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Abstract

The structure of the network glass-forming material ZnCl2 was measured us-
ing both neutron and high-energy x-ray diffraction for the glass at 298(1) K
and for the liquid over the temperature range 601(1)–977(2) K. Intermedi-
ate range order, as manifested by the appearance of a first-sharp diffraction
peak in the measured diffraction pattern for the glass at a scattering vec-
tor kFSDP ≃ 1 Å−1, is retained in the liquid state even at temperatures
close to the boiling point. The correlation lengths associated with both the
intermediate and extended range ordering are found to be inversely propor-
tional to temperature. The reverse Monte Carlo (RMC) method was used to
model the material, and the results at two different temperatures are com-
pared to those obtained from RMC models based on the partial structure
factors measured by using the method of isotope substitution in neutron
diffraction. The models show temperature dependent structural variability
in which there is an interplay between the fractions of corner-sharing ver-
sus edge-sharing ZnCl4 tetrahedra. Corner-sharing motifs are predominant
in the glass, and edge-sharing motifs become more numerous in the liquid
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as the temperature is increased. The appearance of a first-sharp diffraction
peak in the Bhatia-Thornton concentration-concentration partial structure
factor is discussed in the context of classifying the different network types
for glass-forming materials.

Keywords: Liquid and glass structure, correlation lengths, neutron
diffraction, x-ray diffraction, reverse Monte-Carlo modeling

1. Introduction

The structure of network glass-forming liquids over multiple length scales,
and the evolution of this structure with temperature, is important for under-
standing the physical properties of these technologically important materials
[1–5]. In the case of tetrahedral glass-forming systems with the MX2 stoi-
chiometry, the structure is described by two length scales at distances larger
than the nearest-neighbor distance [6], and there is a competition between
the ordering on these length scales that affects a melt’s ‘fragility’ [7]. The
length scales are associated with atomic-scale ordering on the intermediate
and extended ranges, and manifest themselves in the measured diffraction
patterns by the appearance of a first-sharp diffraction peak (FSDP) and a
principal peak. These peaks appear at scaled positions of kFSDPrMX ≃ 2.5 and
kPPrMX ≃ 4.8 where kFSDP and kPP are the scattering vectors for the FSDP
and principal peak, respectively, and rMX is the nearest-neighbor distance
for unlike chemical species [8–12]. The competition between the ordering on
these length scales manifests itself in terms of the relative importance of the
FSDP versus the principal peak in the Bhatia-Thornton [13] number-number
partial structure factor SBT

NN(k) which describes the topological ordering. The
FSDP in SBT

NN(k) is more prominent than the principal peak for ‘strong’ glass
formers such as GeO2, whilst the converse holds true for more ‘fragile’ glass
formers such as ZnCl2 and GeSe2 [7, 12, 14]. The ‘strong’ versus ‘fragile’
taxonomy for glass-forming liquids originates from the temperature depen-
dence of the viscosity near the glass transition temperature Tg [15]. Fragile
materials show a particularly rapid increase of viscosity near Tg which affects
their manipulability e.g. it may be necessary to supercool a fragile liquid in
order for its viscosity to become sufficiently large to enable fiber-pulling [16].

In this paper we explore the evolution with temperature of the atomic
scale ordering in the glass-forming system ZnCl2 [6, 17–34] by using a com-
bination of neutron and high energy x-ray diffraction to investigate the glass
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at 298(1) K and the liquid at several temperatures in the range 601(1)–
977(2) K i.e. close to the melting and boiling points at 563 and 1005 K,
respectively [35]. This material is a prototypical example of a glass-former
with structure-related properties that can be understood in terms of an ionic
interaction model, provided that anion polarization effects are taken into
account [23, 27, 29–31]. The basic structure of the glass can be thought
of in terms of a random close-packed distribution of Cl atoms where the Zn
atoms occupy tetrahedral holes and are arranged in a way that maximizes the
number of corner-sharing ZnCl4 tetrahedra [21]. The structure can also be
thought of in terms of a network of corner-sharing ZnCl4 tetrahedra in which
the Cl atoms are densely packed. For example, molecular dynamics simula-
tions on MX2 systems show that a SiO2-like structure can be transformed
to a ZnCl2-like structure via a systematic increase of the anion polarizability
[36, 37]. Thus, ZnCl2 can also be regarded as a network glass-former albeit
with a topology that is different to materials such as SiO2 e.g. at ambient
pressure the coordination number of the electronegative species can vary
from two (Section 5.1). The fragility of liquid ZnCl2 is intermediate between
strong glass-forming systems such as SiO2 and GeO2 and more fragile glass
forming systems such as KCl–BiCl3 and Ca2K3(NO3)7 [15, 24, 38, 39].

Part of the motivation for the present study is a search in glass-forming
systems for a growing static length scale which should accompany a slow
down in the dynamics as the glass transition is approached i.e. the time
taken for a system to relax increases because correlated regions of growing
size need to rearrange [40]. The alterations to the measured structure factors
for glass-forming liquids as Tg is approached are, however, small as compared
to dynamical properties such as the viscosity and diffusion coefficients which
change by many orders of magnitude [41, 42]. Nevertheless, it is of value
to measure the temperature dependent structural changes in ZnCl2 because
this system is ionic and is therefore amenable to investigation by molecular
dynamics methods using a polarizable ion model [23, 27, 29, 30, 37, 43]. Such
methods allow for access to several of the pertinent length and time-scales
e.g. the extended range ordering in tetrahedral MX2 glasses can persist to
nanometer length-scales of 20–30 Å [6, 7, 12, 44, 45].

The diffraction data were modeled by using the reverse Monte Carlo
(RMC) method [46], and the full set of partial structure factors were ex-
tracted for several temperatures, together with the associated bond angle
distributions and ring statistics. We find that the network structure of the
glass is made predominantly from corner-sharing ZnCl4 tetrahedra, although
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there are also edge-sharing tetrahedra which become more numerous in the
liquid with increasing temperature. The structural motifs organize on an
intermediate length scale to give an FSDP in the measured diffraction pat-
terns at kFSDP ≃ 1 Å−1 which remains a significant feature of the liquid state
even at temperatures close to the boiling point. The appearance of edge-
sharing motifs is consistent with molecular dynamics work on tetrahedral
glass-forming MX2 systems which suggests that by disrupting networks of
corner-sharing tetrahedra they promote melts with increased fragility [36].

