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Order reconstruction patterns in nematic liquid

crystal wells

Samo Kralj ∗, Apala Majumdar †

May 24, 2014

Abstract

We numerically study structural transitions inside shallow sub-
micron scale wells with square cross-section, filled with nematic liquid
crystal material. We model the wells within the Landau-de Gennes
theory. We obtain two qualitatively different states: (i) the DSD (diag-
onal state with defects) for relatively large wells with lateral dimension
greater than a critical threshold and (ii) a new, two-dimensional star-
like biaxial order reconstruction pattern called the WORS (well order
reconstruction structure), for wells smaller than the critical threshold.
The WORS is defined by an uniaxial cross connecting the four ver-
tices of the square cross-section. We numerically compute the critical
threshold in terms of the bare biaxial correlation length and study its
dependence on the temperature and on the anchoring strength on the
lateral well surfaces.

1 Introduction

Liquid crystals (LCs) are mesogenic phases of matter with physical proper-
ties intermediate between those of the conventional solid and liquid phases of
matter [2]. Nematic LCs are the simplest type of LCs; nematics are complex
anisotropic liquids with a certain degree of long-range orientational order-
ing. The structural properties of a nematic LC can be easily manipulated
by incident light, electric or magnetic fields and mechanical effects [14]. As
a consequence, they exhibit a wealth of diverse physical phenomena and are
often used as a testing ground for fundamental physics in condensed matter
systems [7]. Nematic LCs now have widespread applications across science
and technology e.g. electro-optic devices, sensors and notably, the huge and
thriving liquid crystal display (LCD) industry around the globe [20, 23, 24].
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Nematics in confinement have generated tremendous interest in recent
years [11, 14, 30, 28]. Such confined LC systems typically exhibit topological
defects or localized material imperfections [22, 24]. Defect core structures
are poorly understood; experimental and numerical studies indicate that
defect cores can be associated with uniaxial-biaxial structural transitions
i.e. structural transitions from a phase with a single distinguished direction
(uniaxial) to a phase with two distinguished directions (biaxial) [14, 28].
Such structural transitions were first reported in the benchmark paper [28].
In [28], the authors numerically analyze the interior of a defect core; the
nematic LC is in a uniaxial phase at the defect core and in a uniaxial phase
away from the defect core. The corresponding directors/distinguished di-
rections (see (2)) are perpendicular to one another and the LC material
mediates between the two conflicting uniaxial states via a continuum of bi-
axial states. These transitions, often referred to as ”order reconstruction”
(OR) phenomena were subsequently reported in a batch of numerical pa-
pers [6, 3, 16, 17, 31] which indicate that OR phenomena typically occur in
severely confined systems with comparable material and geometrical length
scales or/and under the action of intense electric fields. For example, in
[25], the authors study the OR phenomenon for a twisted hybrid nematic
cell. The authors numerically find two classes of solutions: (i) the conven-
tional purely uniaxial twisted solution wherein the molecules twist uniformly
between the two boundary plates and (ii) the OR untwisted solution char-
acterized by a biaxial band around the centre of the cell. The OR solution is
the only observable solution in nano-confined geometries where the cell gap
is comparable to a material-dependent length scale, known as the biaxial
correlation length [6]. Experimental studies of the OR phenomenon have
been reported in for e.g. [3, 12] and such studies are particularly relevant
for new LC systems with intrinsic biaxiality and their potential applications
in nano-science and technology.

Our work is motivated in part by the results in [20, 29] with a view
to characterize new two-dimensional (2D) OR patterns in prototype geome-
tries. This is an interesting problem since classical OR patterns are typically
one-dimensional (1D) with the structural characteristics varying along one
coordinate direction, e.g. along the radial direction in a spherical droplet
(see [28]), along the vertical direction in a cylinder [16, 17] or along the nor-
mal direction to parallel bounding plates [25] etc. and 2D OR patterns offer
new scientific possibilities. In [20, 29], the authors study a model liquid crys-
tal device comprising a periodic array of shallow micron-sized square wells.
These square wells are filled with nematic LC; the surfaces are treated so as
to induce tangential or planar boundary conditions [20, 23] i.e. on the well
surfaces, the LC molecules are constrained to be in the plane of the surfaces.
This relatively simple geometry is bistable or multistable in the sense that
there are multiple stable LC textures with contrasting optical properties
[29]. In [20, 29], the authors work within the Landau-de Gennes theory for
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nematic LCs [7]. Given that the wells are shallow, they argue that it suffices
to model 2D structural variations within the plane of the square and work
with a strictly 2D model i.e. study 2D configurations on the square. They
work with micron-size wells so that the square size, denoted by R, is much
greater than a material length-scale known as the bare biaxial correlation
length [16, 17]. The bare biaxial correlation length is a measure of the cor-
relation in nematic order, at the nematic-isotropic transition temperature,
and is typically a few tens of nanometers (see [3, 10, 30]). In this limit,
the stable LC states are effectively uniaxial almost everywhere, except for
small localized defects around the square vertices [20]. The authors find two
stable LC states: (i) the diagonal state with the average uniaxial alignment
along one of the square diagonals and (ii) the rotated state where the aver-
age direction of alignment rotates by 180 degrees between a pair of opposite
square edges.

