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Matheuristics for a Multi-attribute Profit

Collecting Vehicle Routing Problem

Güneş Erdoğan ∗ Fraser McLeod † Tom Cherrett †

Tolga Bektaş ∗

August 29, 2013

Abstract

This paper studies a multi-attribute profit collecting vehicle routing problem,
which arises in the collection operations of a charity organisation in the UK.
The problem involves a heterogeneous fleet consisting of vehicles of differ-
ent capacities, mandatory visits to a subset of vertices, time windows, rest
requirements associated with maximum driving and working times, and par-
tial collection. A mixed integer programming formulation of the problem is
provided, along with three matheuristics based on Tabu Search and Large
Neighbourhood Search. Computational results on instances derived from a
case study are presented, as well as the results of the real-world implementa-
tion.

1 Introduction

In this paper, we focus on a variant of the Vehicle Routing Problem (VRP) with
profit collection that arises daily in a charity organisation in the UK. We are given a
heterogeneous fleet operating out of a single depot and the quantity of donations at
the banks and shops owned by the charity organisation. Mostly staffed by volunteers,
each shop has an associated time window, the start and end times of which vary
based on the parking restrictions. Each type of vehicle has an associated travel cost
per mile and load capacity, all vehicles are subject to limits on the driving time and
the working time, and the drivers are required to rest if they exceed a given driving
time limit or a given working time limit. The problem is to determine routes for the
vehicles that visit each location no more than once, with the objective of maximising
the net profit, computed as the difference of the value of collected donations and
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the travel cost incurred. We refer to this problem as the Multi-attribute Profit
Collecting Vehicle Routing Problem (MPCVRP).

The closest problem to MPCVRP is a variant of theVehicle Routing Problem with

Private Fleet and Common Carrier (VRPPC) studied by Ceschia et al. (2011). This
problem differs from MPCVRP in terms of the objective function, the existence of
a multi-day planning horizon, and soft time windows. The authors have presented
a Tabu Search (TS) algorithm for the problem, and have provided results for 18
instances with 56 customers and a CPU time limit of 500 seconds. Baldacci et al.
(2010) have presented a unified exact method for solving many variants of the VRP,
which can handle most of the attributes of MPCVRP, including time windows,
heterogeneous fleet, and vehicle capacity. However, their approach does not cover
profit collection and rests. To the best of our knowledge, MPCVRP has not been
studied before.

Regarding other related studies, there is a large body of literature on Traveling

Salesman Problems with Profits (TSPP), for which we refer the reader to the excel-
lent survey by Feillet et al. (2005). There exist three main categories of TSPP: 1)
The Profitable Tour Problem, in which the objective is to find a tour that minimises
the travel cost minus the profits collected. 2) The Orienteering Problem (OP), in
which the travel cost (or distance, or time) is constrained by an upper bound and
the objective is to maximise the profits collected. 3) The Prize-Collecting Traveling

Salesman Problem, in which the profit collected is constrained by a lower bound and
the objective is to minimise the travel cost. Due to the type of objective function
and the time window of the depot enforcing a maximum working time, we cate-
gorise MPCVRP to be in the intersection of categories 1 and 2. The most popular
category is observed to be the OP, for which we refer the interested reader to the
recent survey by Vansteenwegen et al. (2011). The generalization of OP to multiple
vehicles is named as the Team Orienteering Problem (TOP), and has received am-
ple attention from the research community. To the best of our knowledge, the most
successful heuristics for the TOP are due to Ke et al. (2008) and Souffriau et al.
(2010), whereas the most successful exact algorithm is that of Archetti et al. (2009).

Matheuristics are combinations of metaheuristics and exact optimization meth-
ods, which combine the diversification ability of the former and the intensification
ability of the latter. Recently, Subramanian et al. (2013) have applied a combination
of Iterated Local Search, Random Variable Neighbourhood Descent, and a Set Par-
titioning Problem formulation to seven variants of the VRP, and reported a number
of new best solutions. Similarly, Villegas et al. (2013) have applied a combination of
Greedy Randomised Adaptive Search, Iterated Local Search, and a Set Partitioning
Problem formulation to the Truck and Trailer Routing Problem, and reported results
that outperform state-of-the-art results. Matheuristics have also been successfully
applied to production-distribution planning, inventory routing, and healthcare (Raa
et al. 2013, Coelho et al. 2012, Allaoua et al. 2013).

In this paper, we describe the MPCVRP, propose a mathematical programming
formulation and describe three matheuristics that are based on the the TS and Large
Neighbourhood Search (LNS) algorithms. We present our computational results
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based on instances derived by imitating real data. The rest of this paper is organised
as follows. In Section 2, we provide the details of the problem and provide a mixed
integer programming formulation. In Section 3, we present our metaheuristic and
matheuristic algorithms. In Section 4, we give the results of our algorithms. Finally,
we provide our conclusions in Section 5.

2 Problem Definition

The current collection process is based on a fixed schedule of stops at the shops and
selective stops at the banks for every day of the week. Albeit simple, this strategy
has a number of disadvantages. Firstly, it brings the possibility of inefficient use of
vehicle capacity, due to set visits to shops that may not contain enough donations.
Secondly, the banks that are already full but cannot be visited run the risk of
overfilling and losing donations. Finally, the donations have a significant monetary
value and theft of uncollected donations occurs frequently. Hence, a better strategy
is to utilise dynamic fill information and to determine the vehicle routes on a daily
basis. We now describe the components of the daily collection problem in detail and
define the associated parameters.

2.1 Parameters

As mentioned in the introduction, the collection points are composed of banks and
shops. Less than half of the collection locations consist of banks: sites containing
one or more large bins fitted with infrared remote monitoring sensors that transmit
their fill levels twice a day. The remaining collection locations are the shops, which
have a larger storage capacity and can relay the fill level as frequently as required.
The banks do not need staff to operate and do not normally have associated time
windows of work. On the contrary, the shops may have preferences not only about
the time of day but also the day of the week of the visit. Shops dictate the day of
the visit, which introduces mandatory visits into the routes. It is allowed for the
vehicles to arrive at shops early and wait until the beginning of the time window.
A visit to a location is expected to collect all the donations that have accumulated,
with the exception of the last stop before returning to the depot, in which a partial
collection due to the capacity constraint is allowed.

