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Abstract

The Clustered Vehicle Routing Problem (CluVRP) is a variant of the Capacitated Vehicle Rout-
ing Problem in which customers are grouped into clusters. Each cluster has to be visited once,
and a vehicle entering a cluster cannot leave it until all customers have been visited. This article
presents two alternative hybrid metaheuristic algorithms for the CluVRP. The first algorithm is
based on an Iterated Local Search algorithm, in which only feasible solutions are explored and
problem-specific local search moves are utilized. The second algorithm is a Hybrid Genetic Search,
for which the shortest Hamiltonian path between each pair of vertices within each cluster should
be precomputed. Using this information, a sequence of clusters can be used as a solution repre-
sentation and large neighborhoods can be efficiently explored, by means of bi-directional dynamic
programming, sequence concatenation, and appropriate data structures. Extensive computational
experiments are performed on benchmark instances from the literature, as well as new large scale
instances. Recommendations on the choice of algorithm are provided, based on average cluster
size.

Keywords: Clustered Vehicle Routing, Iterated Local Search, Hybrid Genetic algorithm, Large
Neighborhoods, Shortest Path

1. Introduction

This paper addresses the Clustered Vehicle Routing Problem (CluVRP), which has been in-
troduced by Sevaux and Sérensen (2008). The CluVRP is defined over an undirected graph
G = (V, &), where the vertex 0 is the depot and any other vertex i € V \ {0} is a customer with
demand ¢; > 0. A fleet of m vehicles, each with capacity @), is stationed at the depot. The
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set of customers is partitioned into N disjoint and nonempty subsets called clusters, such that
Y =V U---UVyN. The customers in each cluster have to be visited consecutively, that is, the
vehicle visiting a customer in the cluster cannot leave the cluster until all the other customers in
the cluster have been visited. Each edge (i,j) € £ is associated with a travel cost ¢;j, and the
objective is to minimize the total travel cost. The CluVRP is a generalization of the Capacitated
Vehicle Routing Problem (CVRP, c.f. book of Toth and Vigo 2002), obtained when each cluster
contains a single vertex, and of the Clustered Traveling Salesman Problem (CluTSP, Chisman,
1975), obtained when m = 1. The CVRP and the CluTSP are both NP-Hard, and so is the
CluVRP.

Sevaux and Sorensen (2008) introduced the CluVRP in the context of a real-world application
where containers are employed to carry goods. The customers expecting parcels in the same
container form a cluster, because the courier has to deliver the content of a whole container before
handling another container. Clusters also arise in applications involving passenger transportation,
where passengers prefer to travel with friends or neighbors (as in the transportation of elderly to
recreation centres). Gated communities (residential or industrial areas enclosed in walled enclaves
for safety and protection reasons) provide another natural example of clusters. The customers
within a gated community are likely to be visited by a single vehicle in a sequence, otherwise the
vehicles have to spend additional time for the security controls at the gates.

Clusters can thus be imposed by the geography, the nature of the application, as well as
by practitioners aiming to achieve compact and easy-to-implement routing solutions. Clustered
routes allow drivers to be assigned to areas (i.e., certain streets or postcodes) and allow the
development of familiarity, which makes their task easier. In addition, clustered routes have
significantly less overlaps. In several cases, the additional routing costs due to cluster constraints
are compensated by the ease of implementation and the enhanced driver familiarity.

The literature on the CluVRP is quite limited as of the time of this writing. Strensen et al.
(2008) and Sevaux and Sérensen (2008) presented an integer programming formulation capable
of finding the best Hamiltonian path between each pair of vertices in each cluster. Barthélemy
et al. (2010) suggested to adapt CVRP algorithms to the CluVRP by including a large positive
term M to the cost of the edges between clusters and a cluster and the depot. The CluVRP is
solved as a CVRP by means of the algorithm of Clarke and Wright (1964) followed by 2-OPT
moves and Simulated Annealing (SA). The authors also suggested to dynamically set the penalty
M, but observed that the M term interferes with the Boltzmann acceptance criterion of the SA
and leads to erratic performance. Computational results were not reported in this initial paper.

Pop et al. (2012) described the directed CluVRP as an extension of the Generalized Vehicle
Routing Problem (GVRP, Ghiani and Improta, 2000). The authors adapted two polynomial-
sized formulations for the GVRP to the directed CluVRP, but again no computational results
were reported. Recently, Battarra et al. (2014) proposed exact algorithms for the CluVRP and

provided a set of benchmark instances with up to 481 vertices. The best performing algorithm



relies on a preprocessing scheme, in which the best Hamiltonian path is precomputed for each pair
of endpoints in each cluster. This allows for selecting a pair of endpoints in each cluster rather
than the whole path, relegating some of the problem complexity in the preprocessing scheme.
The resulting minimum cost Hamiltonian path problems are reduced to instances of the Traveling
Salesman Problem (TSP) and optimally solved with Concorde (Applegate et al., 2001). CluVRP
instances of much larger size than the corresponding CVRP instances were optimally solved, thus
highlighting the advantage of acknowledging the presence of clusters.