We carefully examine the effects of severe confinement on the same model
system. In particular, we work with a three-dimensional (3D) model, under
the assumption that all structural details are independent of the vertical
coordinate. Our 3D modelling incorporates biaxiality, which is outside the
scope of the 2D model employed in [29, 20]. We measure the square cross-

section size, R, in units of the bare biaxial correlation length, ξ
(0)
b , and

obtain two qualitatively different LC textures as a function of R: (i) DSD
for large R and (ii) the WORS for small R. The DSD is qualitatively simi-
lar to the diagonal solution in [29, 20] and our 3D modelling illustrates the
biaxial structure of the defect cores around the square vertices. The WORS
is a new 2D OR pattern connecting the four square vertices characterized
by a star-shaped rim of maximal biaxiality connecting the four square ver-
tices. The biaxial rim separates a negatively ordered uniaxial state along the
square diagonal from the positively ordered uniaxial states near the square
edges. In other words, the system mediates between different uniaxial states
(the positively ordered boundary states and the negatively ordered diagonal
state) via a 2D star-shaped ring of intermediate biaxial states. The WORS
pattern is the only stable LC pattern for small wells, with R ≤ Rc, where
Rc is a critical threshold length. In Section 4, we compute Rc in units of

ξ
(0)
b , systematically investigate how Rc depends on temperature and anchor-
ing strength on the lateral boundaries, to obtain quantitative information
about the stability of the WORS.

The paper is organized as follows. In Section II, we review the Landau-
de Gennes theory for nematic LCs. In Section III, we outline the model
geometry, the relevant parametrizations, the material length-scales and the
governing Euler-Lagrange equations. In Section IV, we present our numer-
ical results and summarize our conclusions and future outlook in Section
V.
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2 Theoretical background

Let B ⊂ R
3 denote an arbitrary three-dimensional domain filled with ne-

matic LC material, with a sufficiently regular boundary, ∂B. We work within
the Landau-de Gennes (LdG) theory for nematic LCs wherein the state of
the nematic LC is described by a macroscopic order parameter, the Q-tensor
parameter [2, 7]. The Q-tensor order parameter can be viewed as a macro-
scopic measure of the system anisotropy i.e. a measure of the anisotropy in
dielectric response to electric fields or anisotropy in magnetic susceptibility
or response to magnetic fields. Mathematically, Q is a symmetric, traceless
3 × 3 matrix and from the spectral decomposition theorem, the Q-tensor
can be written in terms of its eigenvalues {si}, and eigenvectors, {−→e i}, as
shown below [14]

Q =
3∑

i=1

si
−→e i ⊗−→e i . (1)

The eigenvectors represent the distinguished directions of LC alignment and
the eigenvalues are a measure of the degree of orientational ordering about
these directions. A LC phase is said to be in the (i) disordered or isotropic
phase if Q = 0, (ii) uniaxial phase if Q has a pair of degenerate non-zero
eigenvalues and (iii) the biaxial phase if Q has three distinct eigenvalues [7].
In the uniaxial case, Q can be concisely expressed as

Q = S

(
−→e 1 ⊗−→e 1 −

1

3
I

)
, (2)

in terms of the single distinguished eigendirection, the director field −→e 1, and
the scalar order parameter S. In other words, −→e 1, is the eigenvector with
the non-degenerate eigenvalue and all directions perpendicular to −→e 1 are
physically equivalent. In the biaxial phase, Q can be written as

Q = S

(
−→e 1 ⊗−→e 1 −

1

3
I

)
+ U (−→e 2 ⊗−→e 2 −−→e 3 ⊗−→e 3) , (3)

where {−→e i} are the eigenvectors and (S,U) are two scalar order parameters
that measure the degree of orientational ordering about the different eigen-
vectors [21]. A quantitative measure of the degree of biaxiality is defined to
be

β2 = 1− 6(trQ3)2

(trQ2)3
, (4)

β2 ∈ [0, 1] and β2 = 0 for all uniaxial states [23] . The maximal value,
β2 = 1, is attained if and only if one of the eigenvalues, si, vanishes.

The LdG theory is a variational theory and the stable physically observ-
able LC states correspond to minimizers of an appropriately defined LdG
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energy functional [21, 23]. We work with the following LdG free energy

F =

∫

B
(fc + fe) d

3−→r +
∑

i

∫

∂B
f (i)
s d2−→r , (5)

where d3−→r and d2−→r denote the volume and area measures, respectively

[14, 19]. The condensation ( fc), elastic ( fe), and surface (f
(i)
s ) free energy

densities are given by [14]

fc =
A0(T − T∗)

2
trQ2 − B

3
trQ3 +

C

4
(trQ2)2, (6)

fe =
L

2
|∇Q|2, (7)

f (i)
s =

w(i)

2
Tr
(
Q−Q(i)

s

)2
. (8)