Let us denote the set of locations as V = {0, 1, ..., n}, where 0 corresponds to the
depot. For the sake of brevity, we refer to the collection locations as VC = V \ {0}.
We also denote the set of mandatory locations as T ⊆ V , with {0} ⊆ T . We
define [ai, bi] to be the time window of location i ∈ V , and li to be the loading time
of the vehicle at the location. The donation profile of a location depends on the
demographics of the surrounding district and the profit and quantity collected vary
accordingly, which we denote by pi and qi, respectively.

The vehicles use the road network connecting the locations, and it is tacitly
assumed that they use the shortest path between any two points, which may not be
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the case in the existence of heavy traffic or an accident. Let us define the set of arcs
as A = {(i, j) : i, j ∈ v, i 6= j}. The charity organisation currently owns two types
of vehicles, vans and trucks, where the former type has a smaller capacity and can
be driven by people with a regular driving license. We denote the set of vehicles as
K and weight capacity of vehicle k ∈ K as Qk. Due to the difference in size and
weight the vehicles have different travel costs and times, which we denote by cijk
and tijk for arc (i, j) ∈ A and vehicle k ∈ K, respectively.

EU regulations require the drivers to rest for 45 minutes for every 4.5 hours
of accumulated driving. Similarly, the policy of the charity organisation is such
that the drivers should rest for 45 minutes for every 6 hours of continuous work.
We parametrise these values as T v

max for the accumulated driving time limit, Tw
max

for the accumulated working time limit, and r for the length of the rest period.
Although it is possible for for the drivers to rest at suitable locations on the road,
we assume that the rests only occur at collection locations.

2.2 Mixed integer programming formulation

We now present our mixed integer programming formulation for MPCVRP using the
following decision variables. Let xijk be equal to 1 if vehicle k travels from location
i to j, and 0 otherwise. Let yik be equal to 1 if vehicle k visits location i ∈ VC , and
0 otherwise. Let ŷik be equal to 1 if the driver of vehicle k rests at location i ∈ VC ,
and 0 otherwise. Let uik be the arrival time of vehicle k at location i. Let vik be
the driving time accumulated by the driver of vehicle k upon arrival at location i.
Let wik be the working time accumulated by the driver of vehicle k upon arrival at
location i. Finally, let zik be the amount picked up by vehicle k at location i ∈ VC .
The corresponding formulation is given below.

(F1)

maximise
∑

i∈V

∑

k∈K

pizik −
∑

(i,j)∈A

∑

k∈K

cijkxijk (1)

s.t.
∑

j∈V

xijk = yik (i ∈ VC , k ∈ K) (2)

∑

j∈V

xjik = yik (i ∈ VC , k ∈ K) (3)

∑

j∈VC

x0jk ≤ 1 (k ∈ K) (4)

∑

j∈VC

x0jk =
∑

j∈VC

xj0k (k ∈ K) (5)

∑

k∈K

yik = 1 (i ∈ T ) (6)

∑

k∈K

yik ≤ 1 (i ∈ VC \ T ) (7)
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∑

i∈S,j∈V \S

xijk ≥ ytk

(S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, t ∈ S; k ∈ K) (8)

ŷik ≤ yik (i ∈ VC , k ∈ K) (9)
∑

k∈K

zik ≤ Qk (k ∈ K) (10)

zik ≤ qiyik (i ∈ VC , k ∈ K) (11)

zik ≥ qi
∑

j∈VC

xijk (i ∈ VC , k ∈ K) (12)

ujk ≥ uik + (tijk + li)xijk + r ŷik − b0(1− xijk)

((i, j) ∈ A : j ∈ VC , k ∈ K) (13)

ujk ≤ b0 − (tj0k + lj)xj0k − r ŷjk (j ∈ VC , k ∈ K) (14)

vjk ≥ vik + tijkxijk − T v
max(1− xijk + ŷik)

((i, j) ∈ A : j ∈ VC , k ∈ K) (15)

vjk ≤ T v
max − tj0k(xj0k − ŷjk) (j ∈ VC , k ∈ K) (16)

wjk ≥ wik + (tijk + li)xijk − Tw
max(1− xijk + ŷik)

((i, j) ∈ A : j ∈ VC , k ∈ K) (17)

wjk ≤ Tw
max − (tj0k + lj)(xj0k − ŷjk) (j ∈ VC , k ∈ K) (18)

0 ≤ uik ≤ bi − li (i ∈ V, k ∈ K) (19)

0 ≤ vik ≤ T v
max (i ∈ V, k ∈ K) (20)

0 ≤ wik ≤ Tw
max (i ∈ V, k ∈ K) (21)

xijk = 0 or 1 ((i, j) ∈ A, k ∈ K) (22)

yik = 0 or 1 (i ∈ VC , k ∈ K) (23)

ŷik = 0 or 1 (i ∈ VC , k ∈ K) (24)

zik ≥ 0 (i ∈ VC , k ∈ K). (25)

The objective function (1) maximises the profit collected minus the travel cost.
Constraints (2) and (3) state that a vehicle must enter and exit a location it is
visiting, respectively. Constraints (4) enforce a maximum of one route per vehicle.
Constraints (5) are the flow conservation constraints at the depot for the vehicles.
Constraints (6) and (7) state that a mandatory location must be visited by a vehi-
cle and other locations may not be visited by more than one vehicle, respectively.
Constraints (8) ensure that there is a path from a visited location to a mandatory lo-
cation. Constraints (9) ensure that a driver can only take a rest at a visited location.
Constraints (10) set the upper limit of collection by a vehicle to the capacity of the
vehicle. Constraints (11) require a visit at a location for a vehicle to collect at that
location. Constraints (12) enforce the collection of all the demand, except when the
vehicle is immediately going back to the depot, allowing partial collection only for
the last visited location. Constraints (13) and (14) set the upper and lower bounds
for the total time accumulated by a vehicle, respectively. Constraints (15) and (16)
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set the upper and lower bounds for the driving time accumulated by the driver of a
vehicle, respectively. Constraints (17) and (18) set the upper and lower bounds for
the working time accumulated by the driver of a vehicle, respectively. Constraints
(19) state the time windows for each location. Constraints (20) and (21) state the
limits on driving time and working time, respectively. Finally, constraints (22), (23),
(24) are binary constraints and constraints (25) are nonnegativity constraints.

As a closing remark for this section, we would like to state that MPCVRP
contains many well-known routing problems as special cases, e.g. the TOP is a
special case of the MPCVRP with a fleet of a single vehicle type, time windows for
the customers that are set larger than that of the depot, and the time window of the
depot representing the travel budget of the vehicles. This relationship also proves
that MPCVRP is NP-Hard.