The manuscript is organized as follows. In Section 2, the essential the-
ory is described for understanding the diffraction results. In Section 3, an
outline is given of the sample preparation and characterization methods, the
neutron and x-ray diffraction experiments, and the RMC procedure used to
model the structure. The resolution function correction applied to the neu-
tron diffraction data is also described. Next, in Section 4, the neutron and
x-ray diffraction results for the glass and liquid are presented, and the results
obtained from the RMC models are compared to those obtained from previ-
ous RMC work in which the full set of partial structure factors were measured
by using neutron diffraction with isotope substitution (NDIS) for the glass
at 298(1) K and for the liquid at 605(5) K [32]. In Section 5, the results are
discussed in terms of the temperature dependence of the structural motifs,
bond angle distributions and ring statistics, and also in terms of the Bhatia-
Thornton [13] partial structure factors which separate the topological from
the chemical ordering. Finally, in Section 6 the conclusions are summarized.

2. Theory

In a neutron or x-ray diffraction experiment on glassy or liquid ZnCl2 the
total structure factor [47]

F (k) =
∑
α

∑
β

cαcβfα(k)f
∗
β(k) [Sαβ(k)− 1] (1)

is measured, where α and β denote the chemical species, cα represents the
atomic fraction of chemical species α, fα(k) and f ∗

α(k) are the form factor
(or scattering length) for chemical species α and its complex conjugate, re-
spectively, Sαβ(k) is a Faber-Ziman [48] partial structure factor, and k is
the magnitude of the scattering vector. Sαβ(k) is related to the partial pair-
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distribution function gαβ(r) via the Fourier transform

gαβ(r)− 1 =
1

2π2 ρ r

∫ ∞

0

dk k [Sαβ(k)− 1] sin(kr) (2)

where ρ is the atomic number density and r is a distance in real space. The
mean coordination number of atoms of type β, contained in a volume defined
by two concentric spheres of radii ri and rj centered on an atom of type α,
is given by

n̄β
α = 4π ρ cβ

∫ rj

ri

dr r2gαβ(r). (3)

The scattering lengths in neutron diffraction are independent of k but the
form factors in x-ray diffraction are k-dependent. In order to compensate for
this k-dependence, the total structure factor is often rewritten as

S(k)− 1 =
F (k)

| ⟨f(k)⟩ |2
(4)

where ⟨f(k)⟩ = cZnfZn(k) + cClfCl(k) is the mean form factor. The corre-
sponding real-space information is provided by the total pair-distribution
function as obtained from the Fourier transform

G(r)− 1 =
1

2π2 ρ r

∫ ∞

0

dk k [S(k)− 1] sin(kr). (5)

In the case of x-ray diffraction experiments, the normalization defined by
Eq. (4) has the advantage that it allows for a better resolution of the peaks
in G(r). For r values smaller than the distance of closest approach between
the centers of two atoms gαβ(r) = gαβ(r → 0) = 0 such that G(r) = G(r →
0) = 0.

The total structure factor can also be written in terms of the Bhatia-
Thornton [13] number-number, concentration-concentration and number-concentration
partial structure factors denoted by SBT

NN(k), S
BT
CC(k) and SBT

NC(k), respec-
tively, where

F (k) = | ⟨f(k)⟩ |2SBT
NN(k) + |fZn(k)− fCl(k)|2SBT

CC(k)
+ {⟨f(k)⟩ [fZn(k)∗ − fCl(k)

∗] + ⟨f(k)⟩∗ [fZn(k)− fCl(k)]}SBT
NC(k)

−
[
cZn|fZn(k)|2 + cCl|fCl(k)|2

]
. (6)
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The SBT
IJ (k) (I, J = N,C) and Sαβ(k) (α, β = Zn, Cl) partial structure factors

are related by the equations

SBT
NN(k) = c2ZnSZnZn(k) + c2ClSClCl(k) + 2cZncClSZnCl(k), (7)

SBT
CC(k) = cZncCl {1 + cZncCl [SZnZn(k) + SClCl(k)− 2SZnCl(k)]} , (8)

SBT
NC(k) = cZncCl {cZn [SZnZn(k)− SZnCl(k)]− cCl [SClCl(k)− SZnCl(k)]} .(9)

It follows from Eq. (6) that in a diffraction experiment SBT
NN(k) would be

measured directly if fCl(k) = fZn(k) (which could be achieved in a neutron
diffraction experiment by a suitable choice of Cl isotopes), whereas SBT

CC(k)
would be measured directly if ⟨f(k)⟩ = 0. The Fourier transform of SBT

NN(k),
denoted by gBT

NN(r), describes the pair-correlations between the sites of the
scattering centers but cannot distinguish between the chemical species that
occupy those sites i.e. it gives information on the topological ordering. In
comparison, the Fourier transform of SBT

CC(k), denoted by gBT
CC(r), gives infor-

mation on the chemical ordering i.e. on the occupancy by Zn and Cl atoms
of the sites described by gBT

NN(r). A preference for like or unlike neighbors
at a given distance will lead to a corresponding positive or negative peak in
gBT
CC(r), respectively. The Fourier transform of SBT

NC(k), denoted by gBT
NC(r),

describes the cross-correlation between the sites of the scattering centers and
their occupancy by a given chemical species. A more complete description of
the Bhatia-Thornton formalism as applied to MX2 systems is given elsewhere
[12, 49].

