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Does Data Splitting Improve Prediction?

Julian J. Faraway1
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Abstract

Data splitting divides data into two parts. One part is reserved for model selection.
In some applications, the second part is used for model validation but we use this part for
estimating the parameters of the chosen model. We focus on the problem of construct-
ing reliable predictive distributions for future observed values. We judge the predictive
performance using log scoring. We compare the full data strategy with the data splitting
strategy for prediction. We show how the full data score can be decomposed into model
selection, parameter estimation and data reuse costs. Data splitting is preferred when
data reuse costs are high. We investigate the relative performance of the strategies in
four simulation scenarios. We introduce a hybrid estimator that uses one part for model
selection but both parts for estimation. We argue that a split data analysis is prefered to
a full data analysis for prediction with some exceptions.

Keywords: cross-validation, model assessment, model uncertainty, model validation, pre-
diction, scoring.

1 Introduction

Predictions based on statistical models are sometimes disappointing. We do not expect predic-
tions to be exactly correct so we compute measures of uncertainty but the observed outcomes
may lay well outside these expressions of the expected variation. Some failures cannot be an-
ticipated as unexpected results can occur because the system generating the observables has
changed since we collected the data used to develop the model. Alternatively perhaps our data
was not broad enough to include more extreme events leading us to fail to anticipate such
outcomes in our predictive model. However, sometimes the problem lies not in the data but in
the statistical methods used.

In many applications, we do not know or choose to specify in advance the particular form
of model to be used. We frequently use the data to select the model. Once we have selected a
model, we often proceed to estimate the parameters and make predictions with an assessment
of variability that reflects the uncertainty about the parameters but not about the model. This
lapse is the source of many statistician-generated failures with prediction. See [4] and [34] for
recent discussion of these issues and, less recently, in [6] and [28].

How should predictions be judged? Suppose we are asked to predict y given x. We are
provided with training data consisting of (x, y) pairs from which we develop a model and
estimate parameters. We are now given new x and asked to make predictions ŷ. We then
observe future y0 and could judge our success by the closeness of ŷ to y0. Statisticians are aware
of the problem of overfitting, namely using too complex a model resulting in a misleadingly
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good fit to the training data. We have become skilled at avoiding this problem by balancing fit
against complexity using methods like AIC. Regularized and penalized regression are also among
the popular solutions that avoid the problem of overfitting and enjoy good point prediction
performance.

Now suppose we are required to express the uncertainty in our predictions, perhaps in the
form of a prediction interval or more generally as a predictive distribution. As Statisticans, we
take pride in our ability to provide such uncertainty assessments. To see how well we are doing,
we might check whether 95% of the observed future responses fall within their 95% prediction
intervals. More elegantly, we could use scoring to judge how well the observed future responses
match with the predictive distributions. All too often we find that our predictions are too
optimistic because the observed future responses vary more than we allowed for. Avoiding
overfitting is helpful but the primary source of the problem is the uncertainty assessments.

Using the same data to both select and estimate the parameters has long been recognised
as generating over-optimistic inference but practitioners frequently do little to address it. One
reason for this lack of action is the difficulty in doing anything about the problem. One approach
is to integrate the model selection and parameter estimation. For example, the Box-Cox method
selects the index of transformation of the response in a regression problem. Instead, we might
regard this as parameter estimation rather than model selection and proceed accordingly as in
[16]. Another example is the LASSO method which succeeds in combining regression variable
selection with estimation although getting the subsequent inference correct is problematic —
see [3]. For more realistic complex model selection procedures that involve a combination of
procedures and use both graphical and numerical approaches, a holistic approach to inference
seems impractical. A Bayesian approach that assigns priors to models as well as parameters
is possible as in [10] but the approach becomes unworkable unless the space of models is
small. In many cases, the space of models cannot be reasonably specified before analysing the
data. Another idea is to use resampling methods to account for model uncertainty as in [11].
However, this method requires the model selection process to be pre-specified and automated.
It also requires that these processes be implementable completely in software which excludes
the possibility of human judgement in model selection.

