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In a cluster crystal, each lattice site is occupied by multiple soft-core particles. As the number den-
sity is increased at zero temperature, a “cascade” of isostructural phase transitions can occur between
states whose site occupancy differs by unity. For low but finite temperature, each of these transitions
terminates in a critical point. Using tailored Monte Carlo simulation techniques, we have studied such
demixing cascades in systems of soft particles interacting via potentials of the generalized exponen-
tial form u(r) = ε exp [−(r/σ )n]. We have estimated the critical parameters of the first few transitions
in the cascade as a function of the softness parameter n. The critical temperature and pressure exhibit
non-monotonic behavior as n is varied, although the critical chemical potential remains monotonic.
The trends for the pressure and chemical potential are confirmed by cell model calculations at zero
temperature. As n → 2+, all the transitions that we have observed are preempted by melting although
we cannot rule out that clustering transitions survive at high density. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4894374]

I. INTRODUCTION

Soft matter systems such as star polymers and dendrimers
comprise individual molecules that can overlap substantially
at high concentrations.1, 2 In order to better understand the
equilibrium and dynamical properties of such systems, one
generally appeals to theory and simulation. In so doing it is
common to dispense with the finer (atomistic) detail in favour
of coarse-grained descriptions. Typically, these represent each
molecule in terms of an ultra-soft colloidal particle which in-
teracts with its neighbours via a short ranged two-body effec-
tive potential. The form of this potential can be parameterized
from simulation and experiment. For instance, for star poly-
mers in good solvent one finds a weakly divergent repulsive
potential.3 However, if the monomer density is sufficiently
low that the centres of mass can coincide, a bounded potential
is appropriate.4

Systems described by bounded interactions have received
considerable attention in recent years due to their unique equi-
librium and dynamical behavior. A prototype theoretical form
for a bounded potential is the generalized exponential model
(GEM) for which the interaction potential is given by

u(r) = ε exp[−(r/σ )n]. (1)

Here, ε and σ set the energy and length scales, respectively,
while n is a “softness” parameter which also serves to de-
lineate the members of the GEM-n class of models. Cer-
tain members of this class have been extensively investigated
by several groups.5–11 For n = 2 the potential is a simple
Gaussian and the model is termed the Gaussian core model
(GCM);11–16 while for n = ∞ one obtains a top hat potential
known as the penetrable sphere model (PSM).17–19 Various
members of the spectrum of GEM-n potentials are depicted
in Fig. 1.

The key feature of the equilibrium behavior of particles
interacting via the GEM-n potential is that for n > 2 they

exhibit clustering behavior in which particles clump together
in groups. This phenomenon (the origin of which can be
traced to instabilities associated with negative components in
the Fourier transform of the pair potential15) is already ev-
ident in dense liquids,20, 21 but is most striking in the crys-
talline phases where lattice sites are occupied by multiple
particles.5, 6, 19 Activated hopping22, 23 of particles between lat-
tice sites contributes to density fluctuations and dynamical re-
laxation processes in such systems. Although originally only
observed in the GEM-n models, evidence for cluster crystals
has recently been reported in simulations of dendrimer mod-
els with atomistic detail.24 To date, however, there have been
no experimental reports of cluster crystals in real soft matter
systems.

Most studies of the GEM-n family have been performed
for the three cases n = 2, 4, ∞. In the GCM (n = 2),11–16 no
clustering occurs, but the system exhibits two solid phases,
one face centred cubic (fcc) and the other body centred cubic
(bcc). As the density is increased at low temperature, reentrant
melting occurs so that the highest density state is always a
fluid.

For n = ∞ (the PSM), clustering is observed in both
the fluid and solid phases.19, 25–28 Although only one phase
transition has been reported to date, namely, the liquid-solid
transition, the freezing properties are rather interesting be-
cause they exhibit crossover behavior depending on temper-
ature. Specifically, at high T clusters form in the liquid and
these freeze into a cluster crystal. By contrast at sufficiently
low temperature the interparticle potential reduces to that of
a system of hard spheres and the freezing transition behaves
accordingly.