3 Matheuristic Algorithms

Formulation F1 presented in the previous section, albeit capturing all the character-
istics of the problem, is unable to provide a solution within a reasonable time due to
the high number of variables and constraints. We now describe three matheuristics
that are capable of finding high quality results in a short time. The matheuristics we
describe here have two main components: (i) intensification through mathematical
programming, and (ii) diversification using metaheuristics. We now present the two
components in greater detail.

3.1 Mathematical programming component

To present the mathematical programming component of the matheuristics, we need
to define a number of parameters. Let us define the set of types of vehicles as K̄,
and denote the number of available vehicles of type k̄ ∈ K̄ as mk̄. Let us define R

to be a set of vehicle routes the members of which are feasible for at least one type
of vehicle, with route i ∈ R having a net profit of p̄i. Let Ri ⊆ R to be the subset
of routes that visit vertex i ∈ VC , with ∪i∈VC

Ri = R. Furthermore, let Rk̄ ⊆ R be
the set of routes that are feasible for vehicle type k̄ ∈ K̄, with ∪k̄∈K̄R

k̄ = R.

We now provide a formulation that selects routes i ∈ R such that they cover all
mandatory locations and do not use more than the available number of vehicles, so
as to maximise the net profit. Let x̄i be equal to 1 if route i is selected to be a part
of the solution, and 0 otherwise. The resulting formulation is given below.
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(F2)

maximise
∑

i∈R

p̄ix̄i (26)

s.t.
∑

i∈Rj

x̄i = 1 (j ∈ VC ∩ T ) (27)

∑

i∈Rj

x̄i ≤ 1 (j ∈ VC \ T ) (28)

∑

i∈Rk̄

x̄i ≤ mk̄ (k̄ ∈ K̄) (29)

x̄i = 0 or 1 (i ∈ R) (30)

The objective function (26) maximises the net profit. Constraints (27) ensure
that one and only one vehicle visits a mandatory collection location. Constraints (28)
state that at most one vehicle can visit a collection location that is not mandatory.
Constraints (29) state that the number of routes of a given vehicle type is limited by
the number of vehicles available of the type. Finally, constraints (30) are integrality
constraints.

Note that formulation F2 can find the optimal solution for the MPCVRP if R
contains all feasible routes, which requires either explicit enumeration of the routes
or an exact column generation technique, the former being infeasible due to the
exponential size of the set and the latter due to a strict CPU time constraint. In
order to keep F2 to a manageable size, we set the limit of the cardinality of the
route set R to be Rmax.

3.2 Metaheuristic component

In the remainder of this section, we present the three mathheuristic algorithms we
have developed, based on TS and LNS. We refer to the matheuristic algorithms by
appending a * sign next to the name of the metaheuristic is it based on. Within
the algorithms, we refer to well known route operators of vertex addition, vertex
removal, vertex relocation, and vertex swap. Vertex addition returns a vertex, the
addition of which will result in a maximal profit increase with respect to the current
solution. The other three operators behave similarly, with respect to the operations
they refer to.

3.2.1 Tabu Search

TS has been successfully applied, both in academia and practice, in many diverse
fields such as Group Theory (Gallego et al. 2013), automated code generation (Hyde
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et al. 2013), and rostering (Edleston and Bartlett 2012) as well as routing (Moccia
et al. 2012). Diversification is achieved through the use of a tabu list, which tem-
porarily prohibits the reversal of the moves within the local search neighbourhood.
We provide below the TS based matheuristic we have implemented for MPCVRP.

(TS*)

Step 1 (Initialization): Initialize the incumbent solution, the best known solution,
tabu list, R = ∅, and the iteration counter k = 1.

Step 2 (Stopping condition): If the time limit is exceeded, stop and report the
best known solution.

Step 3 (Local search): Select and apply the best among the operators of vertex
addition, vertex removal, and vertex swap, honoring the tabu list.

Step 4 (Route set update): If the incumbent solution is feasible, add the routes
in the solution to R.

Step 5 (Intensification): If |R| > Rmax, solve F2. Replace the incumbent solution
with the solution of F2. Delete all routes in R and add the routes in the solution of
F2 to R.

Step 6 (Best solution update): If the incumbent solution is feasible and its
objective value is higher than the best known solution, update the best known
solution.

Step 7 (Tabu list update): Add the vertex (or vertices) in the selected operator
to the tabu list and increase their tenure by 1. Remove vertices with a tabu tenure
that is greater than a pre-specified tenure limit from the tabu list. Increment k and
go to Step 2.

3.2.2 Large Neighbourhood Search

LNS has been presented by Shaw (1998) and successfully used by Pisinger and
Ropke (2007) for solving five variants of the VRP. LNS achieves diversification by
removing a part of a given solution (parametrised as α%) and repairing the solution
by a constructive heuristic. The LNS based matheuristic we have implemented for
MPCVRP is given below.

(LNS*)

Step 1 (Initialization): Initialize the incumbent solution, the best known solution,
R = ∅, and the iteration counter k = 1.

Step 2 (Stopping condition): If the time limit is exceeded, stop and report the
best known solution.

Step 3 (Break): Randomly select and remove α% of the vertices from the incum-
bent solution.
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Step 4 (Repair): Choose the vertex with maximum incremental profit to be added
to the solution, until no more vertices can be added.

Step 5 (Polishing): Select and apply the best among the operators of vertex
relocation and vertex swap , until no further improvement is possible.

Step 6 (Route set update): If the incumbent solution is feasible, add the routes
in the solution to R.

Step 7 (Intensification): If |R| > Rmax, solve F2. Replace the incumbent solution
with the solution of F2. Delete all routes in R and add the routes in the solution of
F2 to R.

Step 8 (Best solution update): If the incumbent solution is feasible and better
than the best known solution, update the best known solution. Increment k and go
to Step 2.

3.2.3 Large Neighbourhood Search - Tabu Search

Our third matheuristic is a hybrid of TS and LNS that aims to combine the diver-
sification features of both algorithms. To the best of our knowledge, this is the first
attempt to combine the two algorithms. Simply put, we replace the Repair step
of LNS with the TS algorithm. We define kmax to be the maximum number of TS
iterations before termination. We now present the LNS-TS based matheuristic we
have implemented for MPCVRP.

(LNS-TS*)

Step 1 (Initialization): Initialize the incumbent solution, the best known solution,
R = ∅, and the tabu list.

Step 2 (Stopping condition LNS): If the time limit is exceeded, stop and report
the best known solution.

Step 3 (Break): Randomly select and remove α% of the vertices from the incum-
bent solution.

Step 4 (Repair - TS): Initialize the TS iteration counter k = 1.