In particular, we only focus on static equilibria and do not include exter-
nal fields in this variational problem. The condensation energy dictates
the preferred degree of orientational order in the bulk as a function of the
temperature. In (6), A0, B, and C are material constants, T denotes the
temperature and T∗ is a characteristic material-dependent supercooling tem-
perature. One can readily check that all stationary points of fc are nec-
essarily uniaxial and that there are three characteristic temperatures: (i)

T = T∗ below which the isotropic phase is unstable, (ii) TIN = T∗ +
B2

27A0C

associated with a first-order isotropic-nematic phase transition and (iii) the

nematic superheating temperature, T∗∗ = T∗ +
B2

24A0C
, above which ordered

nematic states do not exist. For temperatures T < TIN , the condensation

enforces a uniaxial scalar order parameter, S = Seq(T ) =
B+

√
B2−24AC
4C , in

the bulk and for temperatures, T > TIN , fc pushes the system towards the
disordered isotropic phase. The elastic energy density penalizes any spatial
inhomogeneities in the system and we work within the simplest one-constant
approximation in (7). The elastic constant is denoted by L > 0 in (7). The

surface anchoring energy density, f
(i)
s , enforces a preferred orientation, en-

coded by Q
(i)
s , on the i-th lateral surface. The anchoring coefficient, w(i),

is a measure of the strength of the surface anchoring and the w(i) → ∞
limit is the strong anchoring limit (also see [20] for comparisons between
strong and weak anchoring). Whilst the elastic energy coerces the system
towards a spatially homogeneous or uniform state, the condensation en-
ergy promotes uniform uniaxial bulk order given by S = Seq(T ). However,
the boundary conditions typically require that both conditions cannot be
simultaneously satisfied in confined geometries, resulting in inhomogeneous
pattern formation. In what follows, we compare the competing effects of the
elastic contributions, condensation term and the surface effects by means of
two different length scales: a material-dependent length scale known as the
bare biaxial correlation length and the surface extrapolation length [16, 3].
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3 Modelling framework

3.1 Geometry

We study nematic samples inside a 3D well with square cross-section, B ⊂
R
3, given by

B =
{
(x, y, z) ∈ R

3; 0 ≤ x, y ≤ R, 0 ≤ z ≤ h
}
. (9)

In (9), h is the well height, R is the lateral dimension and h ≪ R, consistent
with the assumptions in [29, 20]. We take h = R

10 .
1 The coordinate

unit-vectors are denoted by (−→e x,
−→e y,

−→e z). We assume that the structural
characteristics only depend on the (x, y)-spatial coordinates and are inde-
pendent of the vertical z-coordinate; an assumption often used for shallow
wells [20, 29]. The boundary plates are located at {x = 0, R}, {y = 0, R},
{z = 0, h} and all plates are treated to induce tangent or planar degenerate
boundary conditions. The tangent boundary conditions are implemented
using a combination of strong and weak anchoring and natural boundary
conditions. 2 On the lateral surfaces, x = {0, R} and y = {0, R}, the tan-
gent conditions are implemented via Dirichlet conditions/strong anchoring
or weak anchoring/surface energies. In the strong anchoring case, the corre-
sponding Q-tensor is prescribed to be strictly uniaxial, with director parallel
to −→e x and −→e y, on the xz and yz-surfaces respectively. We impose natural
boundary conditions on the top and bottom faces, z = 0 and z = h. All nu-
merical simulations are initialized using planar initial conditions. The planar
initial conditions, combined with the natural boundary conditions, bias the
solutions to respect the planar degenerate conditions on the top and bottom
plates so that no particular direction in the (x, y)-plane is distinguished or
singled out.

3.2 Parametrization

We adopt the following 3D parametrization of theQ-tensor order parameter,
as given in [16, 5]

Q = (q3+q1)
−→e x⊗−→e x+(q3−q1)

−→e y⊗−→e y+q2(
−→e x⊗−→e y+

−→e y⊗−→e x)−2q3
−→e z⊗−→e z,

(10)
where q1, q2, and q3 are independent of z and only depend on x and y. We
assume −→e 3 = −→e z is always an eigenvector of Q. The remaining two eigen-
vectors are allowed to rotate with respect to the reference frame, (−→e x,

−→e y),

1The trends would be unchanged for heights R

10
≤ h ≤

R

5
.

2The tangent conditions may be violated for energetic considerations.
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by an angle ϕ ∈ [0, π). We have

−→e 1 = cosϕ−→e x + sinϕ−→e y,
−→e 2 = − sinϕ−→e x + cosϕ−→e y, (11)
−→e 3 = −→e z. (12)

The parameter q2 is a measure of the departure of the eigenframe, (−→e 1,
−→e 2,

−→e 3),
from the Cartesian frame, (−→e x,

−→e y,
−→e z) and the two frames coincide when

q2 = 0. The eigenvalues {si} are explicitly given by s1 = q3 +
√

q21 + q22,
s2 = q3 −

√
q21 + q22 and s3 = −2q3. In particular, the biaxiality parameter

is defined to be

β2 (q1, q2, q3) = 1− 6

(
6
√
(q21 + q22)q3 − 6q33

)2

(
6q23 + 2

(
q21 + q22

))3 . (13)