There is a simple solution — data splitting. We divide the data into two, not necessarily
equal, parts. One part is used to select the model and the other part is used to estimate the
parameters of the chosen model. The problem of overconfidence in the chosen fit is avoided
because we use fresh data to estimate the parameters of the model. Data splitting can easily
be used in a wide range of problems and requires no special software. The analyst is free to
select the model using any procedure which can involve subjective elements and need not be
specified in advance. Unfortunately, there is a drawback. Less data is used to select the model
so we can expect some reduction in the probability we select a better model. Furthermore,
less data is used to estimate the parameters of the model so we can expect some additional
uncertainty in prediction. Will the gain from avoiding data re-use compensate for the loss
in model selection and parameter estimation performance? An answer to this question is the
purpose of this paper.

[32] provides an early history of data splitting. [9] discusses the related but different issue
of updating models as new data arrive sequentially. It may seem that having more data should
improve the model but [21] show that this is not necessarily true. This is another example
where using all the data symmetrically may not give the best results.

In Section 2, we discuss the uses of data splitting and the methods we use to evaluate
its effectiveness. We propose a decomposition of prediction performance into model selection,
parameter estimation and data resuse costs. In Section 3, we present simulations to explore
the relative value of data splitting. Section 4 contains our conclusions.
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2 Methods

2.1 Model validation

Data splitting has been used for a variety of purposes. Having chosen and estimated a model,
we may wish to evaluate how well the model can be expected to perform in practice. Under
this setting, the first part of the data is used for model selection and estimation and second
part is used to generate a measure of how well the model will predict future observations. Data
splitters [27], [26] and [29] have an objective of estimating the average (over a subset of the
predictor space) mean squared error of prediction. The aim for these authors is to obtain a
better estimate of the quality of future predictions. Certainly, these methods will obtain more
realistic estimates of this quality than using the naive estimate provided by the full data fit
but this will come at a substantial price. Because less data is used for model selection and
estimation, the prediction quality we are trying to estimate will be itself degraded.

In contrast to selection-estimation data splitting, where we hope the splitting might result in
better prediction, validation data splitting will almost surely make predictions worse. It depends
how useful we find the estimate of prediction quality as to whether this loss is worthwhile. In
some cases, analysts are in competition to produce the best predictive model. For example, in
the Netflix prize competition ([2]) it was essential to hold back part of the data to evaluate the
performance of the model since the competitors estimates of performance could not be trusted.
Another example is internet business Kaggle which challenges analysts to develop the best
predictive method ([5]). In other cases, there may be some regulatory requirement to assess
model performance.

However, unless there is some reason not to entirely trust the analyst, there are better
ways to estimate predictive performance than the naive method or validation data splitting.
Simple methods like 10-fold cross-validation can be used which, while not perfect, will give
more realistic estimates of future model prediction performance. Indeed, more recent authors
discourage the use of data splitting for this purpose. [31], [30] and [23] all advise against data
splitting although the latter two references investigate cases where the number of variables
is large relative to the number of observations. In such cases one call ill-afford to give up
observations for validation purposes.

This form of data splitting reserves part of the current data for validation purposes but
the true test comes when genuinely new data arrive as [17] points out. [1] also points out
the distinction between statistical and clinical validity. All this is true but we shall restrict
our concern to the data we have at hand and do the best we can with that. Some authors
have proposed splitting data into three parts where one part is used for selection, the second
for estimation and third for validation. These include [22, p. 13], [24] and [12]. Some have
used data splitting for quite different reasons — see [15]. We have focussed on the problem of
prediction but questions also arise in hypothesis testing — see [7] and [8]

2.2 Scoring

We need a measure of quality for predictions. We might make a prediction ŷ and subsequently
observe y0 and judge performance based on the difference between the two, averaged over
repeated instances. Root mean squared error (RMSE) is the most commonly used measure of
this type. RMSE uses only the point estimate but ignores any expression of uncertainty in the
prediction such as standard errors or prediction intervals. Sometimes we care only about point
performance and RMSE is sufficient. In such situations, there is no point in reserving any part
of the data for improving expressions of uncertainty and typically all the data should be used
for both model selection and parameter estimation unless validation is required. But if we do
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care about assessments of uncertainty, we need some way to measure this aspect of prediction
performance.