The GEM-4 potential is the most studied member of the
GEM-n family to date, see, e.g., Refs. 2, 5, 6, 8, 9, and 29.
This system exhibits a rich phase diagram including bcc and
fcc cluster phases, as well as reentrant phase behavior. At low
temperature, evidence has been found for an infinite cascade

0021-9606/2014/141(9)/094903/7/$30.00 © 2014 AIP Publishing LLC141, 094903-1
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FIG. 1. The GEM-n potentials u(r) = ε exp [−(r/σ )n], shown for the values
of the softness parameter n studied in this work.

of isostructural demixing transitions between fcc phases hav-
ing different site occupancies.29, 30

Previously, we located the critical points of the first four
stable transitions in the cascade for the GEM-4 potential, i.e.,
those which at T = 0 exhibit unit jumps in the site occupancy
ns = 2 ↔ 3, ns = 3 ↔ 4, ns = 4 ↔ 5, ns = 5 ↔ 6. In-
terestingly, within simulation uncertainties, no variation was
seen in the critical temperatures for these four transitions. In
the present work, we extend our investigations to other mem-
bers of the GEM-n class. Our aim is to determine whether
the demixing cascade seen for n = 4 persists for other val-
ues of n and, if so, how the critical parameters depend on n.
Additionally, we seek to understand the fate of the demixing
transitions as one approaches the Gaussian limit (n = 2), for
which no cluster crystals appear to exist. We also consider the
case of large n in which the potential approaches the PSM
limit.

II. METHODS

A. Monte Carlo (MC) scheme

Crystals in which the number of particles per lattice site
can vary, are not straightforward to study by simulation. To
appreciate why, consider a system comprising N particles in a
volume V . Suppose there are Ns lattice sites so that the aver-
age occupancy is ns = N/Ns and the volume per lattice site is
vs = V/Ns . Then the particle number density is simply

ρ = N

V
= ns

vs

. (2)

Clearly, however, a given ρ can be realized by an infi-
nite number of combinations of ns and vs . Equilibrium corre-
sponds to each lattice site having a certain occupancy n

eq
s and

a certain unit cell volume v
eq
s . But in order to relax to this state

from some arbitrary initial state, it is in general necessary for
the number of lattice sites, Ns, and the lattice parameter a to
change.

Unfortunately, fluctuations in Ns do not typically oc-
cur on simulation timescales. For a system having periodic
boundary conditions, Ns can vary only if a whole crystal plane

is added or deleted. But free energy barriers prevent such large
changes from happening. This is true even if one operates in
an ensemble in which the system volume (and hence the lat-
tice parameter) can fluctuate. Accordingly, if the system is
initiated with a given number of lattice sites, it generally re-
mains so for the duration of the simulation. Even if plane in-
sertions/deletions were to occur, for a finite-sized system the
consequent large relative changes in Ns would lead to consid-
erable discretisation effects in the values of ns which could be
sampled.

In order to locate the equilibrium conditions, a different
strategy must be taken. Specifically, it has been shown31, 32

that equilibrium corresponds to the condition

μs = 0, (3)

where μs is the so-called lattice site (or cluster) chemical po-
tential given by

Nsμs = F + PV − μN, (4)

with F is the Helmholtz free energy, P is the pressure, and μ

is the standard chemical potential.
Unfortunately, μs cannot be directly measured as a sim-

ple ensemble average at the state point of interest and there-
fore one must resort to more elaborate means. One approach
for estimating μs is a direct assault on the right hand side of
Eq. (4):32 obtaining F via thermodynamic integration from
a reference state of known free energy, P by sampling the
virial, and μ using the Widom insertion method.33 This pro-
cess (or alternatively a direct estimation of the constrained
free energy7), then has to be repeated for a range of values
of ns in order to pinpoint equilibrium at the prescribed ρ. Ac-
cordingly, it can be cumbersome and laborious.