In this paper, we introduce hybrid adaptations of state-of-the-art CVRP metaheuristics for
the CluVRP. Rather than rediscovering well-known metaheuristic concepts, we exploit the current
knowledge on iterated local search and hybrid genetic algorithms (Subramanian, 2012; Vidal et al.,
2014a) and focus our attention on developing efficient problem-tailored neighborhood searches
and effectively embedding them into these metaheuristic frameworks. The proposed neighbor-
hood searches aim at 1) better exploiting clustering constraints by means of pruning techniques,
2) exploring larger neighborhoods by means of dynamic programming, 3) reducing the computa-
tional time by means of re-optimization, bi-directional search, and data structures. Finally, these
experiments lead to further insights on which type of metaheuristic to use for different instance
sizes and cluster characteristics.

The remainder of the paper is organized as follows. Section 2 introduces the challenges related
to the CluVRP. Sections 3 and 4 describe the proposed metaheuristics and efficient neighborhood-
search strategies, whereas Section 5 discusses our computational results. Conclusions are drawn

in Section 6, and further avenues of research are discussed.

2. Motivation

Battarra et al. (2014) showed that exact algorithms are capable of solving relatively large
CluVRP instances. However, the CPU times remain prohibitively long for large-scale or real
time applications. In this paper, we exploit the properties of the CluVRP to develop specialized
hybrid metaheuristics that take advantage of cluster constraints. Solution quality is assessed by
a comparison with exact solutions whenever possible, and among metaheuristics when it is not.

Two recent and successful metaheuristic frameworks are used in this work. The Iterated Local
Search (ILS) algorithm of Subramanian (2012) is simple and flexible, combining the intensifica-
tion strength of Local Search (LS) operators and effective diversification through perturbation
operators. It proved to be remarkably efficient for many variants of the Vehicle Routing Problem
(VRP), including the VRP with Simultaneous Pickup and Delivery (Subramanian et al., 2010),
the Heterogeneous VRP (Penna et al., 2013), the Minimum Latency Problem (Silva et al., 2012),
and the TSP with Mixed Pickup and Delivery (Subramanian and Battarra, 2013). The success
of ILS is due to an intelligent design of intensification and diversification neighbourhoods, as well

as their random exploration. This latter component allows for extra diversity, and leads to high



quality solutions, even when applied to other problems such as scheduling (Subramanian et al.,
2014).

ILS explores only feasible solutions, and allows for testing the M approach suggested by
Barthélemy et al. (2010) without possible interferences between M and penalties applied to infea-
sible solutions. As mentioned in the introduction, the M approach consists of including a large
positive term to all those edges that are connecting clusters and connecting the depot to the
clusters. Any CVRP algorithm in which the M is chosen to be large enough returns a CluVRP
solution in which the number of penalized edges is minimized, therefore a solution in which the
cluster constraint is satisfied. Note that the number of edges connecting clusters or connecting
the depot to a cluster is m + N and their penalization can be easily deducted from the solution
cost.

One drawback of this transformation is that most VRP neighborhoods consider moves of
one or two vertices. These neighborhoods can often not relocate complete clusters, and thus
many moves appear largely deteriorating due to M penalties, significantly inhibiting the progress
towards higher quality solutions. As shown in this paper, ILS can partly overcome this issue by
means of perturbation moves. However, as demonstrated by our computational results, a more
clever application of the framework specific to the CluVRP considering relocating and exchanges
of whole clusters and intra-cluster improvements produces solutions of comparable quality in
considerably less CPU time. In the next section, we describe the ILS and these hybrid algorithms
in more details.

The Unified Hybrid Genetic Search (UHGS) currently obtains the best known solutions for
more than 30 variants of the CVRP and represents the state-of-the-art among hybrid metaheuris-
tics for VRPs. More precisely, the algorithm succesfully solves problems with diverse attributes,
such as multiple depots and periods (Vidal et al., 2012), time windows and vehicle-site dependen-
cies (Vidal et al., 2013a), hours-of-service-regulations for various countries (Goel and Vidal, 2013),
soft, multiple, and general time windows, backhauls, asymmetric, cumulative and load-dependent
costs, simultaneous pickup and delivery, fleet mix, time dependency and service site choice (Vidal
et al., 2014a), and prize-collecting problems (Vidal et al., 2014c), among others. It has been
recently demonstrated that several combinatorial decisions, such as customer selections or depot
placement, can be relegated directly at the level of cost and route evaluations, allowing to always
rely on the same metaheuristic and local search framework while exploring large neighborhoods
in polynomial or pseudo-polynomial time (Vidal et al., 2014b,c).