The condition,
√
q21 + q22 = 0, corresponds to the exchange of eigenvalues,

s1 ↔ s2, in the nematic phase [28].
We briefly compare the parametrization (10) with the parametrization

in [20] where the authors study strictly two-dimensional LC configurations
on a square domain; the Q-tensor is then given by

Q = S (−→e 1 ⊗−→e 1 −−→e 2 ⊗−→e 2) . (14)

Here, trQ3 = 0, the biaxiality parameter in (13) has no physical meaning and
all defects correspond to isotropic regions or locally melted regions [20]. The
2D parametrization (14) is a special case of (10) with q1 = S cos 2φ, q2 =
S sin 2φ, q3 = 0. The representation (10) contains more information than
(14) since it allows us to investigate structural variations in both q3 and
β2, both of which are outside the scope of the 2D representation (14). In
particular, the parametrization (10) can resolve the rich biaxial structure of
defect cores.

On the faces, x = 0 and x = R, we set the preferred Q-tensor to be

Q(x)
s ≡ Q(0, y, z) = Q(R, y, z) =

Seq

3
(−−→e x ⊗−→e x + 2−→e y ⊗−→e y −−→e z ⊗−→e z)

(15)

where Seq = B+
√
B2−24AC
4C . On the boundaries y = 0 (bottom) and y = R

(top), we set

Q(y)
s ≡ Q(x, 0, z) = Q(x,R, z) =

Seq

3
(2−→e x ⊗−→e x −−→e y ⊗−→e y −−→e z ⊗−→e z) .

(16)

For systems with Dirichlet conditions, we set Q = Q
(x)
s and Q = Q

(y)
s on

the respective lateral surfaces. For systems with finite anchoring, we use

the prescribed Q-tensors in (15) and (16) as the preferred state, Q
(i)
s , in the

7



surface anchoring energy density in (8). On the surfaces z = 0 and z = h,
we impose natural boundary conditions i.e. require that

∂Q

∂ν
= 0 on z = 0, h, (17)

where ν = ±−→e z is the outward normal to these faces in the (x, y)-plane.
This is consistent with the assumed invariance in the z-direction and when
combined with planar initial conditions for numerical simulations, ensures
that tangent boundary conditions are preferentially imposed on these sur-
faces. 3

3.3 Scaling

Let t be a dimensionless temperature defined to be t = (T −T∗)/(T∗∗ −T∗).
Therefore, t(T = T∗) = 0, t(T = TIN ) = 8/9 and t(T = T∗∗) = 1. We define

τ = 1 +
√
1− t. (18)

The equilibrium uniaxial order parameter can then be expressed as

Seq = S∗∗τ (19)

where S∗∗ = Seq(T∗∗) =
B
4C .

The structural characteristics of static LC equilibria are dictated by a
complex interplay between material properties and surface anchoring effects.
The key material length-scale is the biaxial correlation length defined to be

ξb =
ξ
(0)
b√
τ
, (20)

where ξ
(0)
b = 2

√
LC/B is the bare biaxial correlation length [1, 17, 19]. In

what follows, we vary temperature and use ξ
(0)
b as a characteristic temperature-

independent material length scale and for conventional nematics, ξ
(0)
b is of

the order of a few tens of nm [1, 10]. The strength of the surface interac-
tions is traditionally described in terms of the surface extrapolation length
[17, 19].

d(i)e =
L

w(i)
. (21)

Typical values of L are around 10−12N and w(i) ∈
(
10−8, 10−3

)
N/m [23].

We further define the following dimensionless quantities: Q̃ = Q/S∗∗,

x̃ = x/R, ỹ = y/R, z̃ = z/R, ∇̃ = R∇, F̃ = F/F0, where F0 = LS2
∗∗R

3/(2ξ
(0)2
b ).

In what follows, we drop the tildes from the dimensionless variables and all

3We could also use weak anchoring or surface energies on z = 0 and z = h to obtain

similar results.
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subsequent text is to be interpreted in terms of the dimensionless variables.
The dimensionless free energy F is given as in (5), and the corresponding
dimensionless free energy densities are defined to be

fc =
τ

6
TrQ2 − 2

3
TrQ3 +

1

8

(
TrQ2

)2
=

τ

3

(
q21 + q22 + 3q23

)
− 4q3

(
q21 + q22 − q23

)
+

1

2

(
q21 + q22 + 3q23

)2
,

fe =

(
ξ
(0)
b

R

)2

|∇Q|2 = 2

(
ξ
(0)
b

R

)2 (
3 |∇q3|2 + |∇q1|2 + |∇q2|2

)
,

f (i)
s =

ξ
(0)2
b

d
(i)
e R

Tr (Q−Qs(ϕs))
2 =

2

3

(
ξ
(0)
b

R

)(
ξ
(0)
b

d
(i)
e

)
(
9q23 + 3q21 + 3q22 − 3q3τ + τ2 − 3q1τ cos(2ϕs)− 3q2τ sin(2ϕs)

)
.