Scoring is a method of judging the quality of a predictive distribution compared to actual
observations. Suppose we specify a predictive distribution f(y) and we subsequently observe
y0 then we assign a score of − log f(y0). Log scoring was proposed by [14] and has been used
commonly in fields such as weather forecasting where we must often judge the accuracy of
forecasts. The idea is illustrated in Figure 1, where we see two predictive distributions that
have the same mean. The solid-lined predictive distribution scores better when we observe A,
a value close to the mean prediction. But the dashed-line predictive distribution scores more
highly when we observe B which is further from the mean. Hence scoring will reward predictive
distributions that express the uncertaintly in prediction more faithfully. RMSE uses only point
prediction and would not distinguish between these two distributions.

f(
y)

0.
0

0.
1

0.
2

0.
3

0.
4

A B

Figure 1: Scoring performance for two predictive distributions compared for observed A and B.

Other scoring rules have been proposed and discussed by [13] but log scoring appears most
appropriate for this task as it is analogous to a log likelihood for new observations and the
estimators we use in the simulations either are or are closely related to maximum likelihood
estimators. It is a proper scoring rule as defined by [25].

Log scoring is also used for binary response prediction where we use the probability rather
than the density. This also provides an intuitive way of interpreting a difference in scores. For
example, a difference of 0.1 would represent a difference of about 10% in predicting the correct
result. Interpretation for continuous responses can be made using a difference in log-likelihoods
with the discrete case providing some intuition for the interpreting the magnitude of these
differences.

2.3 Decomposition of Performance

Consider a data generating process Z which produces pairs (X, Y ). We are given n draws
from Z from which to construct a model that provides a predictive distribution for Y given a
value from X. We will subsequently be given new values from X for which we are asked to
construct predictive distributions for future values of Y . Suppose we entertain a set of models
{Mi} indexed by i that provide for such predictive distributions. The set of models might be
infinite in number and might not contain the true data generating model. We have a model
selection procedure S such that given data of size n, Zn, S(Zn) = Mi indicating that given data
Zn, model Mi is selected. The parameters of Mi will also need to be estimated by some other
procedure which is distinct from S.
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We evaluate prediction performance by finding the expected score, EZg(Z,M), where
g(Z,M) is the score for data Z and model M . The parameters of M will be estimated (or
derived) using Z. The model may be specified seperately or it may be selected using Z. The
expectation needs to be computed over two independent sets of draws from Z. First, there are
the observations Zn used to select (perhaps) and estimate the parameters and second, there
are the future draws from Z used to score the performance of the chosen model. To evaluate
S for sample size n, we need to find EZg(Zn,M = S(Zn)).

We now decompose this measure of performance into four parts, respectively, best possible
performance, model selection cost, parameter estimation cost and data re-use cost as seen in
Equation 1. Let Z∞ represent a black box with the ability to generate datasets of unlimited
size from the generating process but not explicit knowledge of this process. Z∞ allows the
best possible parameter estimation. We set S(Z∞) = M∗ where M∗ is the best possible model
chosen from those available. If the true model is contained within the set of possible models
considered and we use a consistent model selection procedure, then M∗ will be the true model.
When the true model is not found in M or when the model selection process is deficient in
some crucial way, M∗ is not the true model. In the true model case, the true parameters will
be used in M∗ provided the parameter estimation is consistent. In other words, we would have
found Z. Where M∗ is not the true model, the parameters chosen will be the limiting values
derived from the estimation process as n→∞. Also let ZF

n be another sample independent of
Zn. ZF

n is only used to estimate parameters as the model will already have been chosen.
There are some potential technical difficulties with the existence of limits involving the

choice of models and estimation of the parameters of incorrect models. These can arise in
situations where the set of feasible models grows with the sample size or for unusual model
selection strategies. We shall not tackle these issues here because our findings are based on
simulation and these theoretical problems do not arise. Our presentation in this section is
heuristic.