In the following, the notation SN(k) and SX(k) will be used in order to
distinguish between the total structure factors measured by neutron and x-
ray diffraction and the corresponding total pair-distribution functions will
be denoted by GN(r) and GX(r), respectively. The coherent neutron scat-
tering lengths for Zn and Cl of natural isotopic abundance are 5.680(5) and
9.5770(8) fm, respectively [50]. The weighting factors for the Zn–Zn, Zn–Cl
and Cl–Cl partial structure factors are 0.0523:0.3528:0.5949 for SN(k) versus
0.1914:0.4922:0.3164 for SX(k) at k = 0 if Zn2+ and Cl− ions are assumed
i.e. neutron diffraction gives complementary information to x-ray diffraction.
The assumption of full formal charges for zinc and chlorine is supported by
an ability to reproduce the main structural features of liquid ZnCl2 by using
a polarizable ion model with these charges [23, 27, 29, 30].
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3. Experimental and modeling procedures

3.1. Sample preparation

For the neutron diffraction experiment, anhydrous beads of ZnCl2 (99.999%,
Sigma-Aldrich) with the natural isotopic abundance were loaded into a cylin-
drical silica ampoule of 4 mm inner diameter and 1 mm wall thickness within
a high-purity argon-filled glove-box. The ampoule was then sealed under a
vacuum of ≈ 10−5 torr. The glass transition temperature Tg of the beads
was measured to be 376(2) K (mid-point) from the reversible part of the heat
flow measured using a TA Instruments Q100 modulated differential scanning
calorimeter with a scan rate of 3 K min−1, modulation of ±1 K per 60 s and
an oxygen-free nitrogen gas flow rate of 25 ml min−1. These results compare
with literature Tg values of 376–380 K [51], 370 K [52] and 375(5) K [53].

For the x-ray diffraction experiment, anhydrous beads of ZnCl2 were
loaded into a silica container connected to a cylindrical silica capillary tube
of 1.8 mm inner diameter and 0.6 mm wall thickness. The apparatus was
sealed under a vacuum of ≈ 10−5 torr and placed in an oven at 1073 K with
the tip of the capillary tube located outside of the oven door. ZnCl2 vapor
was allowed to condense into this cooler part of the apparatus and the cap-
illary tube was then sealed under high vacuum. The sample was vitrified by
heating the capillary tube to ≈ 723 K and quenching in an ice-water mixture.

3.2. Diffraction experiments

The neutron diffraction experiment was performed using the instrument
D4c [54] at the Institut Laue-Langevin (ILL) with an incident wavelength
of 0.4967(1) Å. A vanadium furnace was used in which a cylindrical heating
element of 17 mm diameter and 0.1 mm wall thickness was surrounded by
a cylindrical heat shield of 25 mm diameter and 0.04 mm wall thickness.
Diffraction patterns were measured at 708(2), 808(2), 906(2) and 977(2) K
for the sample in its container in the furnace, for an empty container in the
furnace, and for the empty furnace. Diffraction patterns were also measured
at room temperature for the empty furnace; for a cylindrical vanadium rod
of diameter 6.37(1) mm in the furnace; and for a bar of neutron absorbing
10B4C of dimensions comparable to the sample in the furnace. The vanadium
data were used for normalization purposes and the 10B4C data were used to
help in accounting for the effect of sample attenuation on the background
signal at small scattering angles [55]. The stability of the sample and instru-
ment at each temperature was assessed by saving the measured diffraction
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patterns at regular intervals [56]. For the sample measurements at each of
the temperatures 708(2), 808(2) and 906(2) K no deviation between the fi-
nally selected patterns was observed within the counting statistics. For the
sample measurement at a temperature of 977(2) K, however, deviations re-
sulted from the formation of bubbles in the liquid. Patterns were therefore
selected to give a composite diffraction pattern in which the effect of these
deviations canceled to first order. Neutron diffraction experiments on the
glass at 298(1) K and on the liquid at 605(5) K were also performed using
the D4c instrument with an incident wavelength of ≃ 0.5 Å and are described
elsewhere [6, 32].

The measured SN(k) functions were extrapolated in the range 0 ≤ k .
0.5 Å−1 to the SN(k → 0) limit by assuming that SN(k) ∝ k2 [44, 45]. For the
liquid, the limiting values were calculated from Eqs. (4) and (6) by assuming
an ionic interaction model for ZnCl2 in which SBT

CC(k → 0) = SBT
NC(k → 0) = 0

and SBT
NN(k → 0) = ρkBTκT where kB is the Boltzmann constant, T is

the absolute temperature and κT is the isothermal compressibility [44, 45].
Values for the latter (see Table 1) were obtained by using κT = γκS where
γ = Cp/Cv is the ratio of the constant pressure to constant volume heat
capacities. For the liquid γ = 1.04 at temperatures of 400, 500 and 600 ◦C
and γ = 1.05 at 700 ◦C [57]. Sound velocity measurements show that the
adiabatic compressibility over the temperature range 410–705 ◦C is given by
[57]

κs = a+ bt+ ct2 (10)

where the coefficients take values of a = 33.2 × 10−11 Pa−1, b = 1.30 ×
10−13 Pa−1 ◦C−1 and c = 3.701 × 10−16 Pa−1 ◦C−2, t is the temperature in
Celsius, and the error on κs is ±1%. At lower temperatures, κs takes values
of 3.63×10−10, 3.85×10−10, 3.99×10−10 and 4.19×10−10 Pa−1 at 319, 329,
342.5 and 365.9 ◦C, respectively.

The high-energy x-ray diffraction experiments were performed using beam-
line BL04B2 at SPring-8 [58]. The (220) planes of a silicon monochromator
were used to give an incident x-ray wavelength of 0.20095(5) Å (energy ≃
61.7 keV), and the incident beam intensity was monitored by an ionization
chamber filled with Ar gas of 99.99% purity. The samples were held in a
vacuum bell jar to avoid air scattering, and the diffracted x-rays were col-
lected using a Ge solid-state detector. Diffraction patterns were measured at
room temperature for the glass in its container and for an empty container.
Diffraction patterns were also measured at temperatures of 601(1), 613(1),
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Table 1: The temperature T dependence of the atomic number density ρ and isothermal
compressibility κT for glassy and liquid ZnCl2 together with the first two peak positions
r1 and r2 in the GN(r) or GX(r) functions measured by either neutron diffraction (ND)
or x-ray diffraction (XRD), and the mean Zn–Cl coordination number n̄Cl

Zn. The packing
fraction of Cl atoms ηCl at selected temperatures is also given.