Step 4.1 (Local search): Select and apply the best among the operators of
vertex addition, vertex removal, and vertex swap, honoring the tabu list.

Step 4.2 (Best solution update): If the incumbent solution is feasible and
its objective value is higher than the best known solution, update the best known
solution.

Step 4.3 (Tabu list update): Add the vertex (vertices) in the selected operator
to the tabu list and increase their tenure by 1. Remove vertices with a tabu tenure
that is greater than a pre-specified tenure limit from the tabu list.

Step 4.4 (Stopping condition TS): Increment k. If k > kmax, go to Step 5.
Else, go to Step 4.1.
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Step 5 (Polishing): Select and apply the best among the operators of vertex
relocation and vertex swap , until no further improvement is possible.

Step 6 (Route set update): If the incumbent solution is feasible, add the routes
in the solution to R.

Step 7 (Intensification): If |R| > Rmax, solve F2. Replace the incumbent solution
with the solution of F2. Delete all routes in R and add the routes in the solution of
F2 to R.

Step 8 (Best solution update): If the incumbent solution is feasible and better
than the best known solution, update the best known solution, and go to Step 2.

4 Computational Experiments

In this section, we provide the details of data generation, the parameter settings,
and the results of our computational experiments.

4.1 Data generation and parameter settings

The locations of the depot and the collection locations were provided by the charity
organisation, which have been in turn used for obtaining the driving distances and
times from a commercial software package. A map showing the locations of the
depot and the collection locations consisting of 58 banks and 75 shops are depicted
in Figure 1. A bank consists of up to four bins, each of which has a capacity of 270
kg, hence the capacity of a bank is contained in the set {270, 540, 810, 1080}. The
capacities of the shops, the days of the mandatory visits, and the time windows were
provided by the charity organisation. The dwell time at a location was determined
as the average dwell time for the previous visits. The profit per kilogram of donation
was estimated to be £0.80 for the banks and £0.50 for the shops, reflecting the fact
that unsold goods tend to have a lower value than goods donated at banks. The
fleet of vehicles consisted of a single van and five trucks at the time of writing,
the capacities of which were known through their technical specifications. The
parameters for the rests were derived from the EU regulations and the company
policy, as mentioned in Section 2. The data mentioned so far formed the static
setting, and the computational experiments were conducted through varying the
daily donations. We have modeled the daily amount of donations at a collection
location as a Gaussian random variable. Samples consisting of negative values and
values that exceeded the capacity of the collection have been truncated to 0 and the
capacity, respectively.

We have generated a total of 50 instances using the static and dynamic data
described above. A set of preliminary experiments were conducted to determine the
algorithmic parameters. Based on these experiments, the best performance of the
TS* algorithm was observed to be for a tabu tenure of 20 and the best results for
the LNS* algorithm were observed for α = 10. For LNS-TS*, we have used the same
values, and have set kmax = 75. For all three algorithms, we have used Rmax = 1500,
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Figure 1: The depot and the collection locations

to ensure that R contained a reasonable number of routes to ensure diversity and
yet was of manageable size for F2 to be solved quickly.

4.2 Computational results

All three algorithms were coded using C++ and CPLEX 12.5. The executables
were run on the IRIDIS 4 cluster, consisting of 2.6 GHz cores and 4 GB of memory
per core. A CPU time limit of 10 minutes was imposed on all three algorithms,
as required by the planning process of the charity organisation. We have run the
algorithms with and without the intensification step, to be able to compare the
performance enhancement provided by the mathematical programming component.
A comparison of the deviations of all six heuristics from the best known solutions
are given in Table 1. The detailed results are presented in the Appendix, in Table
3 for the metaheuristics and Table 4 for the matheuristics, where the best known
solutions are indicated in boldface.

Table 1: Comparison of all six algorithms
TS LNS LNS-TS TS* LNS* LNS-TS*

Minimum −19.20% −3.11% −7.39% −19.20% −1.73% −7.65%
Average −12.11% −0.33% −4.29% −10.92% −0.22% −4.30%

Maximum −5.40% 0.00% −1.47% −3.92% 0.00% −1.84%
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LNS and LNS* clearly outperform the other algorithms, the former finding the
best known solution in 21 instances out of 50, and the latter in 35 instances. The
intensification step improves the performance of TS by 1.19% and that of LNS by
0.11% , but has an insignificant effect on LNS-TS. The performances of TS and
TS* are remarkably worse than those of the other algorithms. Our intuition is
that the algorithmic structure of the TS, in particular the tabu list, is incompatible
with mandatory vertices. A mandatory vertex being removed from the solution
cannot return to the solution until it reaches the tabu tenure, causing the incumbent
solutions for the iterations in-between to be infeasible.

Table 2: Comparison of all six algorithms for the case with no mandatory collection
visits

TS LNS LNS-TS TS* LNS* LNS-TS*

Minimum −14.96% −13.56% −2.32% −13.96% −12.80% −2.14%
Average −6.91% −2.73% −0.50% −6.30% −2.76% −0.27%

Maximum −1.64% 0.00% 0.00% −1.41% 0.00% 0.00%

In order to test our conjecture about the effect of mandatory vertices, we have
also run the algorithms on the same set of instances with the mandatory collection
visits removed, i.e. T = {0}. Similar to the analysis above, the comparison of the
deviations of all six heuristics from the best known solutions are given in Table 2.
The detailed results the of the metaheuristics and the matheuristics are provided
in the Appendix, in Tables 5 and 6, respectively. In this case, the performances
of TS and LNS are quite similar, with LNS still outperforming TS. Remarkably,
the distances traveled are significantly shorter for LNS, making it a more desirable
algorithm for the practitioners. The performances of LNS-TS and LNS-TS* are
significantly better the other algorithms, since both successfully exploit the diver-
sification ability of TS and LNS algorithms. The effect of the intensification step
on the average is less pronounced in this case, yet significant improvements for the
worst performances have been observed. LNS-TS* successfully finds the best known
solutions for 28 instances out of 50, where LNS-TS finds 13, and LNS and LNS*
find 5 each.

4.3 Implementation results

The LNS algorithm was used in practice by the charity organisation over a period
of 36 working days between 9 May and 19 July 2013 with routes being computed
one day in advance of being implemented. The choice of the algorithm was due to
its robust performance with the mandatory shop visits. Historical data were used to
estimate daily fill levels at the other banks or where the remote monitoring sensors
were not functioning satisfactorily. The use of these data and the algorithm resulted
in an overall 28% reduction in the number of bank visits, from 953 to 685 visits over
the period

The routes that were proposed by the LNS algorithm were examined by the
charity organisation’s transport manager, with some manual alterations being made
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to fit in with the various day-to-day operating conditions that applied, some of which
were not considered in the model. The main reasons for changes made were:

• Access: Routes were often reordered manually (sometimes being undertaken
in reverse) to avoid the risk of arriving at a shop too early or too late due to
changes in the prespecified time window or heavy traffic.