EZg(Zn,M = S(Zn)) =

EZg(Z∞,M
∗)+

EZI(S(Zn) = M)[g(Z∞,M)− g(Z∞,M
∗)]+

EZI(S(Zn) = M)[g(ZF
n ,M)− g(Z∞,M)]+

EZI(S(Zn) = M)[g(Zn,M)− g(ZF
n ,M)] (1)

Note that the terms on the RHS cancel so the equation is true in a trivial sense but our
interest lies in the meaning of the terms. In general, these components would be very difficult
to compute theoretically but are quite accessible by simulation. We present the simulation
equivalents of these terms first before discussing the meaning. In the simulation, we can draw
nr samples Zj

n of size n from Z for j = 1, . . . , nr. For each sample, we apply S to select and
estimate a model. To compute the scores, we will draw future observation samples of size ne
from Z where ne >> n. The performance can then be estimated using:

1

nr

∑
j

g(Zj
n, S(Zj

n)) =

1

nr

 ∑
models i

∑
j:S(Zj

n)=Mi

g(Zj
n, S(Zj

n) = Mi)

 (2)

In computing g, we need to average over the large sample of future observations of size ne. We
have kept this implicit in the expressions for compactness. On the RHS, we have broken up
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the sum over the set of models selected. Let pi be the proportion of cases where model Mi is
selected, then we can estimate the four components using:

1

nr

∑
j

g(Zj
n, S(Zj

n)) =

g(Z∞,M
∗)+∑

Models i

pi {g(Z∞,Mi)− g(Z∞,M
∗)}+∑

Models i

pi{g(ZF
n ,Mi)− g(Z∞,Mi)}+

1

nr

∑
j

{g(Zj
n, S(Zj

n))− g(ZF
n , S(Zj

n))} (3)

In the simulations to follow, the true model lies among the feasible set of models so there is no
difficulty in specifying M∗. In such circumstances, we can use the true parameter values for M∗.
Computing g(Z∞,Mi) is more difficult since we are being asked to give the best parameters for
the wrong model. We can approximate this by using a very large rather than infinite sample to
estimate this. In cases where M∗ is not the true model, the same sort of approximation could
be used. In the second and third terms, the summands do not depend on the data Zj

n so I have
dropped the sum over j. Nevertheless, we do need simulation to compute these terms.

The first term, g(Z∞,M
∗), represents the best that can be done if we use the best model

and we have an unlimited supply of training data denoted by the Z∞. We have no particular
interest in this quantity but it is useful for scaling purposes since it represents a bound on
prediction performance.

The second term represents the model selection effect where more weight (pi) put on sub-
optimal models will increase the score (where high scores are bad). When a consistent model
selection process is used, this term will tend to zero as the sample size increases. The difference
between the full and split data values for this term will be of the same order as the rate at which
pi tends to zero or one accordingly. The magnitude of the difference will depend also on the
relative sizes of g(Z∞,Mi) over {M}. The full data strategy will be favoured most when there
is only one good model that is hard to find. In many cases, the best model will be accompanied
by several almost as good models — in such cases splitting will not lose by much. Although
the split data strategy will almost always trail the full data approach, the difference will not be
large excepting situations with larger numbers of variables and smaller numbers of cases where
the splitting of the data may cause the model selection to fail entirely.

The third term represents the cost of parameter estimation weighted by the choices of model.
We have used g(ZF ,Mi) to represent the empirically expected score under model Mi where fresh
estimation data is available. We could estimate this using only the replications where Mi is
selected but in the simulations to follow we can get a better estimate by computing it for all
replications. The full data strategy will almost always produce lower scores for this component
than the split data approach. The difference between the two will typically be O(n−1/2).
Excepting the situation where the split data is insufficient to estimate the parameters, the
difference between full and split is thus stochastically bounded.