Our UHGS implementation is based on the assumption that the costs of the optimal Hamil-
tonian paths among vertices in the same cluster can be efficiently precomputed as in Battarra
et al. (2014). Once these paths and their costs are known, an effective route representation as an
ordered sequence of clusters can be adopted, and a fast shortest path-based algorithm then trans-
forms this solution representation into the corresponding optimal sequence of customers, which

will be explained in detail in Section 4. This approach drastically reduces the size of the search



space of the UHGS method, which optimizes the assignment and sequencing of O(N) clusters
instead of O(n) customers.

Our computational experiments allow to quantify the trade-off between adopting the prepro-
cessing scheme to compute the Hamiltonian paths, which requires the solution of },_; v [Vi] X
(|Vi] — 1) TSP instances and searching in the space of clusters with UHGS, or working in the
space of vertices with a well-designed ILS. As long as the average size of the clusters is not high,
the computational burden of the preprocessing is not prohibitive, but is observed to become sig-
nificant when the cluster size increases. On the other hand, UHGS is much faster (ignoring the
preprocessing time) and obtains higher quality solutions. Through our computational experi-
ments, we aim at identifying a critical cluster size that makes an approach with cluster-based

solution representation more desirable than an approach using vertex-based representation.

3. The ILS metaheuristic

ILS is a well-known metaheuristic framework that iteratively alternate stages of local search
(intensification) and perturbation moves (diversification). The interested reader is referred to
Lourenco et al. (2003) for a detailed description of the metholodogy, whereas the structure of a
typical ILS algorithm is presented in Algorithm 1.

The algorithm starts by generating an initial solution sg; this solution is then improved by
means of local search (LocalSearch(sp)) and a local optimal solution s* is obtained. Perturbation
moves are applied to s*, generating a new solution s’, which in turn is improved by means of local
search, generating the solution s*. The algorithm updates s* if an acceptance criterion is met.
A typical stopping criterion is to interrupt the execution of the algorithm if no improvement is

obtained after n; consecutive iterations.

Algorithm 1 Tterated Local Search

: Procedure ILS:
sp < GeneratelnitialSolution;
. 8* + LocalSearch(s);
While Stopping criterion is not met
s' + Perturb(s*, history);
s* + LocalSearch(s’);
s* < AcceptanceCriterion(s*, s*, history);

: end ILS;

I R AN o

The ILS of Subramanian (2012) is a multi-start heuristic which returns the best solution after
np restarts (i.e., the Algorithm 1 is executed ng times). The initial solution is generated using
a parallel cheapest insertion heuristic. Classical VRP /TSP neighborhoods are explored during

the local search phase and the perturbation operator consists of multiple shift and swaps based



moves selected at random. The neighborhood structures adopted in Subramanian (2012) are inter-
route moves (RELOCATE, RELOCATE2, SWAP, SWAP(2,1), SWAP(2,2), 2-0PT*), as well as intra-
route moves (RELOCATE, OR-OPT2, OR-0PT3, 2-OPT and SWAP). Detailed descriptions of these
families of neighborhoods can be found in Subramanian (2012) and Vidal et al. (2013b). Inter-
route LS neighborhoods are considered one by one in random order and, whenever an improving
solution is found, intra-route LS operators are applied, also in random order, to this solution.

As previously mentioned, the algorithm of Subramanian (2012) can be used for solving the
CluVRP by applying suitable penalties to edges between clusters and between clusters and the
depot. Although simple, this straightforward adaptation has two main drawbacks: (i) most of
the local search moves violate the cluster constraint, leading to high penalties, and consuming
a large part of the CPU time; and (ii) many promising moves that relocate full clusters are not
included in the neighborhoods, thus reducing the intensification capabilities of the LS. ILS was
therefore adapted to better take advantage of clusters. In what follows, we denote this adaptation
as ILS-Clu.

The ILS-Clu is a hybrid algorithm built upon the structure of ILS. Large neighborhoods
proved to be very effective in solving VRP variants, however, to identify promising moves can
be a difficult task that is usually left for a large part to randomization (e.g., in Adaptive Large
Neighborhood Search, Pisinger and Ropke, 2007). In contrast, the CluVRP structure enables
to apply moves to relevant sets of customers. Thus, the LS phase of ILS-Clu explores moves
on different levels: among clusters, among edges connecting clusters or clusters with the depot,
and within each cluster. This mechanism enables to explore a sufficiently large variety of moves
while significantly reducing CPU time. As in ILS, the initial solution is generated using a parallel
cheapest insertion heuristic. Iteratively, a randomly selected customer is inserted with minimum
cost, either between customers from the same cluster, or between two clusters.

Four types of LS procedures are used in ILS-Clu: “InterRouteSearchs”, “IntraRouteSearcho”,
“IntraClusterSearch” and “IntraClusterRestrictedSearch”. The former two modify the sequence
of clusters in the routes without changing the Hamiltonian paths and their endpoints in each
cluster, whereas the latter two optimize the sequence of customers within each cluster. The set

2

of neighborhoods used during “InterRouteSearchc” contains the same inter-route neighborhoods
as ILS — previously described — but moves are applied on clusters instead of single deliveries. The
intra-route neighborhoods of “IntraRouteSearchy” follow the same rationale.