• Balancing workloads: The metaheuristics and matheuristics were not designed
to balance workloads between vehicles and crew, and sometimes produced one
or more suggested routes that had a relatively heavy or light workload.

• Clustering: This refers to the human preference of assigning clusters of collec-
tions to a single route. In several cases the vehicle routing algorithm would
assign different collections in the same city to two vehicles, which was altered
by the transport manager.

• Inclusion of urgent requests: On a few occasions the transport manager had
to respond to additional service requests from shop and bank managers. The
extra tasks had to be included manually and sometimes required restructuring
of the routes.

• Forced or delayed collections: In a number of cases the algorithm omitted a
bank collection, yet the transport manager preferred to force a visit as delaying
it might have caused a problem due to the bank overfilling, as it would not have
been convenient to visit the bank later in the week. Conversely, sometimes a
collection scheduled by the algorithm was preferred to be delayed until later
in the week.

• Unavailability of a vehicle or staff: Unforeseeable events such as a last minute
breakdown of a vehicle, or a member of staff calling in sick, required the routes
to be modified.

As it was not possible to measure the exact monetary value of the collection, the
performance of the LNS algorithm was evaluated by comparing times and distances
between the routes undertaken during the trial and those that would normally have
been undertaken (i.e. the fixed routes). Distance savings, day by day, are shown in
Figure 2. The total estimated distance saved over all 36 days was 1159 km, equating
to a 3.2% reduction and an average savings of 32 km per day across the vehicle fleet.
On most days, total distance was reduced due to a reduction in the numbers of bank
visits made; the greatest savings on one day was 191 km on Tuesday 4 June, where
the number of bank visits was reduced from 21 to 12. Distance increases of up to
110 km were observed on some days mainly due to the inclusion of one or more bank
visits that did not fit onto any of the vehicle routes well. The total estimated time
saved was 19.2 hours, equating to a 2.8% reduction and an average of 32 minutes
per day across the vehicle fleet. The transport manager appreciated this additional
flexibility in the round, ’this gave me the opportunity to phone some shops (e.g.
Oxford area) to offer additional collections which the shop managers liked.’ A total
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CO2 saving of 464 kg was estimated, based on an assumed average emissions rate
of 400 g/km and the predominant use of trucks with a carrying capacity of 6 tonnes
(den Boer et al. 2011).

Figure 2: Estimated distance savings by day

5 Conclusions

In this paper, we have studied a multi-attribute profit collecting vehicle routing
problem, which arises in a charity organisation in the UK. We have described the
problem in detail and provided a mixed integer programming formulation. Con-
strained by a strict time limit, we have resorted to matheuristics that combine the
power of metaheuristics and mathematical programming. We have provided three
mathheuristics as well as their metaheuristic counterparts. The computational ex-
periments show that in general the matheuristics outperform their metaheuristic
counterparts. For the case with mandatory vertices, LNS and LNS* outperform the
others, contrary to the case without the mandatory vertices for which LNS-TS and
LNS-TS* perform the best. The LNS algorithm was implemented in practice, and
resulted in average round distance and time savings of 3.2% and 2.8% respectively
per day.

Acknowledgements: This study has been gratefully supported by the Sixth Sense
Transport project (www.sixthsensetransport.com), the STRAIGHTSOL project
(www.straightsol.eu) and the Centre for Operational Research, Management Sci-
ence and Information Systems (CORMSIS) based within the University of Southamp-
ton.
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Appendices

Table 3: The results of the metaheuristics
TS LNS LNS-TS

Collection Distance Profit Collection Distance Profit Collection Distance Profit
Instance (kg) (km) (£) (kg) (km) (£) (kg) (km) (£)

1 6216.0 1061.6 2275.0 6089.0 729.9 2727.0 6110.0 840.0 2562.8
2 5536.0 842.9 2088.8 5869.0 749.9 2528.4 5866.0 821.3 2396.1
3 5618.0 1054.7 2061.0 5548.0 801.1 2454.1 5565.0 849.6 2365.5
4 6370.0 808.0 2728.3 6701.0 784.0 3044.6 6726.0 869.5 2893.9
5 7473.0 964.9 2982.1 7489.0 820.1 3239.6 7490.0 883.2 3130.4
6 6164.0 1054.9 2317.6 6089.0 779.3 2727.3 6139.0 913.0 2540.7
7 5717.0 1031.4 1942.0 5628.0 742.4 2369.2 5642.0 819.0 2246.1
8 5353.0 964.5 1894.6 5418.0 787.6 2262.5 5459.0 872.2 2126.1
9 7536.0 992.5 3347.4 7520.0 800.5 3687.7 7523.0 871.4 3547.2