The fourth term represents the cost of data reuse. For the split data approach, this term
will have expectation zero because the part of Zj

n used to estimate the model is independent of
the selection process. ZF

n is simply another such independent sample of the same size. For the
full data strategy, it is difficult to say anything about the likely size of this term because of the
complex relationship between model selection and estimation. As we shall see, this term can
be large and can easily outweigh the advantages the full data had in selection and estimation.
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Thus the full data strategy will outperform the split data strategy on both model selection
and parameter estimation but the difference is bounded and well understood because it is
simply the effect of sample size. In contrast, the split data strategy will beat the full data
strategy on data reuse cost. This cost could be very large. One must distinguish the problem
of overfitting from that of model uncertainty. A statistician who tends to overfit will pay more
in model selection and parameter estimation costs but not necessarily more for data reuse —
consider the example of fitting too high an order in a polynomial regression. The statistician
who wisely balances fit and complexity may reduce selection and estimation costs, but will still
be exposed to data reuse costs when using a full data strategy.

2.4 Estimators

We consider four estimators based on data Z which is randomly split into a model selection set
Z1 and parameter estimation set Z2 where the model selection set has size [fn] for fraction f .

• FD: Full data estimate. Z is used to both build/select the model and to estimate the
parameters of that chosen model.

• SD: Split data estimate. Z1 is used to build/select the model and Z2 is used to estimate
the parameters.

• SAFE: (Split Analysis, Full Estimate). Z1 is used to build/select the model and Z is used
to estimate the parameters

• VALID: Validation corrected estimate: Z1 is used to build/select the model and estimate
the parameters used to generate point predictions. Z2 is used to generate a new estimate
of the standard error to be used in the construction of predictive distributions.

The SAFE estimator is motivated by the decomposition of model performance. We see that
the SD strategy will under-perform the FD approach for parameter estimation. But conditional
on the model selection, the SAFE estimator will avoid this loss because all the data is used for
estimation. On the other hand the FD strategy is vulnerable to heavy losses due to data re-use.
Because the SAFE strategy withholds a portion of the data from model building, we have some
protection against severe over-confidence because data not used in the model selection is used
for the estimation. SAFE cannot mitigate any losses due to model selection.

The VALID estimator is motivated by the validation approach to data splitting. The val-
idation sample may well reveal the overconfidence of our original predictions. We can form a
new estimate of the standard error using

σ̂2 =
∑
i

(yi − ŷi)2/([(1− f)n]− 1)

where the sum runs over Z2. Such an approach is straightforward for location-scale type models
like the Gaussian linear model. For the binary response regression example we consider here, a
VALID estimator makes no sense but may be appropriate where there is a richer class of models
for such responses, as might be found in some Bayesian approaches. The VALID estimator will
be effective for strategies that tend to overfit but it is difficult to see how it might affect data
resuse costs. The original predictive distributions might also be improved in other ways such
as the one suggested by [9].

In [20], a suggestion is made that the model estimation should be Bayesian but the model
assessment and checking should be Frequentist. This fits well with a data splitting approach
because these activities can use different parts of the data.
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3 Simulations

It would be nice to explore the effects of data splitting mathematically. Unfortunately, this is
very difficult. Finite sample calculations are required since asymptotically the issue becomes
practically irrelevant. In [19], a calculation is made for the simple regression problem where
the model selection is the determination of the significance of a single predictor. They demon-
strate that problems with uniform convergence can arise for post-model selection estimators.
Unfortunately, it becomes impractical to perform such calculations for richer and more realistic
model selection scenarios. Hence, we resort to simulation. We consider four different regression
modelling scenarios. In the first, we look at transforming the response, in the second, selecting
the predictors and in the third we consider an outlier rejection method. Our final example looks
at variable selection for binary response regression. We have deliberately kept the modelling
options simple so that we can carefully explore design choices that might affect the value of
data splitting. In practice, model building is usually more sophisticated and combines several
elements, both formal and informal.