T ρ κT r1 r2 n̄Cl
Zn ηCl Method

(K) (Å−3) (10−10 Pa−1) (Å) (Å)

298(1) 0.0359(1) – 2.28(2) 3.70(2) 4.00(8) 0.647 NDa

– 2.27(2) 3.71(2) 4.04(5) XRD
601(1) 0.0334(1) 4.00(4) 2.27(2) 3.73(2) 3.93(5) 0.594 XRD
603(1) 0.0334 – 2.28(1) 3.79(2)b 3.93(6) NDc

605(5) 0.0334(1) 4.03(4) 2.27(2) 3.72(2) 4.12(5) NDd

613(1) 0.0333(1) 4.15(4) 2.27(2) 3.72(2) 3.94(5) XRD
703(1) 0.0327(1) 4.75(5) 2.27(2) 3.76(3) 3.90(5) 0.581 XRD
708(2) 0.0326(1) 4.77(5) 2.28(2) 3.71(2) 4.01(5) ND
803(1) 0.0320(1) 5.25(5) 2.27(2) 3.83(5) 3.87(5) 0.569 XRD
808(2) 0.0320(1) 5.28(5) 2.27(2) 3.72(2) 4.01(5) ND
873(1) 0.0318 – 2.29(1) 3.86(5)b 3.67(7) NDc

903(1) 0.0315(1) 5.83(6) 2.27(2) 3.75(3) 3.85(5) 0.560 XRD
906(2) 0.0314(1) 5.85(6) 2.28(2) 3.70(2) 3.96(10) ND
977(2) 0.0311(1) 6.37(6) 2.27(2) 3.66(2) 3.91(6) 0.553 ND
a Data taken from Refs. [6, 32]; b peak position in r2GN(r);

c data taken
from Ref. [22]; d data taken from Ref. [32].

703(1), 803(1) and 903(1) K for the liquid in its container in the furnace, and
for an empty container in the furnace. The data analysis procedure, which is
described elsewhere [58], used ionic form factors for Zn2+ and Cl− [59], and
Compton scattering corrections taken from Refs. [60, 61].

The mass density ρmass(T ) of the liquid at absolute temperature T was
calculated from the expression [62]

ρmass(T ) = a′ + b′T + c′T 2 (11)

where the coefficients take values of a′ = 3.0183 g cm−3, b′ = −1.0536 × 10−3

g cm−3 K−1 and c′ = 3.7641 × 10−7 g cm−3 K−2. The corresponding number
densities are listed in Table 1.
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3.3. Resolution function correction

The neutron diffraction data were corrected to yield the total structure
factor for each sample [63, 64]. Previous work on liquid and glassy ZnCl2
using the NDIS method has, however, shown that it is necessary to apply a
resolution function correction to the neutron diffraction results if they are to
be consistent with the x-ray diffraction results, particularly in the region of
the FSDP [32]. Essentially, the resolution function for the neutron diffrac-
tometer D4c is broader than for the x-ray diffractometer on beamline BL04B2
and it is asymmetric at smaller k-values owing to the so-called umbrella effect
[65–67]. In the present work, a correction for the resolution function of the
diffractometer was therefore applied to the neutron diffraction patterns for
the glass and liquid by using the moments method of deconvolution [67, 68].
The resolution function correction for the x-ray diffractometer was found to
be negligible in comparison with the neutron diffractometer, and a correction
for the x-ray data was not therefore made.

3.4. Reverse Monte Carlo (RMC) modeling

The program RMC++ [69] was used to obtain atomistic models for glassy
and liquid ZnCl2. The SX(k) and resolution-function corrected SN(k) func-
tions were used to constrain the model for the glass and for the liquid at
average temperatures of 603(5), 706(3), 806(3) and 905(2) K, and only the
resolution-function corrected SN(k) function was used to constrain the model
for the liquid at 977(2) K. Each model contained 3000 atoms in a cubic box of
side length chosen to give the correct atomic number density (Table 1). The
starting configurations for the glass and for the liquid at different tempera-
tures were taken from RMC models based on previous NDIS experiments in
which the full set of partial structure factors were measured for the glass and
for the liquid at 605(5) K [32]. Coordination number constraints were not
applied, and use was made of nearest-neighbor Zn–Cl, Zn–Zn, Cl–Cl cut-off
distances of 2.1, 3.4, 3.2 Å for the glass, and 2.0–2.1, 2.8–2.9, 2.9 Å for the
liquid, respectively. The RMC results for the liquid at 977 K are likely to be
the least reliable since, in the absence of x-ray diffraction data, only SN(k)
could be used to constrain the model.

4. Results

The measured SN(k) functions before and after the resolution function
correction are compared in Fig. 1, and show that the main effect of this
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correction occurs in the region of the FSDP. The measured SX(k) functions
are illustrated in Fig. 2. The first three peak positions k∗ in the total structure
factors are given in Fig. 3 and show a weak temperature dependence. The
corresponding correlation lengths, as estimated by the expression 2π/∆k∗

where ∆k∗ is a peak full-width at half-maximum [10], are given in Fig. 4.
The larger spread of values associated with the FSDP in SN(k) is probably
related to the small size of this feature. The results show that the correlation
lengths are inversely proportional to temperature.

The total pair-correlation functions GN(r) and GX(r) are illustrated in
Figs. 5 and 6, respectively. The first peak in both functions is attributed to
nearest-neighbor Zn–Cl correlations [6, 19, 32], such that the broadening of
this feature with increasing temperature amounts to a broadening of the first
peak in gZnCl(r). The coordination number n̄Cl

Zn was extracted by integrating
over this first peak in gZnCl(r) after extrapolating the large-r side of the peak
to the gZnCl(r → 0) limit. In the case of the x-ray diffraction data, the r-
space effect of the k-dependent form factors was removed by adopting the
procedure described in Ref. [70]. The results show no substantial change
in either the Zn–Cl bond distances or coordination numbers with increasing
temperature (Table 1).