The LS procedures “IntraClusterSearch” and “IntraClusterRestrictedSearch” rely on the RE-
LOCATE, 2-0OPT, and SWAP neighborhoods. “IntraClusterRestrictedSearch” explores only a linear
number of LS-moves, more precisely those involving at least one endpoint customer in the cluster,
whereas “IntraClusterSearch” explores all moves within a cluster. Algorithm 2 displays the main
structure of ILS-Clu, and highlights the differences with ILS.

LEFT TO DO

Both ILS and ILS-Clu apply a perturbation mechanism after each LS stage, which consists



Algorithm 2 Local search of ILS and ILS-Clu

Local Search of ILS:
NL « set of InterRouteSearch neighborhoods;

While NL # {
Choose randomly Neighborhood € NL;
Find best s’ of s € Neighborhood;
If f(s') < f(s) then
s+ '
s < IntraRouteSearch(s);
Update NL;

else
Remove Neighborhood from NL;

return s;
end.

Local Search of ILS-Clu:
NLc < set of InterRouteSearchc neighbor-
hoods;
While NL¢g # ()
Choose randomly Neighborhood € N L¢;
Find best s’ of s € Neighborhood;
If f(s') < f(s) then
s' < IntraClusterRestrictedSearch(s’);
5§ < IntraRouteSearcho(s');
If f(5) < f(s') then
s < IntraClusterRestrictedSearch(s);
else
S < S
Update N L¢;
else
Remove Neighborhood from N L¢;
s < IntraClusterSearch(s);
return s;
end.

of one or two randomly selected SHIFT(1,1) or SWAP moves. In ILS, SHIFT(1,1) relocates a
random customer from its route r to a random position in another route r’, and simultaneously
relocates a random customer from 7’ to a random position in r. The same process is applied in
ILS-Clu but considering clusters instead of single customers. Moreover, in ILS, SWAP exchanges
two customers from different routes, whereas in ILS-Clu the exchange involves two clusters of the
same route. LEFT TO DO

4. The UHGS metaheuristic

UHGS is a successful framework capable of producing high quality solutions for many VRP
variants. It is a hybrid algorithm, where the diversification strength of a Genetic Algorithm (GA)
is combined with the improvement capabilities of local search. One main challenge in the design of
a hybrid genetic algorithm is to achieve a good balance between intensification and diversification
while controlling the use of computationally intensive local search procedures. This balance is
usually achieved by selecting a suitable initial population, crossover operators, mutation, and
selection mechanisms. The variety of design choices and the tuning of a multitude of parameters
often inhibit the flexibility of the GAs. In fact, most of the previous attempts in the literature
focused on the design of problem-specific operators, failing to lead to general algorithms and
frequently resulting in a large number of parameters to be tuned. UHGS (Vidal et al., 2014a)

managed to overcome most of these drawbacks by adopting the following strategies.



4.1. General UHGS methodology

UHGS evolves a population of individuals representing problem solutions, by means of selec-
tion, crossover and education operators. Note that the operator education involves a complete
local-search procedure aimed at improving the solutions rather than a randomized mutation. The
population is managed to contain between pM~ and pM™ + p®*N individuals, by pruning g%~
individuals whenever the maximum size is attained. The method is run until It,,,, individuals
have been successively created without improvement of the best solution.

UHGS achieves a fine balance between intensification and diversification by means of a bi-
criteria evaluation of solutions. The first criterion is the contribution of a solution to the popula-
tion diversity, which is measured as the Hamming distance of the solution to the closest solutions
in the population. The second criterion is the objective value. Solutions are ranked with respect
to both criteria, and the sum of the ranks provides a “biased fitness” (Vidal et al., 2014a), used
for both parents selection and survivors selection when the maximum population size is attained.
To deal with tightly constrained problems, linearly penalized route-constraint violations — capac-
ity or distance — are included in the objective. Penalty coefficients are dynamically adjusted to
ensure a target ratio of feasible solutions during the search; infeasible solutions are managed in a
secondary population.

During crossover, the whole solution is represented as a giant tour visiting all customers once,
without intermediate depot trips. As such, a simple ordered crossover that works on permutations
can be used. The optimal splitting of the giant tour into separate routes is performed optimally in
polynomial time as a shortest path subproblem on an auxiliary graph (Prins, 2004). This process
is known to be widely applicable in a unified manner to many vehicle routing variants as long as
it is possible to perform separate efficient route evaluations to compute the cost of edges in the
auxiliary graph (Vidal, 2013). Finally, UHGS relies on local search to improve every new offspring
solution generated during the search. The LS operators used in UHGS are 2-0PT, 2-0PT*, CROSS
and I-Cross (Vidal et al., 2014a). The last two neighborhoods are limited to exchanges, with
possible inversions, of up to two customers.

