technology vis-à-vis the old technology. The percolation model is also different in that the 
critical threshold is expressed in terms of the critical price below which a transition takes 
place, rather than a critical number of adopters above which a transition takes place. 

Further differences between the models concern the micro-foundations underlying the 
models. Most follow the standard economic assumption that adoption behaviour is driven by 
utility maximization. The hyperselection model, however, has no explicit micro-foundations 
at all as it expresses all adoption decisions by a single differential equation. And, the social-
influence model regards agents as solely driven by their inclination to mimic other people’s 
behaviour. Another difference between models is whether agents are assumed to be 
homogenous or heterogeneous. And, concerning modelling frameworks that introduce 
heterogeneous-agents models, the nature of heterogeneity is also different among models. In 
the case of informational cascades, heterogeneity stems from the differences in information 
that agents receive. In the case of social influence agents differ in their individual threshold 
(share of other agents) triggering them to adopt, while in the percolation model differences 
stem from preferences determining reservation prices. In the co-evolutionary model, 
heterogeneity stems from the different payoffs assigned to each subsystem depending on the 
design configuration of the technology as a whole. 
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The key insight from our review holds that the very same phenomenon of a technological 
transition can be explained by very different underlying logics ranging from typical economic 
explanations based on prices, increasing returns and technological complementarities or 
alternative explanations based on word-of-mouth recommendations in social networks 
convergence of expectations, or social mimicking behaviour. Hence, transitions can be caused 
by very different processes, and possibly combinations of processes. An empirical challenge 
will be to discern what kind of processes are operating and what their relative importance has 
been in (stages of) the transition process. 

Though the elementary transition models reviewed here all address different key mechanisms 
that may underlie technological transition process, some key aspects of transitions have not 
been addressed so far, or only in very rudimentary ways (Holtz, 2011; Safarzyńska et al., 
2012). For example, historical studies have shown that transitions are often generally not well 
understood as a simple battle between the old and the new technology. Rather, in the process 
of transitions, several alternatives compete, with new alternatives emerging from 
recombination (Sahal, 1985; Geels, 2005). Hence, recombinant innovation can be considered 
an important feature of transition models (Van den Bergh, 2008; Safarzyńska and Van den 
Bergh, 2010, Zeppini and Van den Bergh, 2011; Frenken et al., 2012). What is more, 
transitions may be better understood as evolutionary processes with transitions resulting from 
several incremental steps and intermediary technologies (Geels, 2002). This view is at odds 
with the typical ‘revolutionary’ framing of two competing technologies, though notable 
exceptions exist of models where more than two technologies compete (e.g., Silverberg and 
Verspagen, 2005; Weisbuch et al., 2008; Frenken et al., 2012). 

Furthermore, it can be stressed that, often, the new technology initially does not compete with 
the old technology (Pistorius and Utterback, 1997; Geels, 2002). Rather, initially technologies 
may have a symbiotic relation in that the new technology supplements the old technology in 
particular niches. And, in other cases, such niches are actively created and supported, for 
example, by government or other powerful actors. Such strategies of niche protection is 
especially relevant in the analysis of sustainability transitions (Kemp et al., 1994; Schot and 
Geels, 2007; Raven and Smith, 2012). A particular future challenge will be to model 
technological transitions by specifying niches where new technologies can develop before 
they invade the mass market dominated by the old technology (Lopolito et al., 2013). In this 
context, one can think of co-evolutionary models of demand and supply (Windrum et al., 
2009a, 2009b; Safarzyńska and Van den Bergh, 2010). 

A further note on the modelling of sustainability transitions concerns the specification of a 
technology’s selection environment. In the case of a sustainability transition, the key 
difference between the old and new technology is that the former is less sustainable than the 
latter. However, whether sustainability is a key determinant driving the success of new 
technologies will depend on the extent to which policy creates a selection environment that 
will reward sustainability (e.g., R&D subsidy, price subsidies, land use policy, information 
campaigns, et cetera). Hence, in modelling sustainability transitions, an additional aspect will 
be to model the negative externalities associated with the continued use of the old technology, 
and alternative policies to reward new technologies that are more sustainable. 
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Methodologically, the seven elementary models have in common the ability to express one 
particular complex dynamic causing transitions with very few parameters. One typical 
parameter is the extent to which the new technology is superior to the old (whether expressed 
in terms of quality or price). Another typical parameter is the extent to which agents profit 
from increasing returns to adoption. These models with few parameters allows one to derive, 
analytically or through simulation, the tipping point in the model that defines a threshold that 
is to be crossed to cause a transition to occur. This is clearly a great advantage of the 
canonical models of technological transitions, since it allows one to fully understand the 
nature of the transition process in terms of few key parameters in very generic terms. 