In recent work, we have proposed a new Monte Carlo
simulation scheme for efficiently and accurately locating the
equilibrium conditions in cluster crystals. The method is
framed within the great grand canonical (constant μ, P, T)
ensemble. For solids having fixed Ns (a constraint imposed
implicitly by free energy barriers, as described above), this
ensemble does not suffer from the divergence of the parti-
tion function that occurs in equilibrium fluids.30 One bene-
fit of its use is that it is fully unconstrained, allowing fluc-
tuations in N,V,E: fluctuations in V permit the relaxation
of the lattice parameter, while fluctuations in N allow the
average site occupation n̄s = N/Ns to vary in small steps
of 1/Ns. Another advantage is that the great grand canoni-
cal ensemble permits the ready use of histogram reweight-
ing to scan the fields μ, P, T, without the need for multiple
simulations.

In order to locate equilibrium, we implement a MC move
that permits fluctuations in the number of lattice sites. Specif-
ically, we define two states of the system, α = 0 and α = 1,
which differ by a single lattice plane of Ms lattice sites. For
α = 0, the number of lattice sites is N

(0)
s = Ns + Ms , while

for α = 1 it is N
(1)
s = Ns . Biased sampling techniques are

used to access regions of configuration space that allow a lat-
tice plane to be “switched” in and out of the system via a
Monte Carlo update. This back and forth switching between
the α = 0 and α = 1 states allows one to measure the relative
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probability of finding the system in the α = 0 and α = 1 states

R = p(1)

p(0)
. (5)

It can be shown30 that this probability ratio provides direct
access to the difference

ln(R) = (
N

(1)
s − N

(0)
s

)
μs, (6)

and since the right hand side vanishes only when μs = 0, this
allows the equilibrium conditions to be estimated via an equal
peak weight criterion: R = 1. In practice, one locates equilib-
rium with the help of histogram reweighting, varying μ and
P together at fixed T in such a way as to maintain some target
density. The equal peak weight criterion identifies the specific
combination of μ and P that corresponds to equilibrium at this
density. For further details the interested reader is referred to
Ref. 30.

B. Cell model

We can study the zero temperature behavior of demixing
cascades in the GEM-n models using a simple cell model in-
spired by Refs. 19 and 29. We assume that the crystal consists
of Ns sites as above, and is substitutionally disordered in the
sense that the number of particles ns at each site is drawn from
some distribution pn

s
. If we also assume that at T = 0 the par-

ticles sit at the lattice positions, then in units where ε = σ = 1
we can write down the energy of such a crystal as

E =
∑
n

s

pn
s
Ns

1

2
ns(ns − 1)

+1

2

∑
n

s

pn
s
Nsnszn̄su(d). (7)

The two terms describe interactions between particles on the
same and on different sites, respectively. The distance be-
tween neighbouring lattice sites is d = a/

√
2 in a fcc lattice,

or d = ca more generally, where a is the lattice parameter. We
have also denoted by z the coordination number of the crystal
lattice, and by n̄s = ∑

n
s
pn

s
ns the average number of parti-

cles per site. To express E in terms of ρ and the distribution
of cluster sizes ns, one uses N/Ns = n̄s and N = ρL3, with L
the linear system size. A third relation is Ns = A(L/a)3 where
A indicates the number of particles per cubic unit cell, with
A = 4 for fcc. This gives a = (An̄s/ρ)1/3 and overall for the
energy density

e = E

L3
= ρ

2

[
n2

s

n̄s

− 1 + zn̄su(c(An̄s/ρ)1/3)

]
, (8)

where n2
s = ∑

n
s
pn

s
n2

s is the second moment of the cluster
size distribution.

One notices that the energy density worked out above
only depends on two moments of the distribution of cluster
sizes ns. The system will adopt a configuration that mini-
mizes the energy density at given ρ, and we can think of this
as a two-step process of first minimizing with respect to n2

s

at fixed n̄s , and then with respect to n̄s . The first step here

0 2 4 6 8
0

1

2

3

4

5

n̄s

e(
ρ

=
1.

4,
n̄

s
)

FIG. 2. Example plot of cell model energy density e(ρ, n̄
s
) vs average cluster

size n̄
s
, for potential exponent n = 4 and density ρ = 1.4.

can be shown to have the intuitively obvious result that only
two cluster sizes occur, namely, the integers either side of n̄s ,
which we write as �n̄s� and �n̄s	. The relative weight of these

is then fixed by n̄s , and one finds n2
s = n̄2

s + �(1 − �) where
� = n̄s − �n̄s� lies between zero and one.