In the expression for f
(i)
s above, the angle ϕs is either ϕs = 0 (plates at

y = 0 and y = R) or ϕs = π/2 (plates at x = 0 and x = R). The strong
anchoring limit, w(i) → ∞, corresponds to vanishing surface extrapolation

length, d
(i)
e → 0. We now offer some heuristic insight on pattern formation

within the LC wells. On the one hand, if τ is large compared to the scaled

elastic constant,

(
ξ
(0)
b

R

)2

, then the solution will predominantly minimize the

condensation energy i.e. be largely uniaxial with constant order parameter,
S = Seq(T ) (at least away from defects). On the other hand, if τ and(

ξ
(0)
b

R

)2

are of comparable magnitude, then elastic distortions and deviations

from the condensation energy minima (uniaxial phases with S = Seq(T ))
e.g. biaxiality, have comparable energetic costs and hence, OR patterns are

energetically viable. Similarly, if
ξ
(0)
b

R
≫ ξ

(0)
b

d
(i)
e

, then the uniaxial boundary

conditions are relatively weakly implemented on the lateral surfaces and
the system has greater freedom to adopt almost “spatially homogeneous” or
uniform states. This, in turn, allows the system to avoid complex structural
transitions, such as the OR phenomenon, for sufficiently weak anchoring. In
the next section, we compute phase diagrams for uniaxial-biaxial structural
transitions, as a function of R, anchoring strength and temperature, and
these phase diagrams corroborate our heuristic insights.

3.4 Euler Lagrange equations

We use standard methods in calculus of variations to compute the Euler-
Lagrange equations for extremal points of the LdG energy functional [26].
The Euler-Lagrange equations are a coupled system of elliptic partial differ-
ential equations for (q1, q2, q3) as shown below:
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(
ξ
(0)
b

R

)2

∆⊥q1 −
τ

6
q1 + 2q3q1 −

q1
2
(3q23 + q21 + q22) = 0, (22)

(
ξ
(0)
b

R

)2

∆⊥q2 −
τ

6
q2 + 2q2q3 −

q2
2
(3q23 + q21 + q22) = 0, (23)

(
ξ
(0)
b

R

)2

∆⊥q3 −
τ

6
q3 +

1

3
(q21 + q22 − 3q23)−

q3
2
(3q23 + q21 + q22) = 0, (24)

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2
.

The boundary conditions on the plates x = 0 and x = R are

∂q1
∂x

= ∓ R

d
(x)
e

(
q1 −

τ

2

)
, (25)

∂q2
∂x

= ∓ R

d
(x)
e

q2, (26)

∂q3
∂x

= ∓ R

d
(x)
e

(
q3 −

τ

6

)
, (27)

−(+) in ∓ refers to the right (left) plate and d
(x)
e is a measure of the

anchoring strength, w
(x)
s on each plate.

Similarly, we have the following boundary conditions on the plates y = 0
and y = R

∂q1
∂y

= ∓ R

d
(y)
e

(
q1 +

τ

2

)
, (28)

∂q2
∂y

= ∓ R

d
(y)
e

q2, (29)

∂q3
∂y

= ∓ R

d
(y)
e

(
q3 −

τ

6

)
, (30)

where −(+) in ∓ refers to the top (bottom) plate and d
(y)
e is a measure of the

relative anchoring strength. The corresponding strong anchoring conditions
are

{
q1 = − τ

2 , q2 = 0, q3 =
τ
6

}
on y = {0, R} and

{
q1 =

τ
2 , q2 = 0, q3 =

τ
6

}
on

x = {0, R}. The strong anchoring or Dirichlet conditions can be recovered

from (25)-(27) and (28)-(30) in the limit, d
(x)
e → 0 and d

(y)
e → 0 respectively.

We solve the Euler-Lagrange equations (22 - 24) and the boundary con-
straints (25 - 30) using relaxation methods that have been successful in the
study of static LC textures with topological defects [26, 16]. These methods
compute the static solutions, (q1, q2, q3), by mimicking a dynamic gradient-
flow like procedure along which the total free energy continuously decreases
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till the equilibrium is attained, for an explicitly prescribed initial condition.
We use three different kinds of initial conditions: (i) bulk uniaxial alignment
along −→e x, (ii) bulk uniaxial alignment along −→e x +

−→e y, or (iii) the isotropic
phase with Q = 0. The Q-tensor is recovered from the solution, (q1, q2, q3),
by using the parametrization (10). The solutions are robust with respect
to different choices of initial conditions and we thus, deduce that they are
numerically stable.

4 Results

Macroscopic wells with R ≫ ξ
(0)
b , e.g. micron-sized wells, have already been

modelled in detail in [20, 29]. We focus on wells with R comparable to ξ
(0)
b ,

in this paper. We use fixed values of L,B,C and hence, the bare biaxial

correlation length, ξ
(0)
b =

√
4LC
B2 is a constant throughout this paper. We are

interested in structural changes induced by decreasing the ratio η = R/ξ
(0)
b .