Local search is usually the bottleneck of most advanced metaheuristics for vehicle routing
variants, and thus efficient evaluations of routes generated by the neighborhoods are critical
for the overall algorithm’s performance. When additional attributes (constraints, objectives or
decisions) are considered, these route evaluations may be time consuming if implemented in
a straightforward manner. To improve this process, UHGS relies on auxiliary data structures
that collect partial information on any sub-sequence of consecutive customers in the incumbent
solution. This information is then used for efficiently evaluating the cost and feasibility of new
routes generated by local search moves since any such move can be seen as a recombination of
subsequences of consecutive customers from the incumbent solution.

A simple illustration of this concept is now given. Consider a CVRP solution with two routes:
r1 = (0,1,2,3,4,5,0) and ro = (0,6,7,8,9,0). To efficiently evaluate the capacity constraints,



the partial load Q(m) for any sub-sequence 7 of the incumbent solution is preprocessed prior
to move evaluations. An inter-route 2-OPT* move breaking the edges (3,4) and (7,8) leads to
two new routes r; = (0,1,2,3,8,9,0) and 7, = (0,6,7,4,5,0) requiring cost and load feasibility
evaluations. Loads Q(my—3), Q(m1—0), Q(mo—7) and Q(ms—) are known for sequences (0, 1,2, 3),
(4,5,0), (0,6,7) and (8,9,0), respectively. Denoting @ as the concatenation operator, we have
Q(r) = Q(mos3 @ m3—0) = Q(mo—3) + Q(m8—0), and in the same way Q(ry) = Q(mo—7) +
Q(m4-0). Load constraints can thus be checked in O(1) operations, independently of the number
of customers in the route. Otherwise, a straightforward approach sweeping through the new route
and cumulating the demands would take a number of operations proportional to O(n). This type
of route evaluation is referred to as move evaluation by concatenation in Vidal et al. (2014a), and

can be applied to a wide range of resources (load, distance, time), constraints and objectives.

4.2. Application to the CluVRP

Our application of UHGS to the CluVRP relies on two contributions: a route representation
based on an ordered sequence of clusters to reduce the search space, and efficient route evaluation
procedures using concatenations to evaluate the cost of a route assimilated to a sequence of
clusters. Thus, UHGS is applied on sequences of clusters, and the optimal path within the
clusters is determined implicitly during move and route evaluations. This leads to an implicit
structural problem decomposition, considering only a VRP of a size proportional to the number
of clusters N < n, and relegating difficult combinatorial decisions on path selections within
clusters at the level of route evaluations. These methodological elements can be easily integrated
into the UHGS framework, and it was possible to use the original UHGS implementation with
the sole addition of a new route-evaluation operator.

The method relies on the fact that in any cluster Vi, the cost ¢;; of the best Hamiltonian path
between customer i € Vi, and customer j € Vj, that services all other customers in Vi \ {4, j} has
been preprocessed (Battarra et al., 2014). Using this information, it is possible to obtain from a
route represented as a sequence of clusters the best sequence of visits to customers in polynomial

time by finding a shortest path in the auxiliary graph G’ illustrated in Figure 1.

Vo2 =1{1,4,8} Vo) =1{2,3,7} Vo) ={11,12} Vo(l0-11)={10,19}
/z’ \\\ //’ \\\ //’ \\\ /z’ =~ .
Voy={0} ¢ \ K \ /' \ // \ Vo(io1) = {0}
¢ \ ! ¢ \
DEPOT '@ P O8 1 ON a 6 G \ DEPOT
| >< ><
: q X
0<- 00550350
i \ v
oAl = =1
/ \ / \ / \ /
7 \ 7 \ 7 \ /7
\ 7 \ /7 \ 7 N /7
\\ // \\ /’ \\ // \\ /’

Figure 1: Route representation in UHGS



In Figure 1, black lines correspond to precomputed Hamiltonian paths within clusters. For
each cluster in the route, a set containing two copies of each node is generated. Pairs of node copies
are connected by an arc (k,1). The cost of this arc is set to the cost of the shortest Hamiltonian
path ¢;; in the cluster between k and [. The depot is then connected to the first copy of each node
in the first cluster, and the second copies of the nodes are connected to the first node copies of
the next cluster, and so on. The cost associated to these arcs (in gray in the figure) is the travel
distance between the endpoints. A similar shortest path subproblem was previously used for the
GVRP by Pop et al. (2013) and Vidal (2013).

A straightforward application of this technique leads to route evaluations in O(NB?) op-
erations, where B is the maximum number of customers in a cluster. These evaluations are
computationally expensive. Another contribution of this work is to show that efficient proce-
dures based on preprocessing and concatenations allow for performing each move evaluation in
amortized O(B?) operations, thus only depending on the square of the cluster size. These more
efficient evaluation procedures are now described.

For ease of notation, define A\; = |V;| for any cluster V;. In addition to the Hamiltonian paths
within clusters, which are pre-processed a single time before starting the method, UHGS now pre-
processes some information on each subsequence o of consecutive clusters in each current solution.
This information is updated whenever a solution change, e.g. a local search move, is applied. For
any sequence o = (o(1),...,0(|o|)) of clusters, the method computes for any i*" customer of the
cluster (1), and any j*" customer of the cluster o(|o|), the shortest path S(o)[i, ] inside the
sequence of clusters connecting 7 and j. These values can be computed as follows.