The RMC fits to the SN(k) and SX(k) functions are shown in Figs. 1–
2, and the corresponding Faber-Ziman partial structure factors Sαβ(k) are
shown in Fig. 7. The largest FSDP occurs for SZnZn(k), in agreement with
the findings from experiments using the NDIS method [6, 19, 32], but in
disagreement with other work in which neutron and x-ray diffraction results
were combined [26]. The features in the Sαβ(k) functions for the glass dampen
with increasing temperature but there is otherwise little change e.g. the FSDP
in SZnZn(k) remains even at the highest temperature. There are, however,
differences in detail in the region of the FSDP between the Sαβ(k) functions
from the present work and those obtained for the glass and for the liquid at
605(5) K by using the NDIS method [32]. For example, the FSDP in SZnZn(k)
from the present work is sharper and less asymmetric (Section 3.3). These
changes are consistent with the effect of constructing partial structure factors
either before [32] or after (present work) a resolution function correction is
made to the neutron diffraction data. In the work of Zeidler et al. [32] it was
shown that, if the x-ray total structure factor reconstructed from the NDIS
results Srec

X (k) is to be matched in the FSDP region with the measured x-ray
total structure factor Smeas

X (k), then a resolution function correction needs to
be made to Srec

X (k).

11



The RMC partial pair-distribution functions gαβ(r) are shown in Fig. 8.
In the case of gZnZn(r), the first peak appears at ≃3.74 Å for the glass [6, 32]
and arises predominantly from corner-sharing ZnCl4 tetrahedra. In the liquid
phase, this peak develops a small-r tail that is consistent with the appearance
of edge-sharing tetrahedra, where typical Zn–Zn distances are 3.16–3.24 Å
[71]. The first peak in the other gαβ(r) functions also broadens with increas-
ing temperature. Further analysis is required to reveal the accompanying
structural changes (Section 5).

5. Discussion

5.1. Temperature dependent structure of ZnCl2

The distribution in the number of α-fold coordinated zinc atoms Znα (α
= 2, 3, 4, 5 or 6) and α-fold coordinated chlorine atoms Clα (α = 1, 2, 3 or
4) at each temperature was found from the RMC configurations by using the
bond properties code within the Interactive Structure Analysis of Amorphous
and Crystalline Systems (ISAACS) package [72]. A Zn–Cl cut-off distance
was set at 2.8 Å. The system was found to be chemically ordered at all
temperatures such that Znα corresponds to ZnClα units and Clα corresponds
to ClZnα units. The temperature dependence of the fractions of Znα and Clα
species is shown in Figs. 9(a)–(b) where a comparison is also made with the
fractions obtained from the NDIS-based RMC models for the glass and for
the liquid at 605(5) K [32]. The mean Zn and Cl coordination numbers
at all temperatures are n̄Cl

Zn ≃ 4.0 and n̄Zn
Cl ≃ 2.0. It is found that Zn4

species dominate over the entire temperature range, although they become
less numerous with increasing temperature as they are replaced by Zn3 and
Zn5 species. In comparison, Cl2 species are in the majority over the entire
temperature range, but there are also substantial fractions of Cl1 and Cl3
species, each at the ≃ 20% level. This observation is not expected on the
basis of networks formed by corner-sharing ZnCl4 tetrahedra where the Cl
atoms are two-fold coordinated as in the crystalline phases of ZnCl2 [73–75],
which points to an increased structural variability in the glass and liquid
i.e. there are species other than Zn4 and Cl2. In a polarizable ion model of
liquid ZnCl2, the fractions of Cl1, Cl2 and Cl3 species are 11, 81 and 8% at
800 K, and 14, 78 and 8% at 1000 K, respectively [30].

The bond angle distributions shown in Fig. 10 were obtained by using
additional Zn–Zn and Cl–Cl cut-off distances of 4.3 Å and 5.0 Å for the
glass and 4.5 Å and 5.2 Å for the liquids, respectively. Each of these bond
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angle distributions B(θ) is proportional to the number of bonds between θ
and θ + ∆θ which is dependent on the solid angle ∆Ω ∝ sin(θ) subtended
at that value of θ. The bond angle distributions are therefore plotted as
B(θ)/ sin(θ) in order to compensate for the effect of ∆Ω such that a finite
bond angle distribution at e.g. θ ≃ 180◦ is not artificially suppressed [32, 76].
The bond angle distributions for the glass and for the liquid at 603 K are
comparable to those obtained from NDIS-based RMC models [32], with the
notable exception of the Zn–Cl–Zn bond angle distribution where the NDIS-
based models show a more pronounced shoulder at ≃ 90◦. This feature
corresponds to edge-sharing conformations, and there is an accompanying
shoulder at ≃ 90◦ in the Cl–Zn–Cl bond angle distribution. As shown in
Fig. 9(c), the fraction of edge-sharing Zn4 species is larger in the NDIS-
based RMC models [32] than in the present work. Fig. 9(c) also shows that
the fraction of Zn4 species in edge-sharing versus corner-sharing tetrahedra
is temperature dependent, with the fraction of edge-sharing motifs increasing
with temperature as suggested by the increased intensity of the shoulder at
≃ 90◦ in the Zn–Cl–Zn bond angle distribution. The observation of both
edge-sharing and corner-sharing tetrahedra in glassy and molten ZnCl2, and
the increase with temperature in the fraction of edge-sharing tetrahedra in
the liquid phase, is supported by Raman spectroscopy experiments [28]. The
vapor phase of this material contains predominantly ZnCl2 monomers with
a small fraction of Zn2Cl4 dimers with D2h symmetry in which the Zn atoms
are bridged by two Cl atoms [71, 77–79].

The packing fraction of Cl atoms ηCl for glassy and liquid ZnCl2 can be
estimated from the Cl atom number density ρCl = 2ρ/3 by assuming hard
spheres of radius rCl such that ηCl = (8/9)ρπr3Cl. If the Cl atoms are also
touching in regular ZnCl4 tetrahedra then the Cl–Cl distance rClCl = 2rCl

and rClCl =
√

8/3 rZnCl such that the packing fraction can be re-written as

ηCl = 16
√
2/3πρr3ZnCl/27 = 1.520ρr3ZnCl where rZnCl is the measured Zn–Cl

bond length. The ηCl values calculated in this way are listed in Table 1
and show a packing fraction for the glass that is comparable to the value ≃
0.64 expected for a dense random packing of hard spheres [80]. Indeed, the
structure of vitreous ZnCl2 has been described in terms of a distorted random
close-packed array of Cl atoms where the Zn atoms occupy tetrahedral holes
and are arranged in a way that maximizes the number of corner sharing
ZnCl4 tetrahedra [21]. However, the RMC models from the present work and
Ref. [32], and the Raman spectroscopy experiments from Ref. [28], point to
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a glass structure that is more complicated with the presence of edge-sharing
conformations. In the case of the liquid, ηCl decreases by ∼ 7% over the
entire temperature range and the Cl–Cl–Cl bond angle distribution, which
has many of the features expected for a random close-packing of Cl atoms
[32], shows little change.