3.1 Box Cox

The Box-Cox method selects the index of transformation on the response in a linear regression
model. The simulation setup is Xi ∼ U(0, 1) and εi i.i.d. N(0, σ2) for i = 1, . . . n with

Y λ
i = α + βXi + εi

We fix α = 0 although the term will be estimated. We observe X and Y but not λ (where
λ = 0 is equivalent to log Y ), which we estimate using the Box-Cox method. In keeping with
common practice, we select λ from a finite set of interpretable values, in this case {-1.0, -0.5,
0.0, 0.5, 1.0}. The α and β are then estimated using least squares. In this example, the model
selection is just the determination of λ.

We ran a simulation with nr = 4000 replications for each run using a full factorial design
varying over all combinations of σ = 0.1, 1, 10, β = 0, 1, n = 18, 48, true λ = −0.5, 0, 0.5 and
training fractions of f = 1/3, 1/2 and 2/3.

We computed the scores as follows: for each selected model, we generated 4000 realisations
from the known true model which were used to score the fitted models (as we do in all sub-
sequent simulations). We find the predictive distributions needed to compute the score using
the predicted values and corresponding standard errors. There are more sophisticated ways to
the construct frequentist predictive distributions, see for example [18], but we have consistently
opted for the straightforward t-distribution scaled by the predicted mean and variance. For
more discussion of the justification for such intervals, see [35].

In Figure 2, we plot the difference in scores (FD-SD) , (FD-SAFE) and (FD-VALID). We
see that FD is superior to SD in all combinations. The sample size has by far the largest effect
on the margin of difference. For n = 48, we see that the difference in score is a relatively small
3-5%. All the other factors have little consistent effect on the difference on the score differences
although a training fraction of 1/2 seems a good overall choice. The SAFE estimator is an
improvement over the SD estimator in all cases and is often close in performance to the FD
estimator, particularly if the 1/3 training fraction case is avoided. This might be expected as
model selection cost would be largest in the f = 1/3 case. The VALID estimator falls between
the SAFE and SD estimators in performance.

Figure 3 shows the estimated relative contribution as described in (3) for the FD case.
We estimate the model selection, parameter estimation and data re-use costs and plot the
proportion of the cost attributable to each part. We average over the three training fraction
runs at each level of the other simulation variables as this fraction has no impact on the FD
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Figure 2: Box Cox simulation results showing the FD minus SD score as a solid dot, FD minus
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Figure 4: Variable selection simulation results showing the FD-SD difference in scores as a solid
dot, FD-SAFE difference as an open triangle and FD-VALID as a plus symbol.

estimator. Data reuse costs are minimal and parameter estimation costs account for a large
share of the costs. Situations where the model selection costs are higher would be situations
where the SAFE estimator might be expected to make the least improvement over SD — there
is some evidence from the plots to support this.

In the Box-Cox scenario, the FD strategy wins every time. There is very little model
selection taking place with only five to choose from. With a small amount of data, the selection
and estimation components favour the FD approach quite clearly and the data reuse costs are
not significant. For the larger dataset, the difference between full and split was relatively small.

3.2 Variable Selection

Consider a model:
yi = α + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi

where εi is i.i.d. N(0, σ2), Xij ∼ U(0, 1), cor(Xi, Xk) = ρ ∀i 6= k and α = 0 but is estimated.
We follow a stepwise AIC-based variable selection procedure as described by the step function
of [33].

The simulation used 4000 replications and n = 60 with a full factorial design over all
combinations of σ = 1, 5, βi = 0, 1∀i, p = 5, 15, ρ = 0, 0.95 and training fractions of 1/3, 1/2
and 2/3. The results showing the average difference in score between the FD-SD analysis
methods along with the FD-SAFE and FD-VALID differences are shown in Figure 4.

In Figure 4, we see that FD is always better than SD but the margin of difference is mostly
small. The best choice training fraction varies although f = 2/3 is always worst. We see that
the SAFE estimator is always better than the SD estimator and often outperforms the FD
estimator. The VALID estimator can perform badly although it competes well with SD when
f = 2/3.