First, let us assume a subsequence ¢ = (V}) containing a single cluster. If the cluster is
restricted to a single customer, i.e., Vi = {v;}, then S()[i,7] = 0. Otherwise, S(7)[i, j] is given
in Equation (1), in which ¢;; represents the distance of the best Hamiltonian path connecting ¢

and j in the cluster V.

e foo ifi=j . ,
S@)i, gl =19 7 fordie{l,... Nt and je{l,... Al (1)
Gij ifi#yg
Any longer subsequence can be viewed as a concatenation of shorter subsequences. Equa-
tion (2) enables to evaluate S(o) on a new sub-sequence resulting of the concatenation of a pair of
subsequences o1 and o9, by induction on the concatenation operation @. It is a direct application

of the Floyd-Warshall algorithm.
S(Ul®02)[iaj} = min S(O’l)[i,fE}—{-Cm +S(02)[yaj]7
1201 (o1 ) 1Y A0y (1) Y (2)

for ¢ € {1, R ,)\01(1)} andj S {1, .. .,)\02(|0.2‘)}

Equation (2) can be used to perform preprocessing on all subsequences of clusters in the

10



01

current solution by iteratively appending a sequence made of a single cluster at the end. The
same equation is then applied during neighborhood exploration to compute the cost of routes
resulting from local moves. These routes can be viewed as a concatenation of a bounded number
of subsequences from the current solution (Vidal, 2013). Figure 2 illustrates this pre-processing
and move-evaluations mechanism. We consider the relocation of a subsequence of clusters oo into
a route originally made of o1 @ o3. The new route is thus a concatenation of the three sequences
01 ® o2 @ o3. The original shortest path problem is depicted on the top of the figure. Since
pre-processing has been done on subsequences from the incumbent solution, the sets of shortest
paths S(o1)[i, 7], S(o2)[i, j] and S(o3)[i, j] are known. They describe the shortest paths between
any origin node ¢ in the first cluster of the sequence, and any destination node j in the last cluster
of the sequence. As a consequence, these known paths can be substituted in the graph, leading
to an equivalent shortest path problem over a smaller graph, illustrated in the bottom of the
figure. The number of nodes and arcs in this new graph does not depend anymore on the number
of clusters in the route, but only on the number of concatenations, thus resulting in a reduced

computational complexity.

DE

— —

l

)T

01
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poﬁ%ij

—
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Figure 2: Using preprocessed information on subsequences

Proposition 1. Using the proposed preprocessing, the amortized complexity of move evaluations,
for classic VRP neighborhoods such as RELOCATE, SWAP, 2-OPT, 2-OrT*, is O(B?).

Proof. First, from the current incumbent solution, the preprocessing phase requires computing
the shortest paths between each pair of nodes, for each route. For each route, the graph G’ is
directed and acyclic. Equation (2) is applied iteratively, in lexicographic order starting from any
cluster o;, i € {1,...,|o|} and iteratively applied to o; for j € {i +1,...,|o|} to produce all
shortest paths. This equation is thus used O(N?) times to perform a complete preprocessing

on all routes. Each evaluation of this expression requires O(B?) time. The total effort for the
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preprocessing phase is O(N2B?).

After preprocessing, a local search using classic VRP neighborhoods is performed. Any move
based on less than k edge exchanges can be assimilated to a recombination of up to k£ 4+ 1 sub-
sequences of consecutive clusters. This is the case for the mentioned neighborhoods with k < 4.
Thus, each move evaluation is performed with a bounded number of calls to Equation (2), in
O(B?) elementary operations. The size S of each neighborhood is quadratic in the number of
clusters (e.g. swapping any cluster 4 with cluster j leads to S = ©(N?) possible moves), such that
a complete neighborhood exploration takes O(B?N?) time. The amortized complexity per move

evaluation, considering both preprocessing and effective evaluation, is thus O( QSB : )=0(B%. O

5. Computational results

Computational experiments have been conducted on multiple benchmark instance sets. The
first sets have been recently presented in Battarra et al. (2014). The authors considered instances
proposed in the GVRP literature by Bektag et al. (2011) (instance sets GVRP2 and GVRP3) and
then generated larger instances by adapting the CVRP instances proposed by Golden et al. (1998)
(instance set Golden) using the method reported in Bektag et al. (2011). Among the instances
proposed in Battarra et al. (2014), we have included in our benchmark set all Golden instances
(200 up to 484 customers) and the most challenging ones among the GVRP2 and GVRP3 sets
(the instances denoted as G and C in the GVRP literature, with 101 up to 262 customers).
We have also generated an additional instance set with even larger problems (called hereafter
Li), by adapting the method of Bektag et al. (2011) on the instances originally proposed by Li
et al. (2005). The latter set contains instances with up to 1200 customers. We decided to have
clusters with average cardinality A = 5, leading to larger instances with 113 up to 241 clusters. A
summary of the characteristics of our benchmark set is provided in Table 1. All sets of instances
are available upon request and detailed result tables are displayed in the appendix (where the

column Ezact denotes the best upper bounds found in Battarra et al., 2014).