The cell model energy, minimized at constant n̄s , thus
becomes

e(ρ, n̄s) = ρ

2

[
�(1 − �)

n̄s

+ n̄s − 1 + zn̄su(c(An̄s/ρ)1/3)

]

(9)

and the final energy density we want is emin(ρ)
= minn̄

s
e(ρ, n̄s). By way of orientation we plot e(ρ, n̄s) vs

n̄s in Fig. 2 for exponent n = 4 and density ρ = 1.4. One
sees kinks at integer values of n̄s , which result from the �(1
− �) term in (9). As a consequence, when we increase ρ the
optimal value of n̄s will generally get “stuck” at an integer
across a range of ρ, before then moving smoothly to the next
integer. This is shown in Fig. 3, where we plot the optimal n̄s

vs ρ, again for n = 4.

1 1.5 2 2.5
1

2

3

4

5

6

ρ

op
ti

m
al

n̄
s

FIG. 3. Example plot showing for n = 4 the value of n̄
s

as a function of ρ

that is optimal, i.e., that minimizes the energy function (9).
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FIG. 4. Example plot showing for n = 4 the form of emin(ρ) as described in
the text. The inset plots the distance from the double tangent for the �n̄
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� = 1

transition, which is explicitly emin(ρ) − μ(ρ − ρ1) − emin(ρ1) where μ is the
chemical potential at coexistence and ρ1 the density of one of the coexisting
phases.

Fig. 4 shows the resulting emin(ρ), i.e., the minimal cell
model energy density as a function of density. One sees that
this consists of a series of convex and concave regions. The
existence of the concave regions means the system will lower
its energy by macroscopic phase separation, in density re-
gions which can be found by constructing double tangents to
emin(ρ). On general geometrical grounds the double tangents
have to touch emin(ρ) in places where the function is convex:
we have checked that these are exactly the regions where n̄s

is an integer. The concave regions, which are the ones where
n̄s is not an integer, then do not matter for the construction of
the double tangents. One thus sees a posteriori that an analy-
sis that does not allow substitutional disorder and assumes a
fixed ns in each possible crystal phase would have given the
same result.

Allowing for substitutional disorder becomes important
in the PSM limit n → ∞, however. As we explain below, in
this limit emin(ρ) approaches a function consisting of succes-
sive straight line segments. These are already double tangents
and so the system cannot lower its energy further by macro-
scopic phase separation. Therefore, the equilibrium state at
zero temperature should be a substitutionally disordered crys-
tal, in agreement with Ref. 28.

To see the behavior in the n → ∞ limit, one uses the fact
that the interaction potential u(r) then becomes a step func-
tion, i.e., = 0 for r > 1 and =1 for r < 1. As long as nearest
neighbour particles do not overlap, the u ( · ) term therefore
drops out from the PSM energy density. The resulting expres-
sion simplifies to

e∞(ρ, n̄s) = ρ

2

[
�(1 − �)

n̄s

+ n̄s − 1

]
(10)

= ρ

[
�n̄s� − �n̄s�(�n̄s� + 1)

2(�n̄s� + �)

]
. (11)

This is clearly an increasing function of � for each fixed �n̄s�,
and continuous at integer values of n̄s , so increasing over-
all. Therefore, the optimal value of n̄s is the lowest one that

is possible while maintaining the nearest neighbour separa-
tion d > 1 – as is also reasonable from physical intuition –
giving n̄s = ρ/(Ac3). Noting that �n̄s� + � = n̄s , one then
sees that the first term in the square brackets in (11) is linear
in ρ, while the second one is constant as long as �n̄s� remains
the same. This shows that e∞(ρ), the minimum of e∞(ρ, n̄s)
over n̄s , is a piecewise linear function of density. The linear
segments are delimited by integer values of ρ/(Ac3), which
for fcc specifically is ρ/

√
2.