The ring statistics were calculated by using the Rigorous Investigation
of Networks Generated using Simulation (RINGS) code [81, 82] within the
ISAACS package [72]. Zn atoms were used as starting points to initiate
shortest path searches using King’s criterion [83] for rings containing a max-
imum of n = 30 atoms. Homopolar bonds were not excluded from the search
procedure but none were found, which accounts for an absence of rings with
odd n-values. A Zn–Cl cut-off distance was set at 2.8 Å, and the results are
shown in Fig. 11. RC(n) is the number of rings containing n atoms (Zn or
Cl), normalized to the total number of Zn atoms; PN(n) is the number of Zn
atoms that can be used as a starting point to initiate a search for at least one
ring containing n atoms, normalized to the total number of Zn atoms;4 and
for a given Zn atom in an n-fold ring, Pmin(n) (Pmax(n)) gives the probability
that this ring constitutes the shortest (longest) closed path that can be found
by using this Zn atom to initiate a search.

Let’s first consider the connectivity profiles shown in Fig. 11 for the glass
and for the liquid at 603 K. The profile of RC(n) indicates a distribution of
ring sizes that is broader for the liquid than for the glass with a minimum ring
size of n = 4, corresponding to edge-sharing motifs, and with peaks at n = 6
and n = 14. The profile of PN(n) shows that Zn atoms can often be used as
the origin of search for finding six-fold rings i.e. these rings are a significant
feature of both the glass and liquid networks. The value Pmin(n) = 1 for n
= 4 means that Zn atoms within four-fold rings cannot be used as the origin
of search for smaller rings i.e. edge-sharing motifs form the shortest closed
paths. The value Pmax(n) ≃ 0.006 for n = 4 implies a ≃ 99.4% chance that
a Zn atom within a four-fold ring can also be used as the origin of search
for a ring with n > 4, i.e. Zn atoms act as ‘network forming’ nodes [81, 82].
The connectivity profiles are similar to those obtained from the NDIS-based

4In general, PN (n) ̸= RN (n) where RN (n) is the number of atoms in an n-fold ring
normalized to the total number of Zn atoms. This inequality follows because a Zn atom
in a particular ring cannot necessarily be used as the origin of search for finding that
ring via a shortest path algorithm [81, 82]. In the case of ZnCl2, however, the network is
chemically ordered and it will be assumed that PN (n) = RN (n) for n = 4.
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RMC models for the glass and liquid at 605 K [32], except that in the case
of the NDIS-based model for the liquid the second peak in RC(n) occurs at
n = 18 instead of n = 14.

At elevated temperatures, the peak in RC(n) at n = 6 disappears and
the value of RC(n) at n = 4 increases as edge-sharing motifs become more
numerous. The corresponding increase in value of PN(n) at n = 4 and de-
crease in value of PN(n) at n = 6 indicate that n = 4 rings become more
significant network features than n = 6 rings with increasing temperature.
The peak in RC(n) at n = 14 also shifts to higher n values, which is corre-
lated with a decrease in the fraction of Zn4 species and an increase in the
fraction of edge-sharing conformations (Figs. 9(a),(c)). The break-down with
increasing temperature of the predominantly corner-sharing network of the
glass is therefore accompanied by the appearance of larger rings, although
the small PN(n) values for larger ring sizes do not suggest that these larger
rings become significant network features.

When investigating MX2 network structures containing edge-sharing con-
formations it is helpful to distinguish between M atoms that are involved in
one edge-sharing motif M(1), two edge-sharing motifs M(2), or in no edge-
sharing motifs M(0) [29, 31, 84]. If the motifs are tetrahedral, then an in-
crease in the fraction of M(2) implies the formation of chains of edge-sharing
tetrahedra as indicated by Fig. 12. To estimate the fractions of Zn(i) (i =
0, 1, 2) species in ZnCl2, let’s consider a chemically ordered network where
NZn(i) is the number of Zn(i) species and NZn is the total number of Zn atoms
such that NZn = NZn(0) +NZn(1) +NZn(2) . Then the total number of Zn atoms
involved in four-fold rings is given by

NZnPN(n = 4) = NZn(1) +NZn(2) , (12)

where PN(n = 4) is obtained by using Zn atoms to initiate a search, and it
follows that

NZn(0) = NZn −NZnPN(n = 4). (13)

Based on edge-sharing conformations of the type shown in Fig. 12 an ‘iso-
lated’ four-fold ring will contain two Zn(1) atoms, and each Zn(2) atom will
be common to two four-fold rings. The total number of four-fold rings is
therefore given by

NZnRC(n = 4) = [NZn(1) + 2NZn(2) ] /2 (14)
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where RC(n = 4) is obtained by using Zn atoms to initiate a search. It
follows from Eqs. (12) and (14) that

NZn(2) = 2NZnRC(n = 4)−NZnPN(n = 4) (15)

such that NZn(1) can be evaluated from Eqs. (13) and (15) by using the
equation

NZn(1) = NZn −NZn(0) −NZn(2) . (16)

The fractions of Zn(i) species estimated by using Eqs.(15) and (16) show
that the proportions of Zn(1) and Zn(2) increase with temperature as the pro-
portion of Zn(0) decreases (Fig. 9(d)). For liquid ZnCl2 at 800 K, molecular
dynamics simulations using a polarizable ion model find comparable fractions
of Zn(0), Zn(1) and Zn(2) species at 45, 36 and 19%, respectively [29].

5.2. Structure of glassy and liquid ZnCl2 using the Bhatia-Thornton formal-
ism

The Bhatia-Thornton partial structure factors SBT
IJ (k) for the glass and

for the liquid at different temperatures are shown in Fig. 13. All three of the
functions have an FSDP at ≃ 1 Å−1 and a principal peak or trough at ≃
2.09 Å−1, where the height of the latter decreases with increasing tempera-
ture. The corresponding partial pair-distribution functions gBT

IJ (r) all show
common features that broaden with increasing temperature (Fig. 14). The
trough in gBT

CC(r) at ≃ 2.28 Å arises from unlike nearest-neighbors, and is
therefore expected for a chemically ordered material.