Table 1: Summary of benchmark set characteristics

Instance Set Source # Inst. n N

C Bektag et al. (2011) 2 101-200 | 34-100
G Bektag et al. (2011) 8 262-262 88-131

Golden Battarra et al. (2014) 220 201-481 17-97

Li New 12 560-1200 | 113 -241

An extensive calibration effort was spent in previous studies to find good and robust param-
eters for UHGS (Vidal et al., 2012) and ILS (Subramanian, 2012). We relied on this knowledge
to obtain an initial parameter setting, and then scaled the parameters controlling algorithm ter-

mination to generate solutions for large-scale instances in comparable CPU time. As such, the
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population-size parameters of UHGS are set to (™™, p“*~) = (8, 8) and the termination criterion

I
is Ityee = 400. For ILS, the number of restarts has been set to ng = 50 and the number of
perturbations is n; = n + 5m as in Subramanian (2012). The choice of n; = 1000 was adopted
for ILS-Clu. All experiments have been conducted on a Xeon CPU with 3.07 GHz and 16 GB
of RAM, running under Oracle Linux Server 6.4. Each algorithm was executed 10 times for each
instance using a different random seed.

Table 2 summarizes the results obtained by the proposed hybrid metaheuristics. For each
benchmark set, the number of instances “|Inst.|” is given, as well as the number of times “#
BKS” the best known solution is found by ILS, ILS-Clu and UHGS, respectively. Columns 6-9
provide the average CPU time per instance in seconds. UHGS, also includes the CPU time
dedicated to computing the cost of all intra-cluster Hamiltonian paths with Concorde. Columns
10-12 report the average percentage deviation from the best known solutions “Avg. % Dev.”.
Note that the percentage deviation for a solution of value z from the best known solution value
ZBK s is computed as Z;;% x 100. The last row reports the overall number of best known
solutions found by each method, the average CPU time and percentage average deviation.

From the experiments, it appears that UHGS is capable of finding most of the best known
solutions (234 out of 242). In most cases, the average percentage gaps among the three methods
is still small: ILS-Clu has an average deviation of 0.19% from the best known solutions and ILS
has an average deviation of 0.13%. ILS is remarkably slower than the two other algorithms. The
average CPU time for the large instances in the Li data set is 9548.6 seconds, versus 535.8, 345.3,
660.0 seconds for ILS-Clu, UHGS, and UHGS,, respectively. Note that ILS performs about 0.06%
better than ILS-Clu, but ILS-Clu is 15 times faster on average.

UHGS, is faster on average than ILS, even with the exhaustive search of all intra-cluster
Hamiltonian paths using Concorde. This preprocessing phase is fast when the average cluster
size is limited, but requires large CPU time when the cluster size increases, as in the case of the
Golden instances. A heuristic evaluation of the cost of intra-cluster Hamiltonian paths could be
a viable alternative. This is left as a research perspective. Finally, UHGS is faster than ILS-Clu
for very large instances. ILS-Clu is on average faster on the G and C data sets, but slower on

average on the Li set.

Table 2: Summary of results for the G, C, Golden and Li instances

# BKS Avg. Time (s) Avg. % Dev.
Instance Set | |Inst.| | ILS ILS-Clu UHGS | ILS ILS-Clu UHGS UHGS, | ILS ILS-Clu UHGS
G 2 0 1 2 127.6 53.5 150.2 165.2 0.64 0.22 0.00
C 8 6 8 7 26.0 17.8 27.1 35.1 0.19 0.04 0.05
Golden 220 127 87 213 698.8 53.9 53.7 854.9 0.11 0.19 0.01
Li 12 1 0 12 9548.6 935.8 345.3 660.0 | 0.34 0.21 0.00
Tot: 242 134 96 234 1110.7 76.6 68.1 812.4 0.13 0.19 0.01
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Table 3: Summary of results for the Golden instance set grouped by instance size