10 6919.0 1037.8 2600.5 6849.0 840.6 2879.3 6913.0 911.0 2807.9
11 5954.0 973.2 2194.3 5815.0 773.0 2436.2 5895.0 874.3 2323.0
12 6060.0 934.5 2426.9 6028.0 734.7 2725.2 6059.0 850.0 2571.2
13 6202.0 1082.6 2382.4 6096.0 806.4 2771.0 6228.0 916.3 2694.5
14 6170.0 1056.1 2262.6 6057.0 828.1 2583.2 6169.0 943.9 2466.5
15 7501.0 1030.5 2999.2 7344.0 780.8 3319.3 7503.0 891.3 3241.4
16 5893.0 1089.1 2035.7 5868.0 819.4 2489.3 5893.0 899.7 2359.5
17 6342.0 867.2 2645.7 6482.0 740.1 2975.5 6585.0 876.5 2824.1
18 5858.0 1034.2 2108.3 5923.0 893.8 2428.7 5923.0 895.0 2406.2
19 8159.0 979.4 3685.0 8192.0 798.6 4036.7 8164.0 840.5 3935.2
20 8283.0 1006.3 3569.9 8153.0 780.3 3814.4 8268.0 915.3 3708.7
21 5975.0 1080.1 2061.3 6014.0 820.9 2551.1 6077.0 905.3 2464.3
22 7020.0 958.0 3029.4 6905.0 741.3 3326.4 7108.0 906.2 3191.6
23 6155.0 996.0 2540.9 6038.0 798.2 2792.5 6204.0 907.9 2732.4
24 6666.0 982.7 2559.6 6567.0 747.4 2893.1 6663.0 867.9 2759.3
25 7905.0 955.1 3387.0 7669.0 748.9 3568.9 7913.0 899.5 3507.7
26 6205.0 1070.2 2242.0 6129.0 819.0 2613.3 6205.0 909.1 2514.4
27 5582.0 939.2 2042.5 5483.0 700.6 2371.2 5576.0 822.1 2230.7
28 5747.0 1035.7 2158.8 5589.0 778.5 2484.9 5744.0 883.5 2418.8
29 6859.0 1030.9 2710.2 6727.0 796.3 3010.7 6859.0 924.9 2896.9
30 8075.0 903.3 3600.9 8036.0 779.5 3792.3 8179.0 899.7 3703.0
31 6575.0 1044.1 2611.3 6410.0 808.1 2887.1 6580.0 920.6 2826.0
32 7094.0 1111.3 2696.9 6986.0 765.0 3208.7 7094.0 898.0 3063.1
33 5260.0 1056.0 1878.2 5147.0 809.2 2168.7 5253.0 925.8 2072.5
34 7417.0 1011.3 3135.0 7395.0 808.8 3473.3 7416.0 846.8 3403.7
35 7811.0 1025.8 3088.4 7628.0 765.3 3387.7 7857.0 927.5 3308.2
36 6016.0 1022.7 2281.2 5907.0 824.0 2550.7 5999.0 909.9 2455.6
37 5680.0 831.8 2290.7 5916.0 755.0 2615.3 5957.0 884.7 2422.2
38 5564.0 1018.4 2066.1 5385.0 762.8 2383.7 5558.0 886.4 2278.0
39 6303.0 762.8 2645.0 6769.0 815.0 2892.5 6714.0 874.2 2776.0
40 7452.0 1005.4 3018.4 7419.0 811.7 3333.9 7452.0 888.6 3208.4
41 6441.0 1079.8 2408.9 6295.0 782.3 2807.3 6406.0 876.1 2731.9
42 5560.0 862.3 2089.6 5693.0 753.2 2391.5 5748.0 874.5 2221.3
43 5412.0 985.9 1936.7 5272.0 774.1 2177.2 5376.0 870.2 2102.3
44 6878.0 1000.7 2799.6 6881.0 799.8 3112.2 6877.0 870.2 3021.9
45 6629.0 937.2 2544.0 6542.0 755.5 2803.6 6634.0 882.6 2664.7
46 5719.0 1087.9 1985.7 5509.0 814.0 2290.8 5714.0 945.8 2218.2
47 6650.0 921.8 2762.6 6726.0 745.5 3138.5 6793.0 875.2 2945.8
48 5474.0 974.6 1889.8 5544.0 787.4 2262.2 5646.0 876.1 2197.4
49 7572.0 944.9 3228.5 7601.0 794.9 3527.0 7601.0 857.3 3407.1
50 7525.0 984.4 2929.7 7443.0 752.6 3269.9 7455.0 845.8 3116.4

17



Table 4: Results of the matheuristics
TS* LNS* LNS-TS*

Collection Distance Profit Collection Distance Profit Collection Distance Profit
Instance (kg) (km) (£) (kg) (km) (£) (kg) (km) (£)

1 5936.0 904.1 2326.6 6122.0 771.3 2710.2 6110.0 840.0 2562.8
2 5698.0 859.6 2190.1 5866.0 753.9 2510.9 5893.0 835.6 2391.7
3 5570.0 975.9 2161.4 5548.0 801.1 2454.1 5565.0 849.6 2365.5
4 6495.0 843.1 2766.8 6701.0 784.0 3044.6 6703.0 876.4 2885.2
5 7472.0 941.4 3016.5 7463.0 784.3 3256.6 7490.0 883.2 3130.4
6 6160.0 1021.0 2367.3 6089.0 778.0 2729.6 6139.0 913.0 2540.7
7 5498.0 876.6 2031.2 5643.0 761.1 2355.5 5745.0 806.5 2318.5
8 5425.0 923.1 2029.5 5418.0 793.2 2252.7 5459.0 872.2 2126.1
9 7645.0 1061.7 3309.6 7514.0 787.7 3696.5 7535.0 876.7 3549.3