Figure 5 shows the relative contribution as described in (3). This shows that the data reuse
costs can be quite significant which allows for split strategies to be favoured. The higher model
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Figure 5: Model performance decomposition for the variable selection scenario. Solid dot
represents data reuse relative contribution while open diamond represents data reuse plus the
model selection contribution. Parameter estimation is the remaining part.

selection costs for the β = 1, σ = 1 combination are reflected in the reduced performance of the
split strategies as seen in Figure 4.

We extended the data analysis method to allow consideration of potential second order
terms in the predictors (even though these are not present in the true model). Under these
conditions, the SD strategy tends to outperform FD particularly as the number of potential
models grows.

3.3 Outliers

In this scenario, we investigate a model building strategy that eliminates outliers. Consider a
model with Xi ∼ U(0, 1) with i = 1, . . . n. Let εi be i.i.d. t with degrees of freedom d. Let

Yi = α + βXi + εi

where the true value of α = 0 although the model will estimate it. The model building strategy
fits the model using least squares and computes the studentized residuals, ri. Any case with
|ri| > 3 is deleted and the model is refitted. This case deletion process is repeated until all
remaining |ri| < 3. This is a crude procedure and one which we would not recommend, par-
ticularly when we can see the true model generating process. Nevertheless, it is representative
of procedures that delete or down-weight cases that do not fit the proposed model well. We
would prefer an approach to prediction to behave reasonably well even if the model building
strategy is not the best.

We ran a simulation with 4,000 replications. We used a full factorial design running over
all combinations of n = 18, 48, σ = 1, 5, β = 0, 1, d = 3,∞ and training fractions of 1/3, 1/2
and 2/3. We see the outcome in Figure 6.

When the error is t3 we see that the SD approach is superior for the larger sample but
inferior when the error is t∞ i.e. normal. In all cases, the smallest training fraction is preferred
for SD but this is simply because the model selection process here just decides which points to
include. This choice becomes irrelevant because the test data is used to estimate the model.
The other factors have little effect on the outcome. We see that the SAFE estimator performs
very well in this instance although the superiority over the FD strategy is due to the sensible

11



n: 18
f: 1/3

beta: 0

n: 18
f: 1/3

beta: 1

n: 18
f: 1/2

beta: 0

n: 18
f: 1/2

beta: 1

n: 18
f: 2/3

beta: 0

n: 18
f: 2/3

beta: 1

n: 48
f: 1/3

beta: 0

n: 48
f: 1/3

beta: 1

n: 48
f: 1/2

beta: 0

n: 48
f: 1/2

beta: 1

n: 48
f: 2/3

beta: 0

n: 48
f: 2/3

beta: 1

● ●

● ●

● ●

● ●

●
●

●
●

●
●

● ●

●
●

● ●

●

●

●
●

● ●

● ●

●
●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

−0.2

−0.1

0.0

−0.2

−0.1

0.0

tdf: 3
tdf: Inf

1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

Sigma

S
co

re
 d

iff
er

en
ce

Figure 6: Outlier simulation results showing the FD-SD score as a solid dot, FD-SAFE as a
triangle and FD-VALID as a plus symbol.

decision to use all the data to estimate the model. The VALID estimators performs similarly
to the SD estimator except that the preferred f = 2/3. The outlier deletion strategy is clearly
artificial in this scenario but this does show how this type of data analytic procedure, which
is often used in more plausible forms in practice, can have serious consequences for prediction
performance

There is no model selection effect in this scenario as the model is fixed, only the data used
vary. We can compute the decomposition in (3) and find that the data reuse costs dominate
the parameter estimation comprising a large proportion the total contribution of these two
components across the 48 simulation conditions (plot not shown).

3.4 Binary Response

We finish with a variable selection problem in a binary response logistic regression model. Let
ηi =

∑p
j=1 βjXij + εi for i = 1, . . . , n where εi is i.i.d. N(0, σ2) and Xij ∼ U(0, 1). Now let

P (Yi = 1) = exp(ηi)/(1 + exp(ηi)).
The model building strategy is variable selection using stepwise AIC as implemented in [33].