# Opt. Avg. Time (s) Avg. % Dev.
n ILS 1ILS-Clu UHGS ILS ILS-Clu UHGS UHGS, | ILS ILS-Clu UHGS
201 11 11 11 81.18 19.92 14.57 2866.57 0 0 0
241 11 9 11 141.92 23.95 22.4 172.94 0 0.03 0
241 11 11 11 159.43 27.2 20.92 176.87 0 0 0
253 8 5 11 145.67 21.86 23.33 164.69 0.05 0.12 0
256 10 9 10 148.03 21.57 22.09 135.45 0.03 0.06 0.03
281 10 8 11 308.71 47.15 34.14  3848.32 0 0.03 0
301 10 11 11 309.59 379 30.75 191.26 0.02 0 0
321 3 2 11 442.25 47.27 47.57 243.39 0.08 0.07 0
321 7 2 11 333.56 34.29 38.12 152.78 0.12 0.25 0
324 6 4 11 336.87 31.55 43.82 175.73 0.19 0.31 0
361 3 1 11 816.36 73.97 66.94 2220.3 0.09 0.13 0
361 10 7 11 523.32 52.43 38.65 276.27 | 0.01 0.04 0
397 1 0 9 713.35 52.3 65.99 279.15 0.33 0.48 0.03
400 3 0 11 658.46 46.9 59.62 198 0.3 0.56 0
401 5 2 11 1115.99 85.16 82.91 1384.18 | 0.12 0.14 0
421 7 1 10 886.08 77.59 49.59 351.74 0.11 0.22 0.09
441 4 0 10 1573.62  101.69 97.09 1017.63 | 0.08 0.16 0
481 1 0 9 2336.64  130.52  137.95 2608.13 | 0.12 0.13 0.01
481 3 3 11 1344.21 74.34 84.3 246.31 0.15 0.39 0
484 3 1 11 1420.29 72.22 94.05 389.16 0.48 0.73 0
Tot: | 127 87 213

A more detailed comparison of the algorithms is displayed in Table 3 for the Golden instances.
The large number of instances in this set allows for an analysis of the algorithms’ performances by
varying the number of customers and cluster size. The table reports aggregated results, obtained
by averaging over instances with the same number of customers.

A correlation between the size of the instance and the performance of ILS can be observed;
larger instances lead to larger gaps and higher CPU time. On the other hand, the performance
of ILS-Clu is less dependent on instance size. For example, instances of group 12 with 484
customers are the most challenging for ILS-Clu with a 0.73% average deviation, but the deviation
for instances of group 4, with size n = 481, is only 0.13% in average. A similar observation stands
for UHGS, the most challenging instance groups being 4, 9, 14, and 20 with 481, 256, 397 and
421 customers, respectively.

Aggregating the Golden instances by average cluster size A, as done in Table 4, leads to a
further level of understanding of algorithms performance. All algorithms find solutions close to
the best known when the average cluster size is large and therefore less clusters are present.
The average CPU time of ILS does not depend on the average cluster size, whereas UHGS is

consistently faster when large and few clusters are present. ILS-Clu attains its minimum CPU

14



Table 4: Summary of results for the Golden instances grouped by average cluster size

# Opt. Avg. Time (s) Avg. Dev.
A ILS ILS-Clu UHGS | ILS ILS-Clu UHGS UHGS, | ILS ILS-Clu UHGS
5 17 8 20 670.40  55.60 36.29  140.32 | 0.02 0.11 0.00
6 18 12 20 663.38  53.84 3722 155.89 | 0.02 0.08 0.00
7 17 9 20 670.84  52.68 39.55  173.19 | 0.01 0.11 0.00
8 11 9 20 688.00  50.83 43.15  251.55 | 0.08 0.12 0.00
9 12 10 20 689.86  48.98 45.71  307.15 | 0.08 0.18 0.00
10 12 7 20 691.00  49.16 49.64  553.37 | 0.11 0.18 0.00
11 10 9 20 709.81  48.85 50.82 41797 | 0.13 0.18 0.00
12 9 9 20 695.70  50.12 54.77  1025.66 | 0.13 0.18 0.00
13 8 5 20 725.73  53.12 69.04  916.16 | 0.18 0.29 0.00
14 7 5 17 699.89  59.99 73.52  2327.81 | 0.24 0.37 0.06
15 6 4 16 682.94  70.72 91.43 3135.31 | 0.23 0.31 0.03
Avg: | 11.55 7.91 19.36 | 689.78  53.99 53.74  854.94 | 0.11 0.19 0.01

time when the average cluster size is approximately 9 customers. This is due to the fact that
ILS-Clu performs both intra and inter-cluster LS moves; a balanced instance in terms of number
and size of the clusters is a good compromise in terms of CPU time. Finally UHGS was capable
of improving the best known solutions for five instances from Battarra et al. (2014). The values

of these solutions are listed in Table 7.

6. Conclusions

This paper focused on the CluVRP, a generalization of the CVRP where customers are grouped
into clusters. Three metaheuristics have been proposed, two of which are based on iterated local
search, while the third is a hybrid genetic algorithm with a cluster-based solution representation.
Efficient large neighborhood search procedures based on re-optimization techniques have been de-
veloped and integrated with the hybrid genetic search. The resulting three methods produce high
quality solutions, and algorithms taking advantage of the cluster structure and large neighbor-
hoods are remarkably faster. The hybrid genetic algorithm and large neighborhood search leads
to solutions of higher quality that the two ILS based algorithms, but its pre-processing phase may
become time consuming for instances with large clusters. Future work should consider heuristic
preprocessing techniques to enhance CPU time, and other large neighborhoods strategies taking

advantage of clusters.
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