An FSDP in SBT
CC(k) has also been observed for several other network

glass-forming materials with the MX2 stoichiometry such as GeSe2 [85–88].
The occurrence of this peak has proved controversial because it was not
predicted from earlier classical molecular dynamics simulations or integral-
equation calculations [89–92]. Additionally, in the scenario where these
MX2 materials can be regarded as purely ionic systems containing point-like
cations and anions, SBT

CC(k) is related to the charge-charge partial structure
factor SZZ(k) via the expression SBT

CC(k) = cMcXSZZ(k). An FSDP in SBT
CC(k)

then implies a non-uniformity in the charge distribution on an intermediate
length scale [49].

The issue of concentration versus charge fluctuations on an intermediate
length scale in MX2 materials was addressed by Massobrio and co-workers
via first-principles molecular dynamics simulations [88, 94]. In this work
SBT
CC(k), which depends on the atomic positions, was calculated separately
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from SZZ(k), which depends on the valence-electron density. No evidence
was found in any of the investigated systems for intermediate ranged charge
fluctuations i.e. an FSDP for SZZ(k) was not found. This led to a proposal
for three classes of network-forming systems: Class I systems have perfect
chemical order and no FSDP in SBT

CC(k); class II systems have a moderate
number of defects in an otherwise chemically ordered network and an FSDP
in SBT

CC(k); and class III systems have a large degree of chemical disorder,
feature a rich variety of structural motifs, and show no FSDP in SBT

CC(k) [88].
The appearance of charge neutrality on an intermediate length scale pro-

vides an important constraint on the network connectivity that leads to these
different network types. For example, in chemically ordered class I systems
such as SiO2 the network is made from the same type of charge-neutral motif
and concentration fluctuations need not occur on an intermediate range. In
comparison, in class II materials such as GeSe2 and SiSe2 there is a moderate
number of chemical defects that can lead to M-centered structural motifs with
different charges. These motifs must, however, assemble to form a network
in which charge neutrality prevails on the length scale of a few structural
motifs i.e. there is self-organization that leads to a non-uniform distribution
of M-centered motifs such that concentration fluctuations occur on an inter-
mediate range. In the case of class III systems, a large degree of chemical
disorder leads to a break-down of the intermediate range order such that the
FSDP becomes a less prominent feature in SN(k) or SX(k) and disappears
from SBT

CC(k).
5

Liquid and glassy ZnCl2 are both chemically ordered and, according to
the above, should therefore be categorized as class I network-forming mate-
rials. A small FSDP in SBT

CC(k) is, however, observed (Fig. 13). It is notable
that for these disordered forms of ZnCl2, edge-sharing tetrahedra are indi-
cated by RMC models (Fig. 9(c)–(d)), by molecular dynamics simulations
[29], and by Raman spectroscopy experiments [28]. It is also notable that
in liquid GeSe2 the FSDP in SBT

CC(k) has been attributed to edge-sharing
motifs containing mis-coordinated atoms (i.e. those not satisfying the ‘8-N’
rule) [84]; and in glassy SiSe2, where there is also an FSDP in SBT

CC(k), the
majority of Si atoms are involved in edge-sharing conformations [94, 95]. In

5GeSe2 was originally classified as a class III system owing to the large structural dis-
order in the first-principles molecular dynamics model that was considered [88]. However,
experimental results [85–87] and more recent first-principles molecular dynamics models
[93] indicate it to be a class II material.
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comparison, an FSDP in SBT
CC(k) has not been found for glassy SiO2 from

diffraction experiments [96], but this peak has been found for glassy GeO2

from both diffraction experiments [7, 14] and first-principles molecular dy-
namics simulations [97]. The networks for both of these materials are based
on chemically ordered corner-sharing arrangements of MO4 (M = Si or Ge)
tetrahedra [4, 97]. The FSDP in SBT

CC(k) for glassy GeO2 does not appear to
originate from coordination defects in the network structure since they were
not present in the first-principles molecular dynamics model [97].

All of this evidence suggests a revised definition for class I and II network-
forming systems, along the lines suggested in Ref. [31], such that class I
systems form chemically ordered corner-sharing networks, while class II sys-
tems form networks that incorporate edge-sharing motifs and may include
a moderate number of structural defects. An FSDP appears in SBT

CC(k) for
class II systems and originates primarily from edge-sharing motifs. A small
FSDP may also appear in SBT

CC(k) for class I systems but does not arise from
the four-fold rings associated with these edge-sharing conformations. The
concentration-concentration partial structure factor is thereby proving to be
a sensitive probe of the ordering in network glass-forming materials.

6. Conclusions

A systematic investigation of the network glass-forming material ZnCl2
was made by using a combination of neutron and high-energy x-ray diffrac-
tion over a wide temperature interval, ranging from the glass to the liquid
close to its boiling point. The results show that the FSDP, which is a signa-
ture of intermediate range ordering, is a notable feature at all temperatures
and is associated primarily with the Zn–Zn partial structure factor. The
measured correlation lengths associated with the intermediate and extended
range ordering have a reciprocal temperature dependence. The RMC mod-
els show temperature dependent structural variability in which three- and
five-fold coordinated Zn atoms (denoted by Zn3 and Zn5, respectively) be-
come more numerous as the temperature increases, along with the number of
Zn atoms involved in either one or two edge-sharing conformations (denoted
by Zn(1) and Zn(2), respectively). The observation of edge-sharing motifs
is consistent with molecular dynamics simulations using a polarizable ion
model in which these conformations are found to promote the fragility of
tetrahedral glass-forming liquids [36]. The results suggest a modification of
the classification scheme given by Massobrio et al. [88] for network-forming
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MX2 materials: Class I systems form chemically ordered corner-sharing net-
works; class II systems form networks that incorporate both corner- and
edge-sharing motifs; and class III systems form networks that are chemically
disordered. Class I and II networks may both exhibit an FSDP in SBT