III. RESULTS

We have employed the MC scheme of Sec. II A to lo-
cate the critical points of low-density levels of the demixing
cascade for a selection of GEM-n potentials. Our criterion for
estimating the critical parameter was to tune the temperature
and equilibrium chemical potential until the distribution of the
fluctuating number density p(ρ) closely matched the universal
Ising form, which is expected to pertain for systems with short
ranged interactions and a scalar order parameter.8, 30, 34 As the
critical points can occur at very low temperature (particularly
at large n), relaxation times for our Monte Carlo simulations
were generally rather long. This prevented us performing a
full finite-size scaling analysis, which would have allowed us
to obtain even more precise estimates of critical point param-
eters. It also prevented us from reaching the PSM limit, with
n = 14 being the steepest potential for which we could access
the critical region (see Fig. 1).

Our cell model calculations are applicable to the zero
temperature limit in which a first order phase transition oc-
curs, and therefore do not provide estimates of the critical
temperature. However, since the critical temperatures of the
transitions are very small, it is reasonable to expect that the
model predictions for the transition pressure and chemical po-
tential should be in reasonable accord with the critical values,
or at least correctly reproduce trends with respect to variations
in n and the level of the cascade.

We consider the dependence of the critical point parame-
ters on the softness parameter n and the cascade level, which
we index by �n̄s�, i.e., by the occupancy at T = 0 of the
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FIG. 5. Simulation estimates of the cascade critical temperatures for levels
�n̄

s
� = 2, 3, 4 for a selection of values of the softness parameter n. Statistical

errors are smaller than the symbol sizes.
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lower density phase of the two coexisting phases. Estimates
of the critical temperature T c(n, �n̄s�) have been made for the
first three stable levels of the cascade, corresponding to �n̄s�
= 2, 3, 4 and for a range of values of n. The results (Fig. 5)
show that for levels �n̄s� = 3, 4 there is a maximum in Tc for
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FIG. 7. (a) Simulation estimates of the critical pressure Pc(n) for the first
three levels of the demixing cascade for a selection of values of n. (b) Cell
model predictions of the transition pressure as a function of n at zero temper-
ature for the first three levels of the demixing cascade.

n ≈ 3. No such maximum occurs for level �n̄s� = 2, however,
because on reducing n, the system melts before the maximum
is reached. In fact, all levels of the cascade melt as n is reduced
towards n = 2. This reflects the fact that as n becomes smaller,
the liquid region of the phase diagram expands to ever greater
densities, thereby engulfing successive levels of the cascade.
Such an observation is consistent with the known phase be-
havior of the GCM (n = 2) for which no cluster crystals have
been observed.13, 16

The results of Fig. 5 exhibit the further interesting feature
that for a given n, the critical temperatures of each level of the
cascade are indistinguishable within uncertainty for n ≥ 4.
By contrast for n < 4, Tc clearly increases between levels 3
and 4. To help shed light on this observation, we have used the
cell model to calculate the magnitude of the density difference
(i.e., the order parameter) for the transitions of the cascade, at
T = 0. Since this order parameter is expected to depend on the
value of the critical temperature, it should provide an analyti-
cal indicator as to whether Tc is really independent of �n̄s� for
a given n. Fig. 6 shows the standard deviation (normalised by
the mean) in the value of the order parameter at T = 0 for lev-
els �n̄s� = 2, 3, 4. One notes that this quantity is very small
across the board, in accord with the simulation findings that
variations in Tc with �n̄s� are small. However, the variation re-
mains non-zero, and for small n is considerably stronger than
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FIG. 8. (a) Simulation estimates of the critical chemical potential μc(n) for
the first three levels of the demixing cascade for a selection of values of n.
(b) Cell model predictions of the transition chemical potential as a function
of n at zero temperature for the first three levels of the demixing cascade.
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for large n. Thus, it seems likely that the apparent indepen-
dence of Tc(n) on �n̄s� for n ≥ 4 merely reflects the fact that
the temperature variation is smaller than can be resolved in
our simulations.

Figure 7(a) shows the simulation estimates for the critical
pressure Pc(n). In contrast to the case of the critical tempera-
ture, for any given n there are large differences in the pressure
between successive levels of the cascade. In common with the
situation for the critical temperature, the pressure varies non-
monotonically in n, with a clear minimum close to n = 3.
We note that on reducing n below n = 3, the critical pressure
for the �n̄s� = 3 and �n̄s� = 4 levels starts to increase very
rapidly, before the system melts. Similar behavior is seen in
the cell model predictions for the phase transition pressure at
T = 0 (Figure 7(b)). Here, the curve of the coexistence pres-
sure versus n terminates at some value of n below which no
double tangent in emin(ρ) can be found. The value of n for
which this happens lies around n ≈ 2.4 and is only weakly
dependent on the level of the cascade. This termination pre-
sumably reflects the instability of the cluster crystal phase.

