

Citation for published version: Gonzalez, JT, Green, BP, Campbell, MD, Rumbold, PLS & Stevenson, EJ 2014, 'The influence of calcium supplementation on substrate metabolism during exercise in humans: a randomized controlled trial', European Journal of Clinical Nutrition, vol. 68, no. 6, pp. 712-718. https://doi.org/10.1038/ejcn.2014.41

DOI: 10.1038/ejcn.2014.41

Publication date: 2014

Document Version Peer reviewed version

Link to publication

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

	CON		CAL		
Variable	Pre	Post	Pre	Post	ANOVA supplement x time interaction
Energy expenditure rate (kJ/min)	8.76 ± 1.29	8.23 ± 1.46	8.49 ± 0.96	8.09 ± 0.85	P = 0.864
Fat oxidation rate (g/min)	0.07 ± 0.04	0.07 ± 0.04	0.07 ± 0.03	0.07 ± 0.05	P = 0.652
Carbohydrate oxidation rate (g/min)	0.39 ± 0.11	0.33 ± 0.12	0.36 ± 0.09	0.33 ± 0.12	P = 0.581
Glucose concentration (mmol/L)	5.07 ± 0.31	5.02 ± 0.37	4.82 ± 0.60	5.01 ± 0.50	P = 0.358
Lactate concentration (mmol/L)	1.83 ± 0.47	1.70 ± 0.45	1.56 ± 0.21	1.82 ± 0.45	P = 0.105
NEFA concentration (mmol/L)	0.35 ± 0.16	0.37 ± 0.21	0.31 ± 0.13	0.37 ± 0.22	P = 0.363
Glycerol concentration (mmol/L)	0.63 ± 0.36	0.62 ± 0.31	0.45 ± 0.23	0.44 ± 0.21	P = 0.702
Insulin concentration (pmol/L)	80 ± 30	71 ± 27	$70 \pm 28*$	$83 \pm 33^{*\dagger}$	P = 0.006
HOMA-IR (au)	2.55 ± 1.08	2.30 ± 0.91	$2.13 \pm 0.87*$	$2.67 \pm 1.10*$	<i>P</i> =0.029
GIP ₁₋₄₂ concentration (pmol/L)	2.5 ± 2.7	2.0 ± 1.7	1.0 ± 0.7	1.4 ± 1.2	P = 0.982
Total GLP-1 concentration (pmol/L)	1.6 ± 2.3	1.4 ± 1.8	2.2 ± 4.1	2.0 ± 2.6	P = 0.128
PTH concentration (pmol/L)	4.6 ± 2.3	3.4 ± 1.4	4.5 ± 2.8	4.0 ± 1.4	P = 0.201

Table 1 Substrate metabolism and circulating variables at rest before and after supplementation with CON or CAL.

CON, control; CAL, high-calcium; NEFA, non-esterified fatty acid; GIP₁₋₄₂, glucose-dependent insulinotropic polypeptide₁₋₄₂; GLP-1, glucagonlike peptide-1; PTH, parathyroid hormone; HOMA-IR, homeostasis model assessment of insulin resistance. Data are mean \pm SD. n = 13 for energy expenditure and substrate metabolism, n = 12 for blood-based variables. Holm-Bonferroni post-hoc analysis: *Significantly different to CON at same time point, *Significantly different to Pre, P < 0.05.