However, models with few parameters should not be mistaken as accurate representations of 
real-world transitions process. Such processes are much more complex in that several of the 
mechanisms highlighted by the models are likely to operate at the same time. Furthermore, 
real-world agents are heterogeneous in many more dimensions than the ones included in the 
models. For one thing, real-world consumers differ in wealth (e.g., high-income vs. low-
income), skills (e.g., high-skilled vs. low-skilled), and visibility (e.g., a celebrity versus any 
other consumer). Similarly, firms differ in size, absorptive capacity and complementary assets 
all affecting their adopting decisions. Contextual factors are also likely to affect transition 
processes, possibly in rather fundamental ways (Holtz, 2011). Think here of specific 
institutions, policies and regulations that differ across territories, sectors and technologies. 
Hence, modelling exercises that aim to study a specific transition process – often in one 
sectoral and national context – will have to include much more specificity into their 
framework. A larger parameter space, then, is unavoidable. 

The elementary “canonical” models reviewed here serve as potential building blocks for more 
specific and elaborated models. In particular, when building models to evaluate specific 
policies aimed at unlocking current technological systems, contextual factors should be added 
concerning the specific sectoral, technological and territorial contexts at hand (Schwoon, 
2006; Alkemade et al. 2009; Chappin and Dijkema, 2009; Köhler et al., 2009; Huétink et al., 
2010; Van Vliet et al., 2010; Chappin and Afman, 2012; van der Vooren et al., 2012). 
Empirically, such “agent-based” models are rather difficult to validate (Windrum et al., 2007; 
Holtz, 2011). Furthermore, the exact transition threshold may be difficult to find in such 
models. Notwithstanding these difficulties, agent-based simulation models are extremely 
useful to do virtual government policy experiments. Since real-world experiments are often 
too risky or expensive, simulation modelling provides a unique and transparent social 
laboratory to evaluate alternative policies (Dawid and Fagiolo, 2008; Dawid and Neugart, 
2010). Given the large scale of technological transitions, this argument applies a fortiori to 
agent-based models of technological transitions.  
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Table 5. Overview and comparison of various modelling approaches to technological transitions 

Model 
Key reference 

Section Origin Threshold Micro-foundations Heterogeneity Key explanation Transition 

Hyperselection 
Bruckner et al. 1996 

2 Biology Critical mass None No Increasing returns Fully 

Increasing returns 
Arthur 1989 

3 Economics Critical mass Utility maximization No Increasing returns Fully 

Informational cascades 
Bikhchandani et al. 1992 

4 Economics Critical mass Utility maximization Yes Convergent expectations Majority 

Coordination game
Kandori et al. 1993

5 Economics Critical mass Utility maximization No Increasing returns Fully 

Co-evolution 
Kauffman-Johnson 1991 

6 Biology Fitness value Utility maximization Yes Complementarities Fully 

Percolation
Solomon et al. 2000

7 Physics Critical price Utility maximization Yes Word-of-mouth Majority 

Social influence
Granovetter 1978

8 Sociology Critical mass Imitation Yes Mimicking Majority 
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i A more subtle approach to technology competition is to have decisions made probabilistically, otherwise known as the Polya urn model (Arthur et al., 1987; 
Dosi et al., 1994). The basic model considers an urn which contains an equal (positive) number of black and white balls, with the probability of extracting any 
ball being the same. Whenever one extracts a ball of a particular colour (an adoption of a particular technology), this is put back in the urn together with a new 
ball of the same colour. This procedure introduces a positive feedback in the process, because the probability of extracting a particular colour increases the 
probability it will happen again.  
ii Van den Bergh (2008) developed a related model of recombinant innovation reasoning from a single actor that needs to decide whether to invest in a single 
technology to maximize scale economies or two spread investments across to technologies to maximize the chance of creating a third superior technology 
through recombination.  
iii Another way for players to evaluate their strategies is to look at risk dominance (Harsanyi and Selten, 1988). Without any clue about the other player’s 
action, a player places a probability of 50 percent on both technologies. This gives an expected payoff from adopting the new technology of ½(2) + ½(-2) = 0, 
while the expected payoff from adopting the old technology equals ½(0) + ½(1) = 0.5, which exceeds the expected payoff from adopting the new technology. 
Following this evaluation, a player has no incentive to switch unilaterally from the old to the new technology. 
iv Solomon et al. (2000) developed an interesting extension of the basic percolation model. They addressed the issues of product sequels common in industries 
like the movie industry and videogame industry. Rather than reasoning from price (with more consumers adopting products with lower prices), they reason 
from product quality (with more consumers adopting products with higher quality). A sequels follows from a successful product, that is, a product with a 
sufficiently high quality such that diffusion has been complete. After such a product success producers have to introduce a sequel, but with lower quality as to 
save on costs. Consumers, by contrast, will become more demanding in the future, since they look for novelty. The authors show that under certain conditions, 
the market automatically evolves to products and preferences close to the critical threshold (a case of self-organisation). This model thus explains why many 
cultural products are just below or above the critical threshold, and, thus, are almost equally likely to become hits as to become flops.  
v The share of nodes with value 0, indicating impossible technologies, can also be introduced as a parameter to tune the difficulty of search. Note 
that the presence of sites with value 0 comes close to the idea of valleys of low fitness in NK fitness landscape models.  