In simulations, we work with temperatures below T∗, corresponding to τ > 2
(see Eq.(18)). Previous work indicates that biaxial textures are more likely
in this low-temperature regime, compared to the high-temperature regime
with temperatures above the nematic-isotropic transition temperature. [5,
27]. For example, we carry out illustrative simulations with τ = 4. The same
temperature was chosen in the reference [5], where the authors study OR
patterns in “classical” hybrid planar cells.

4.1 Diagonal Structure with Defects (DSD)

In Figures 1, 2a and 3, we consider the specific example of a LC well with

R = 4.5ξ
(0)
b , at temperature τ = 4 (with t = −8 in (18)), with strong an-

choring conditions on the lateral surfaces. In dimensional terms, this would
correspond to a well with R ∼ 120 − 150nm [10]. The Dirichlet conditions
(see (15) and (16)) induce an alignment mismatch along the four vertical
edges and consequently, we obtain four line defects along the four vertical
edges in the z-direction. In Figure 1 and Figure 2a, we plot the spatial pro-
file of β2 and in Figure 3, we plot the leading eigenvector (with the largest
positive eigenvalue) of the computed Q-tensor on the cross-section z = 0.
This eigenvector evidently has a diagonal profile across the square (x, y)
cross-section and is strongly reminiscent of the diagonal solution reported
in [29, 20]. For a purely uniaxial solution with two degenerate eigenvalues,
this eigenvector is simply the director in (2). From Figure 3, it is clear
that the leading eigenvector has four defects at the four square vertices and
each defect can be regarded as a quarter of +1 or −1-degree defect i.e. the
defects at the top left and bottom right are a quarter of +1-degree radial
defects and the defects at the bottom left and top right are a quarter of
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−1-degree defects. In other words, the leading eigenvector rotates by 90
degrees between a pair of coincident square edges.

In Figures 1 and 2a, we study the structural characteristics of each de-
fect core in terms of β2; the profile is somewhat similar to the classical OR
phenomenon studied in [28] etc. We have two intersecting faces at each
vertical edge and these faces enforce strictly uniaxial alignments with mu-
tually perpendicular directors, along −→e x and −→e y respectively, and positive
scalar order parameter. As is evident from the plots, the LC state mediates
between the two uniaxial “boundary” states by means of an intermediate
biaxial pear-shaped lobe. This biaxial lobe has a rim of maximal biaxiality
(β2 = 1) and the interior of the lobe has suppressed biaxiality.

In Figure 4, we look at β2 along a square diagonal on the surface z = 0.
Our model assumes invariance in the z-direction and hence, it suffices to
look at structural characteristics on z = 0. We see that β2 monotonically
increases from the vertex to the rim of the biaxial lobe, where β2 ≈ 1. Here,
β2 has a local maximum and this local maximum is followed by a local
minimum near the center of the diagonal. At the center, we are relatively
far away from all four square vertices. Then β2 increases as we approach
the diagonally opposite vertex, attains a local maximum at the rim of the
diagonally opposite biaxial lobe and finally decreases to zero as we hit the
opposite vertex. The β2-profile is characterized by two maxima, one for
each square vertex, separated by a local minimum. The biaxial defect lobes
are asymmetric in shape, in response to the neighbouring defect cores at
the different vertical edges. One could define the characteristic linear defect
core size to be the distance from the vertex to the nearest rim of maximal
biaxiality, measured along the square diagonal. This length is roughly given
by ξb, as is expected from previously reported results in the literature [5,
17, 16, 19]. We refer to this diagonal profile, with biaxial defect cores near
the vertical edges, as the Diagonal Structure with Defects (DSD) in the
subsequent text.

4.2 Well Order-Reconstruction Structure (WORS)

In this section, we study structural transitions induced by gradually decreas-

ing the ratio η = R/ξ
(0)
b at a fixed temperature τ = 4. In Figures 2a - 2d, we

demonstrate a sequence of β2(x, y) textures obtained by gradually decreas-

ing the ratio, η = R/ξ
(0)
b , with strong anchoring conditions on the lateral

surfaces. As η decreases, the biaxial defect lobes become larger (relative to
domain size), overlap and eventually connect to yield a 2D star-shaped rim
of maximal biaxiality connecting the four vertices. In particular, in Figure
2d, the biaxial ring separates uniaxial states with negative order parameter
along the square diagonals from positively ordered uniaxial states near the
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square edges (consistent with the boundary conditions). 4 In this sense, this
is a fully 2D OR pattern connecting the four vertices.