CC(k)
where, in the case of class II materials, this feature originates primarily from
edge-sharing conformations.
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Figure 1: The neutron total structure factor SN(k) for glassy and liquid ZnCl2 where the
results for the glass at 298 K and for the liquid at 605 K are taken from Ref. [32]. The
vertical bars represent the measured data points with statistical errors after the resolution
function correction, and are indistinguishable at most k-values from the solid light (red)
curves which give the back Fourier transforms of the corresponding GN(r) functions shown
in Fig. 5 by the solid dark (black) curves. The broken (blue) curves correspond to the RMC
models from the present work, and the discrepancy between the measured and modeled
data sets is smaller than the line thickness at most k-values. The solid (black) curves give
the measured functions before the resolution function correction and are distinguishable
from the other curves at small k-values. Several of the data sets have been displaced
vertically for clarity of presentation.
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Figure 2: The x-ray total structure factor SX(k) for glassy and liquid ZnCl2. The solid
dark (black) curves give the measured functions and the solid light (red) curves give the
back Fourier transforms of the GX(r) functions shown by the solid dark (black) curves in
Fig. 6. The broken (blue) curves correspond to the RMC models from the present work,
and the discrepancy between the measured and modeled data sets is smaller than the line
thickness at most k-values. Several of the curves have been displaced vertically for clarity
of presentation.
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Figure 3: The temperature dependence of the position k∗ of the FSDP (circles), principal
peak (squares) and third peak (triangles) in the measured SN(k) (open symbols) and SX(k)
(closed symbols) functions for glassy and liquid ZnCl2. The neutron diffraction results
correspond to resolution-function corrected data sets. The symbol sizes are comparable
to the magnitude of the statistical errors, and the straight line fits are drawn as guides for
the eye.
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Figure 4: The inverse temperature dependence of the real-space correlation lengths
2π/∆k∗ as obtained from the FSDP (circles), principal peak (squares) and third peak (tri-
angles) in the measured SN(k) (open symbols) and SX(k) (closed symbols) functions for
glassy and liquid ZnCl2. The neutron diffraction results correspond to resolution-function
corrected data sets. Each full-width at half-maximum ∆k∗ was measured relative to a
baseline drawn between the minima on either side of a peak maximum. This procedure
does not lead to finite widths for the principal peak in SX(k) at the highest temperatures,
so the corresponding data points are omitted. The straight line fits are drawn as guides
for the eye.
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Figure 5: The neutron total pair-distribution function GN(r) for glassy and liquid ZnCl2.
The solid dark (black) curves were obtained by Fourier transforming the measured
resolution-function corrected SN(k) functions given in Fig. 1 after spline fitting, and the
broken (red) curves show the extent of the unphysical small-r oscillations. Several of the
curves have been displaced vertically for clarity of presentation.
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Figure 6: The x-ray total pair-distribution function GX(r) for glassy and liquid ZnCl2.
The solid dark (black) curves were obtained by Fourier transforming the measured SX(k)
functions given in Fig. 2 after spline fitting and applying a cosine window function to the
last few data points, and the broken (red) curves show the extent of the unphysical small-r
oscillations. Several of the curves have been displaced vertically for clarity of presentation.
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Figure 7: The Faber-Ziman partial structure factors Sαβ(k) from RMC models of glassy
and liquid ZnCl2 obtained in the present work. Models for the glass [solid dark (black)
curves] and for the liquid at average temperatures of 603(5) K [solid light (red) curves],
706(3) K [broken dark (blue) curves], 806(3) K [broken light (green) curves] and 905(2) K
[chained dark (black) curves] were generated from the x-ray diffraction and resolution-
function corrected neutron diffraction data shown in Figs. 1 and 2. The model for the
liquid at 977(2) K [chained light (cyan) curves] was generated from the resolution-function
corrected neutron diffraction data shown in Fig. 1.
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Figure 8: The partial pair-distribution functions gαβ(r) from RMC models of glassy and
liquid ZnCl2 obtained in the present work. The identity of the curves is described in the
Fig. 7 legend.
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Figure 9: The temperature dependence of (a) the fractions of Znα (α = 2, 3, 4, 5 or 6)
species; (b) the fractions of Clα (α = 1, 2, 3 or 4) species; (c) the fractions of corner-sharing
(CS) and edge-sharing (ES) Zn4-centered tetrahedra; and (d) the fractions of Zn(i) (i =
0, 1, 2) atoms. The open symbols show the results obtained from the RMC models of the
present work for glassy and liquid ZnCl2. The closed symbols show the results obtained
from the NDIS-based RMC models of Ref. [32] for the glass and for the liquid at 605 K.
The open symbols often superpose the closed symbols.
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Figure 10: The bond angle distributions for the RMC models of glassy and liquid ZnCl2
obtained in the present work. The identity of the curves is described in the Fig. 7 legend.
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Figure 11: The connectivity profiles for the RMC models of glassy and liquid ZnCl2
obtained in the present work where Zn atoms were used to initiate shortest path searches.
RC(n) is proportional to the number of rings containing n atoms (Zn or Cl); PN (n) is
proportional to the number of Zn atoms that can be used as a starting point to initiate
a search for at least one ring containing n atoms; and for a given Zn atom in an n-fold
ring, Pmin(n) (or Pmax(n)) gives the probability that this ring constitutes the shortest (or
longest) closed path that can be found by using this Zn atom to initiate a search. No
odd-membered rings were found i.e. the networks are chemically ordered. The identity of
the curves is described in the Fig. 7 legend.
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Figure 12: A schematic for an MX2 material in which M atoms (closed circles) are distin-
guished according to whether they are involved in one four-fold ring M(1), two four-fold
rings M(2), or no four-fold rings M(0). An ‘isolated’ four-fold ring containing two M(1)

atoms is shown to the right hand side. The X atoms are represented by open circles.
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Figure 13: The Bhatia-Thornton partial structure factors SBT
IJ (k) from the RMC models

of glassy and liquid ZnCl2 obtained in the present work. The identity of the curves is
described in the Fig. 7 legend.
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Figure 14: The Bhatia-Thornton partial pair-distribution functions gBT
IJ (r) from the RMC

models of glassy and liquid ZnCl2 obtained in the present work. The identity of the curves
is described in the Fig. 7 legend.

38