We vary p = 1, 3, 5, n = 18, 48, σ = 0, 1, β = 0, 1 and training fractions of 1/3, 1/2 and 2/3.
When σ = 0, we have the standard case while σ = 1 is a measurement error situation. We used
4000 simulation replicates each over all factorial combinations of these 5 parameters.

The results are shown in Figure 7. We see that the results are much more stable for n=48
than for n=18. For the simple p = 1 case there is very little model selection and the FD
strategy is preferable. When there are more predictors, a split data strategy is preferred when
there really are significant predictors (β = 1) but the FD approach works best when the null
model is true. We see that the SAFE estimator is almost always an improvement over the SD
estimator and sometimes better than the FD estimator depending on the scenario. Note the
the VALID estimator makes no sense for this binary response model.
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Figure 7: Binary response simulation results showing the FD-SD score as a solid dot and
FD-SAFE as a triangle.

4 Conclusion

Our main conclusion is that, except in specific circumstances, a data splitting strategy is supe-
rior to an FD strategy for prediction purposes. In particular, SAFE is the best type of splitting
strategy. Caution is necessary when trying to generalise from simulations which are necessarily
limited in scope. But we must bear in mind that finite sample theoretical results of any gener-
ality are not available. Prediction from statistical models is a common activity and practical
advice is necessary.

The simulation results are not unfavourable to the FD strategy but the simulations un-
derstate the relative value of an SD strategy. Simulations cannot simulate human judgement
which is an important part of model building which implicitly increases the number of potential
models substantially. Increasing model choice favours an SD strategy since data reuse costs are
amplified. Admittedly, more models puts more emphasis on model choice but often the best
model is accompanied by many close contenders so SD will typically not lose by much to FD.
Our simulations have also shown SD improving relative to FD as model choice increases.

All four scenarios we have presented are relatively simple which favours the FD strategy.
Furthermore, the model building strategy has been completely specified. Under such conditions
we would tend to choose an FD strategy but even here, we see that the SD and particularly
the SAFE estimator might be a better choice. In many real data analyses on observed, not
simulated data, the model building strategy will be more complex and difficult or impossible
to pre-specify. In such circumstances, a split data strategy is preferable. The decomposition
of the model performance indicates that the loss in using a split data approach is limited for
model selection and parameter estimation once we move away from the p close to n situations.
On the other hand, the FD approach is susceptible to large losses due to data re-use costs. The
size of these data resuse losses is very difficult to anticipate whereas the cost of using less data
to select and estimate the model is much better understood. This suggests that a split strategy
is safer than the FD strategy.
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We make the following tentative recommendations — in regression problems with a contin-
uous or binary response with independent observations (i.e. having no grouped, hierarchical
or serial structure), the analyst should decide between a full and a split analysis based on the
following considerations:

An FD analysis should be considered where the set of models to be considered use such
a large number of parameters relative to the number of observations that SD would imperil
selection and estimation. An FD analysis is also preferred when the model building step will be
simple and involve a choice among a small set of possibilities. In situations where the analyst is
prepared to pre-specify the exact form of the data analysis in advance, bootstrapping or other
resampling techniques can be used to account for model uncertainty. An FD analysis is likely
to be preferable in designed experiments where there is often limited model choice.

A split data analysis should be preferred when the analyst has no fixed conceptions about
the model to be used for the data and plans to search for a good choice using a range of
numerical and graphical methods. The SAFE estimate should be preferred to the SD estimate.
If it becomes clear that there is insufficient data in the split datasets to find and estimate
a model, then the analyst can always revert to the FD approach (but a switch from full to
split cannot be allowed). The empirical evidence gives no clear choice about the data splitting
fraction. With more knowledge of the data generating process, more specific guidance could be
given but that same knowledge would also reduce or eliminate the need for model building. So
we recommend a 50:50 split as the default choice.

More work is necessary before attempting recommendations for other types of response or
data of a more structured form. It is also more difficult to make a recommendation for situations
where an explanation of the relationship between X and Y is the goal rather than prediction.
Certainly the same issues of overconfidence arise but interpretation of parameters explaining
the relationship become problematic when the form of the model is changing.
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