If we follow β2 along a small circular arc, centered around a square
vertex, we expect to see the following sequence of characteristic states: (i)
positive uniaxiality (positive scalar order parameter) with β2 = 0 on the
square edge, (ii) maximal biaxiality with β2 = 1, (iii) negative uniaxiality
(negative scalar order parameter)with β2 = 0, (iv) maximal biaxiality with
β2 = 1, (v) positive uniaxiality with β2 = 0 on co-incident edge. By sym-
metry, we expect to see state (iii) along the square diagonal. In Figure 4, we
monitor the structural characteristics along a square diagonal. In Figure 4a,
we plot β2(η), measured along the square diagonal, for different values of η.
For relatively large η, say η = 4.5, the β2-profile has two distinct maxima.
This corresponds to the DSD structure reported above. We refer to the two
maxima in the regions x

R
< 0.5 and x

R
> 0.5 as the left peak and right peak

respectively. As η decreases, the maxima approach each other and coalesce
at η = 3.39. For smaller values of η, say η = 3.3, the β2-maximum is sup-
pressed in magnitude i.e. is smaller than unity. At η = ηc = 3.28± 0.01, β2

vanishes along the square diagonal (within numerical resolution) and β2 = 0
along the diagonal for all η ≤ ηc.

In Figure 4b, we compute < β2 >d and β2
m as a function of η, correspond-

ing to the average value and the maximal value of β2 along the square di-
agonal, respectively. Additionally, we also plot the position of the left peak,
denoted by xm in the region x ∈ [0, R/2], and the spatial average of β2 across
the square cross-section, denoted by < β2 >, as a function of η. From Figure
4b, we see that the global OR profile is established at η = ηc = 3.28± 0.01,
for which β2

m =< β2 >d= 0. The quantities, β2
m =< β2 >d= 0, for all

η ≤ ηc. For η ≤ ηc, we have an uniaxial LC state, with negative scalar order
parameter, along the square diagonal. The corresponding critical well size,

Rc = ηcξ
(0)
b . The average degree of biaxiality, < β2 > (η) ≈ 0.4 for η ≤ ηc.

Since β2
m = 0 for η ≤ ηc, xm is not defined for η < ηc. In what follows, we

refer to the star-shaped biaxial OR pattern in Figure 2d as the Well Order
Reconstruction Pattern (WORS). We define the onset of the WORS
by the critical value of η = ηc for which β2

m = 0 along the square diagonal
on z = 0, such that β2

m = 0 for all η < ηc. Our simulations suggest that the
DSD-WORS transition is continuously achieved by decreasing η and hence,
this is a second-order transition.

4.3 Phase diagrams

In Figure 6a, we numerically study the dependence of the critical well size,

Rc = ηcξ
(0)
b , on the scaled temperature t = (T −T∗)/(T∗∗ −T∗), with strong

4We interpret regions with β2 < 0.01 as being uniaxial for practical purposes. We note

that β2 may not, strictly speaking, vanish at any point inside the well.
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anchoring conditions on the lateral surfaces. As t increases towards T = T ∗

(the temperature at which the isotropic phase loses stability), Rc increases
steeply. This steep ascent can be explained on the grounds that the conden-
sation energy penalty for deviations from the uniaxial state with S = Seq(T ),
decreases as t increases. Hence, biaxial order reconstruction patterns (such
as the WORS pattern) become increasingly energetically viable, and hence,
observable as t increases.

In Figure 6b, we impose equal anchoring strength on all four lateral sur-

faces and plot Rc/ξ
(0)
b versus the anchoring strength,

ξ
(0)
b

de
, where de = d

(x)
e =

d
(y)
e . We work with two different temperatures, t = −8 and t = 0 respec-

tively. These temperatures correspond to qualitatively different temperature
regimes (i.e. T << T∗ and T = T∗ < TIN ). We observe a slowly increasing
profile of Rc versus

1
de

for both temperatures. From the reasoning in Figure
6a, the critical threshold Rc is always higher for higher temperatures. Fur-
ther, Rc rapidly saturates to a limiting value as 1

de
increases; this limiting

value is simply the strong anchoring limit. For t = −8 or equivalently for

τ = 4, this limiting value is Rc = 3.28ξ
(0)
b which coincides with the criti-

cal value yielded by the strong anchoring experiments in Figure 4. As 1
de

decreases or equivalently as the anchoring strength decreases, the uniaxial
boundary conditions are relatively weakly implemented. This effectively in-
creases the lateral well size since the system has anchoring freedom on the
lateral surfaces and hence, does not need to strictly match the preferred
uniaxial states on intersecting edges. The WORS profile ceases to exist
for anchoring strengths below a certain critical threshold. For such cases,
the anchoring conditions are not strong enough to support geometrically
imposed frustration.

4.4 Comparison with classical OR structure

In Figures 5a-5c, we compare the WORS pattern with the classical OR
pattern reported in a batch of numerical papers [5, 19, 25]. In Figure 5a,
we plot β2(x, y) across the square cross-section and observe a distinct star-
shaped rim of maximal biaxiality with β2(x, y) = 1. In Figure 5b, we plot
−β2(x, y) to emphasize the cross-shaped uniaxial ordering (i.e. β2 = 0)
along diagonals. In Figure 5b, the local eigenframe of Q coincides with the
{−→e x,

−→e y,
−→e z}-laboratory frame and q2 = 0 throughout the square domain

in (10).
We can reproduce the classical OR phenomenon in our framework by

enforcing conflicting planar and homeotropic anchoring on the plates at
y = 0 and y = Ry respectively, whilst imposing natural boundary conditions
on x = 0 and x = Rx. Equivalently, we require that