In contrast to the scenario observed for the critical tem-
perature and pressure, monotonic behavior is seen in the criti-
cal chemical potential μc(n). The results (Fig. 8) demonstrate
that μc simply increases ever more rapidly as n decreases until
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FIG. 9. (a) Estimates of the critical density ρc for levels �n̄
s
� = 2, 3, 4 of the

demixing cascade for a selection of values of the potential softness parameter
n. Statistical errors are comparable with the symbol sizes. (b) Cell model
predictions of the coexistence diameter density as a function of n at T = 0 for
the first three levels of the demixing cascade.
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FIG. 10. Plot of the critical temperature of the �n̄
s
� = 2 transition as a func-

tion of 1/n. A linear fit is shown to the data for n > 4.

the system melts. Similar behavior is observed for the transi-
tion chemical potential at T = 0 within the cell model, with
the curves for the transition chemical potential μtr(n) termi-
nating at n ≈ 2.4.

Simulation estimates of the dependence of the critical
density on n and �n̄s� are plotted in Fig. 9(a). Here, one sees
hints of the approach to a minimum, at least for �n̄s� = 3, 4,
although the actual minimum seems to be preempted by melt-
ing. Clear minima are visible, however, in the cell model re-
sults for the coexistence diameter density at T = 0, Fig. 9(b).
Here, although the curves have very similar shapes, there is
no simple factor relating the critical densities for the various
levels of the cascade.

Finally, we consider the behavior of the critical temper-
ature at large n. Fig. 10 replots our simulation estimates of
Tc(n) for the lowest stable level of the cascade, �n̄s� = 2, this
being the level for which we were able to scan the largest
range of n. These results show that Tc decreases rapidly with
increasing n. At large n (i.e., well away from the peak in
Fig 5) we observe scaling consistent with T c ∼ n−1. An ex-
trapolation of the trend is consistent with the absence of a
demixing cascade in the PSM at zero temperature, as sug-
gested by the cell model studies, although since the largest n
we could study was n = 14, our data would not by themselves
completely rule out a very low temperature critical point.

IV. SUMMARY AND CONCLUSIONS

In summary, we have used tailored Monte Carlo simula-
tion techniques and zero temperature cell model calculations
to study the behavior of the demixing cascade as a function
of the potential softness parameter in the GEM-n models. For
a given n, the critical temperature is only very weakly depen-
dent on the level of the cascade, with the differences being
greatest for n < 3. A maximum occurs in Tc(n) near n = 3
and non-monotonicity is also observed in the critical pressure
Pc(n), but not in the critical chemical potential μc(n). These
latter features are corroborated by our cell model calculations
for the T = 0 transitions.

As n → 2+ (the GSM limit) the liquid region of the
phase diagram expands to higher densities. This results in the
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melting of successive levels of the cascade. However, it is an
interesting open question whether the liquid always wins in
the GSM limit or whether at extremely high densities a clus-
ter crystal can nevertheless occur.

As n is increased to large values, the critical tempera-
tures fall steadily to very low values, with the simulations sug-
gesting Tc(n) ∼ n−1. Extrapolation of the results to the PSM
(n = ∞) limit is consistent with the absence of a demixing
cascade in the PSM.
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10A. Sütő, Commun. Math. Phys. 305, 657 (2011).

11D. Coslovich and A. Ikeda, Soft Matter 9, 6786 (2013).
12F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
13S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. E 71, 050102

(2005).
14A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen, J. Phys. Condens.