10 6921.0 1002.9 2655.4 6737.0 764.2 2925.3 6911.0 903.8 2818.9
11 5784.0 901.4 2187.0 5816.0 773.0 2437.0 5895.0 874.3 2323.0
12 5891.0 947.2 2262.9 5950.0 716.6 2702.8 6007.0 775.9 2659.1
13 6146.0 1021.3 2444.8 6096.0 802.9 2777.1 6228.0 916.3 2694.5
14 6170.0 1042.7 2285.4 6057.0 828.1 2583.2 6169.0 943.9 2466.5
15 7492.0 907.3 3209.3 7483.0 828.0 3340.2 7491.0 894.7 3230.1
16 5894.0 1010.1 2160.6 5869.0 815.1 2497.6 5893.0 899.7 2359.5
17 6507.0 827.0 2849.6 6504.0 747.4 2980.4 6606.0 888.3 2823.0
18 5866.0 1035.0 2113.3 5923.0 889.4 2442.2 5923.0 900.0 2397.3
19 8211.0 1008.8 3680.1 8192.0 798.1 4037.6 8164.0 840.5 3935.2
20 8282.0 995.2 3579.9 8230.0 803.7 3835.0 8281.0 935.3 3683.8
21 5975.0 1080.1 2061.3 5898.0 772.4 2542.7 6077.0 905.3 2464.3
22 6918.0 919.1 3033.2 6881.0 729.9 3323.6 7110.0 916.8 3174.9
23 6202.0 1014.2 2567.4 6037.0 797.2 2793.4 6204.0 907.9 2732.4
24 6664.0 1024.4 2489.5 6517.0 725.0 2888.8 6663.0 867.9 2759.3
25 7939.0 988.7 3358.4 7669.0 747.8 3580.3 7912.0 899.3 3507.2
26 6205.0 1051.0 2275.4 6134.0 827.1 2618.8 6205.0 909.1 2514.4
27 5446.0 801.8 2174.2 5416.0 667.4 2384.5 5560.0 824.8 2212.6
28 5747.0 1035.7 2158.8 5589.0 776.8 2487.8 5745.0 886.7 2416.0
29 6862.0 981.4 2788.4 6812.0 845.1 3000.5 6859.0 924.9 2896.9
30 8142.0 1019.6 3458.6 7962.0 731.1 3815.6 8179.0 899.7 3703.0
31 6574.0 1036.4 2622.4 6465.0 832.1 2900.9 6584.0 925.1 2821.3
32 7074.0 1012.9 2846.1 6906.0 750.4 3171.0 7094.0 906.5 3055.9
33 5256.0 1023.8 1931.4 5125.0 805.8 2197.1 5262.0 936.5 2062.7
34 7415.0 1041.8 3078.9 7415.0 800.1 3465.9 7416.0 846.8 3403.7
35 7785.0 972.5 3147.3 7642.0 756.1 3415.0 7858.0 917.1 3326.0
36 6010.0 1015.9 2288.3 5907.0 824.0 2550.7 5999.0 909.9 2455.6
37 5680.0 831.8 2290.7 5916.0 755.0 2615.4 5957.0 886.1 2419.4
38 5530.0 1039.2 2003.0 5458.0 793.4 2388.6 5560.0 917.0 2248.3
39 6303.0 762.8 2645.0 6768.0 815.3 2932.9 6714.0 874.2 2776.0
40 7452.0 1001.9 3024.1 7417.0 748.1 3440.8 7451.0 889.2 3208.0
41 6403.0 1039.6 2450.1 6295.0 782.6 2813.9 6405.0 890.6 2716.1
42 5606.0 822.7 2196.0 5605.0 728.0 2362.6 5748.0 879.0 2208.6
43 5376.0 930.9 2004.2 5270.0 778.2 2176.0 5379.0 872.3 2101.6
44 6883.0 1048.1 2713.9 6836.0 808.1 3115.6 6877.0 870.2 3021.9
45 6631.0 958.9 2508.2 6556.0 784.4 2762.6 6634.0 882.6 2664.7
46 5719.0 1087.9 1985.7 5508.0 792.7 2311.3 5714.0 945.8 2218.2
47 6703.0 865.8 2904.2 6740.0 765.7 3100.6 6740.0 858.5 2937.2
48 5485.0 942.8 1951.2 5568.0 790.6 2295.4 5656.0 884.9 2189.9
49 7601.0 1081.1 3024.8 7601.0 794.9 3527.0 7601.0 868.1 3386.9
50 7314.0 801.6 3062.1 7323.0 725.5 3213.4 7456.0 837.1 3130.6
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Table 5: Results of the metaheuristics for the case with no mandatory collection
visits

TS LNS LNS-TS
Collection Distance Profit Collection Distance Profit Collection Distance Profit

Instance (kg) (km) (£) (kg) (km) (£) (kg) (km) (£)
1 9184.0 970.0 3885.8 8960.0 750.2 4088.5 9674.0 935.4 4203.8
2 8445.0 987.2 3373.4 7667.0 758.2 3340.0 8672.0 889.4 3649.5
3 9062.0 970.9 3877.1 9238.0 917.5 4064.9 9314.0 933.2 4074.2
4 8950.0 996.7 3758.5 8488.0 755.9 3906.3 9011.0 924.2 3949.5
5 9270.0 984.0 3853.1 9263.0 892.4 4004.9 9532.0 915.3 4091.8
6 9684.0 974.1 4197.5 9480.0 835.6 4299.1 10032.0 867.3 4554.1
7 8618.0 1014.3 3366.9 8058.0 752.4 3532.1 8784.0 899.5 3671.6
8 9328.0 1040.6 3737.9 9987.0 892.3 4305.2 10173.0 901.2 4395.4
9 10093.0 1006.7 4568.8 10102.0 898.1 4762.6 10272.0 909.5 4824.7

10 9201.0 999.9 3743.1 8508.0 769.0 3795.8 9293.0 916.4 3972.3
11 9753.0 1038.9 3907.3 10017.0 908.5 4303.0 10142.0 917.5 4340.9
12 9214.0 914.3 3984.9 8684.0 757.9 3954.4 9368.0 899.3 4096.9
13 9489.0 940.1 4153.7 9564.0 899.9 4299.2 9630.0 894.9 4346.2
14 8816.0 937.7 3725.5 8298.0 755.8 3729.0 8960.0 944.0 3819.1
15 9143.0 1001.4 3847.9 9229.0 875.5 4104.3 9426.0 913.8 4153.5
16 8731.0 987.4 3549.3 8104.0 797.5 3567.2 8779.0 918.3 3762.9
17 9309.0 986.3 3876.5 9596.0 899.0 4222.5 9686.0 912.4 4276.4
18 9553.0 952.5 4053.2 9763.0 899.2 4283.3 9789.0 934.6 4225.0
19 10457.0 1021.5 4741.7 10562.0 882.7 5057.1 10750.0 917.9 5087.8
20 10154.0 993.3 4454.9 10316.0 933.7 4682.5 10273.0 941.3 4661.5
21 9818.0 928.3 4194.4 8905.0 735.5 4007.2 9853.0 910.5 4259.9
22 9505.0 959.0 4258.0 8860.0 747.1 4271.2 9873.0 908.6 4518.1
23 10037.0 959.7 4471.6 10348.0 906.7 4734.1 10513.0 927.0 4787.1
24 9101.0 924.3 3837.9 9632.0 873.9 4177.3 9648.0 893.7 4152.7
25 9484.0 984.1 4098.8 9631.0 868.7 4350.4 9760.0 953.5 4300.6
26 9547.0 984.7 4008.1 9707.0 923.1 4198.6 9582.0 941.7 4120.3
27 9022.0 957.9 3694.8 8575.0 735.8 3810.8 9148.0 906.7 3890.7
28 9090.0 1004.4 3794.6 9168.0 869.1 4090.2 9435.0 928.5 4139.4
29 8801.0 1007.5 3683.3 9099.0 874.6 4023.4 9328.0 926.0 4079.6
30 10000.0 955.5 4461.0 10001.0 889.6 4578.4 10208.0 906.9 4651.1
31 9304.0 978.0 4040.9 9460.0 903.3 4303.1 9683.0 900.5 4400.4
32 9555.0 1016.6 4024.2 9922.0 852.0 4463.6 10181.0 917.1 4515.3
33 8299.0 1012.8 3421.2 7567.0 774.1 3390.8 8478.0 894.1 3711.8
34 9857.0 953.5 4417.3 9027.0 764.8 4311.7 9982.0 909.4 4550.0
35 9286.0 979.3 3850.1 9114.0 814.5 4027.0 9699.0 907.6 4196.4
36 9461.0 1011.0 3981.2 9943.0 900.3 4398.1 9949.0 899.7 4437.4
37 8690.0 973.4 3614.3 8956.0 894.6 3871.1 9079.0 902.0 3910.8
38 9260.0 953.3 3939.6 9500.0 858.4 4224.6 9559.0 906.3 4206.0
39 9518.0 993.7 3933.9 8767.0 777.1 3875.4 9632.0 887.2 4168.3
40 9536.0 894.5 4229.3 9557.0 882.0 4254.3 9560.0 881.1 4265.7
41 10227.0 932.7 4466.8 10189.0 869.8 4582.1 10346.0 894.2 4620.1
42 8605.0 947.4 3447.2 8981.0 899.3 3724.8 8949.0 890.6 3702.1
43 8442.0 1043.3 3306.1 7180.0 635.8 3285.8 8957.0 930.3 3756.2
44 9706.0 1010.9 4127.2 9624.0 867.5 4348.8 10025.0 912.4 4495.1
45 8856.0 1027.4 3485.6 8373.0 725.3 3726.6 9351.0 950.9 3863.9
46 9697.0 944.0 4179.0 9906.0 923.8 4293.6 9951.0 914.3 4345.9
47 9418.0 998.8 4052.5 9476.0 933.5 4166.5 9491.0 928.5 4180.3
48 9101.0 981.8 3680.6 9680.0 877.7 4121.9 9699.0 906.7 4137.5
49 10179.0 941.1 4535.3 10479.0 922.0 4699.3 10480.0 935.5 4692.1
50 9632.0 995.7 3915.7 9498.0 809.1 4154.9 9795.0 914.5 4140.1
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Table 6: Results of the matheuristics for the case with no mandatory collection
visits