Matter 12, 5087 (2000).
15C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev. E 63,

031206 (2001).
16A. Ikeda and K. Miyazaki, J. Chem. Phys. 135, 024901 (2011).
17L. Blum and G. Stell, J. Chem. Phys. 71, 42 (1979).
18C. Marquest and T. A. Witten, J. Phys. France 50, 1267 (1989).
19C. N. Likos, M. Watzlawek, and H. Löwen, Phys. Rev. E 58, 3135 (1998).
20W. Klein, H. Gould, R. A. Ramos, I. Clejan, and A. I. Mel’cuk, Physica A

205, 738 (1994).
21H. Fragner, Phys. Rev. E 75, 061402 (2007).
22A. J. Moreno and C. N. Likos, Phys. Rev. Lett. 99, 107801 (2007).
23M. Montes-Saralegui, A. Nikoubashman, and G. Kahl, J. Phys.: Condens.

Matter 25, 195101 (2013).
24D. A. Lenz, R. Blaak, C. N. Likos, and B. M. Mladek, Phys. Rev. Lett. 109,

228301 (2012).
25M. Schmidt, J. Phys: Condens. Matter 11, 10163 (1999).
26S.-H. Suh, C.-H. Kim, S.-C. Kim, and A. Santos, Phys. Rev. E 82, 051202

(2010).
27M.-J. Fernaud, E. Lomba, and L. L. Lee, J. Chem. Phys. 112, 810 (2000).
28Z. Kai and P. Charbonneau, J. Chem. Phys. 136, 214106 (2012).
29T. Neuhaus and C. N. Likos, J. Phys.: Condens. Matter 23, 234112 (2011).
30N. B. Wilding and P. Sollich, EPL 101, 10004 (2013).
31W. C. Swope and H. C. Andersen, Phys. Rev. A 46, 4539 (1992).
32B. M. Mladek, P. Charbonneau, and D. Frenkel, Phys. Rev. Lett. 99, 235702

(2007).
33D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic,

San Diego, 2002).
34N. B. Wilding, Phys. Rev. E 52, 602 (1995).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.38.54.59 On: Thu, 02 Oct 2014 13:57:41

http://dx.doi.org/10.1039/b601916c
http://dx.doi.org/10.1063/1.2738064
http://dx.doi.org/10.1021/ma981844u
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
http://dx.doi.org/10.1103/PhysRevLett.96.045701
http://dx.doi.org/10.1103/PhysRevLett.96.045701
http://dx.doi.org/10.1088/0953-8984/20/49/494245
http://dx.doi.org/10.1103/PhysRevLett.105.245701
http://dx.doi.org/10.1103/PhysRevE.86.042501
http://dx.doi.org/10.1103/PhysRevE.86.069902
http://dx.doi.org/10.1007/s00220-011-1276-z
http://dx.doi.org/10.1039/c3sm50368b
http://dx.doi.org/10.1063/1.432891
http://dx.doi.org/10.1103/PhysRevE.71.050102
http://dx.doi.org/10.1088/0953-8984/12/24/302
http://dx.doi.org/10.1088/0953-8984/12/24/302
http://dx.doi.org/10.1103/PhysRevE.63.031206
http://dx.doi.org/10.1063/1.3609277
http://dx.doi.org/10.1063/1.438088
http://dx.doi.org/10.1051/jphys:0198900500100126700
http://dx.doi.org/10.1103/PhysRevE.58.3135
http://dx.doi.org/10.1016/0378-4371(94)90233-X
http://dx.doi.org/10.1103/PhysRevE.75.061402
http://dx.doi.org/10.1103/PhysRevLett.99.107801
http://dx.doi.org/10.1088/0953-8984/25/19/195101
http://dx.doi.org/10.1088/0953-8984/25/19/195101
http://dx.doi.org/10.1103/PhysRevLett.109.228301
http://dx.doi.org/10.1088/0953-8984/11/50/309
http://dx.doi.org/10.1103/PhysRevE.82.051202
http://dx.doi.org/10.1063/1.480649
http://dx.doi.org/10.1063/1.4723869
http://dx.doi.org/10.1088/0953-8984/23/23/234112
http://dx.doi.org/10.1209/0295-5075/101/10004
http://dx.doi.org/10.1103/PhysRevA.46.4539
http://dx.doi.org/10.1103/PhysRevLett.99.235702
http://dx.doi.org/10.1103/PhysRevE.52.602