TS* LNS* LNS-TS*
Amount Distance Profit Amount Distance Profit Amount Distance Profit

Instance collected (km) (£) collected (km) (£) collected (km) (£)
1 9537 961.4 4069.5 9059 774 4089.2 9640 905.8 4229.7
2 8403 977.5 3379.3 7850 748.3 3427.6 8682 904 3651.2
3 8807 983.8 3670.5 9153 870.9 4072 9355 952.9 4091.2
4 8982 994.5 3789.4 8425 736.6 3910.1 9049 909.8 3986
5 9427 979.5 3943.3 8786 749.3 3942.1 9524 914.1 4108.6
6 9697 970.2 4209.8 9248 735.3 4338.8 10032 867.8 4551.8
7 8530 996.9 3357.3 8124 760.8 3543.9 8734 898.1 3650.4
8 9624 1018.4 3920.3 10122 913.9 4339.9 10164 898 4394.9
9 10081 1020.4 4555.6 10140 863.1 4816 10346 927.4 4839.8

10 9147 1009.9 3702.9 9298 886 3999.1 9326 913.9 3993.8
11 9930 1002.1 4059.5 9919 860.2 4306 10188 920.1 4364.9
12 9149 915.2 3960.1 8689 746.4 3981.7 9467 897.5 4133.6
13 9333 919.1 4135.6 8686 793.3 4012.7 9641 913.3 4364.9
14 8787 945.9 3704.1 8249 750.3 3711.4 8897 932 3784.6
15 9088 996 3839 8535 724.7 4008 9454 918.7 4160.8
16 8166 961.6 3350.7 7113 609.4 3321.4 8909 931.2 3809.1
17 9284 991.7 3849.5 8937 780.9 4056.2 9695 922.2 4240.4
18 9652 962.7 4084.6 9830 896.6 4325.5 9849 943.6 4240.2
19 10474 1010.6 4758.3 10649 898.1 5055.3 10808 916.9 5114.7
20 10078 925.4 4530.7 10304 926.1 4665.6 10393 950.6 4696.8
21 9602 913.1 4125.5 8928 742.5 4025 9877 920.4 4264.2
22 9518 956.6 4270.8 9046 767.5 4320.9 9966 934.4 4516.9
23 10377 958.2 4635.8 9567 770.5 4534.5 10492 904.4 4837.5
24 9239 905.3 3924 8907 760.6 3999.8 9663 882.9 4179.3
25 9580 995 4153.8 9511 847.3 4321.4 9788 939.7 4305.2
26 9508 965 4024.9 8870 740.4 4065.1 9683 949.8 4146.4
27 9015 945.5 3706.5 8577 741.3 3810.3 9172 911.3 3899.3
28 8935 1021.7 3698.9 9186 869.7 4091.5 9371 886.4 4146
29 9172 972.7 3906.3 8463 756.3 3851.9 9359 929.8 4087.1
30 10031 961 4464.4 10166 908.8 4642 10274 915.1 4671.8
31 9505 997.8 4125.3 9581 910.2 4349.5 9624 887.6 4389.7
32 10111 938.9 4451.5 9936 851.5 4482.4 10133 906.7 4514.6
33 8267 976.9 3458.1 7740 737.4 3569.5 8455 895.3 3698.2
34 9849 952.7 4413.3 9072 759.3 4338.2 9961 912.9 4544.8
35 9453 947.6 3992.8 9280 865.2 4038 9746 913.8 4206.7
36 9482 1008.1 3989.3 10040 912 4452.7 10101 914.2 4484.2
37 8608 974.3 3562.3 8981 895.1 3876.1 8938 928.7 3827
38 9257 959 3933.7 9511 867 4219.2 9541 903.2 4208.4
39 9341 917.4 3985 9554 868.2 4168.3 9486 865 4144.7
40 9566 915.5 4211.7 9623 892.3 4290.9 9627 875.4 4309.2
41 10139 951.4 4404.9 9407 719.2 4391.9 10401 906.4 4651.6
42 8654 957.7 3462.1 8785 868.4 3679.5 8974 893.8 3717.4
43 8624 1028.5 3419.5 8116 747.3 3592.3 8997 917.3 3801.2
44 9739 1009.5 4146.4 9247 771.5 4273 9811 882.2 4441.1
45 8934 961.7 3648.9 8607 743.2 3821.4 9308 923.2 3895.1
46 9863 946 4239.7 9903 925.5 4298.8 10003 910.3 4366.1
47 9472 980.1 4096.3 9481 886.7 4239.4 9564 937.9 4210.3
48 8956 1016.6 3570.1 9699 878.7 4149.5 9765 924.3 4136.6
49 10041 976.4 4402.4 10255 876.6 4681.9 10507 926.1 4714.4
50 9716 1055.4 3855.1 9296 744 4138 9788 915.7 4131.2
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