Q(x, 0, z) =
Seq

3
(2−→e x ⊗−→e x −−→e y ⊗−→e y −−→e z ⊗−→e z) (31)
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and

Q(x,Ry, z) =
Seq

3
(2−→e y ⊗−→e y −−→e x ⊗−→e x −−→e z ⊗−→e z) . (32)

We then progressively decrease the distance, Ry, whilst keeping Rx fixed, at
constant temperature τ = 4. At a critical value, η(CL) = 2.45 (the super-
script (CL) marks the classical order reconstruction transition), we observe
a structural transition into the classical OR pattern and the classical OR
pattern is observed for all η < η(CL). We plot β2 for the classical OR case
in Figure 5c and see two sheets of maximal biaxiality (β2 = 1) enclosing a
sheet of negative uniaxiality (β2 = 0). On comparing Figures 5a and 5c,
it is clear that the WORS is qualitatively different to the classical OR pat-
tern; the WORS arises from mutually perpendicular uniaxial alignments on
four pairs of coincident edges whereas the classical OR phenomenon arises
from mutually perpendicular uniaxial alignments on pairs of parallel edges.
Whilst the WORS is observed for η < 3.28, the classical OR pattern is ob-
served for η < 2.45 i.e. the WORS pattern has a broader window of stability
compared to the classical OR case. We do not have rigorous explanations for
these effects but elevated stability thresholds can be potentially attributed
to the topological defects present in the WORS. Similar effects have been
observed in hybrid cylindrical cells with a boojums on bounding plates [19].

4.5 Interior Defects and the WORS pattern

We demonstrate a DSD-WORS structural transition induced by the intro-
duction of locally melted regions within the DSD structure. This could,
in practice, be realized by electronic-beam (e-beam) lithography [9, 31].
E-beam lithography techniques can fabricate sub-10 nm cavities / indenta-
tions within square or cuboid geometries. Alternatively, one could introduce
a nanoparticle (NP) treated to impose localized isotropic melting at the NP-
LC interface. We numerically introduce a melted square cavity of lateral size,
rm, at the center of the well. This requires Q(R2 ± rm/2, R2 ± rm/2, z) = 0.
We take τ = 4, R

ξ
(0)
b

= 4.5, with strong anchoring conditions as in (15) and

(16 ) and no external fields. In dimensional terms, this describes a well
with lateral dimensions between 120 − 150 nm [10]. In Figures 7a, 7b and
7c, we numerically compute LC equilibria in the absence and presence of
locally melted regions respectively. We recover the familiar DSD in Figure
7a. However, in Fig. 7b, we observe a star-shaped rim of maximal biaxial-
ity, characteristic of the WORS. In Figure 7c, we displace the melted region
from the centre towards the lower plate at y = 0 and lose the WORS. This
suggests that the WORS can be efficiently stabilized if the locally melted
region is compatible with the structural symmetry of the WORS.

In Figure 8 we study the effect of the size of the melted region, rm, on
the DSD-WORS structural transition. We follow < β2 > as a function of
η, for different values of rm. The curves are almost stationary till they hit
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the critical value of η = η
(m)
c and the WORS is stable for all η ≤ η

(m)
c . It is

evident that interior melted regions substantially increase the value of η
(m)
c .

For example, we obtain ηc = 3.28± 0.01 for rm = 0 (no melted region) and

η
(m)
c = 4.67± 0.01 for rm/R = 0.1. Hence, the threshold value is increased
by roughly 42%.

5 Conclusions

We model and numerically analyze LC textures inside shallow square wells,
within the LdG theory for nematic LCs. These wells were first reported in
[29] and modelled in the papers [20, 29]. In [20, 29], the authors study large
micron-sized wells and perform a strictly two-dimensional study on a square
or a rectangle. Our aim is to quantify the effects of confinement, temper-
ature, boundary conditions on the experimentally observed well textures,
with special emphasis on new biaxial textures. Our work purely focuses on
static LC textures and we do not study field-induced or dynamic effects.

We study shallow square wells with cross-sectional dimension R, where R

is measured in units of the bare biaxial correlation length, ξ
(0)
b . We adopt a

3D parametrization of the LdG Q-tensor (as opposed to 2D parametrization
used in previous work) and assume that all variables only depend on the
spatial coordinates, (x, y), and are independent of the z-coordinate. The
boundary conditions on the lateral surfaces, x = {0, R} and y = {0, R},
are imposed either via Dirichlet conditions (as in (15) and (16)) or via a
surface anchoring energy as in (8). The Dirichlet conditions in (15) and

(16) create line defects along the vertical edges. For wells with R ≫ ξ
(0)
b ,

the static structures are effectively uniaxial away from the edges and are
well described by the diagonal and rotated solutions in [20, 29]. We study

wells with R = O
(
ξ
(0)
b

)
in this paper and obtain two distinct LC states: the

DSD and WORS patterns. The DSD pattern is qualitatively similar to the
diagonal solution reported in [20, 29] and is only obtained for relatively large
wells with R greater than a temperature-dependent critical length, denoted
by Rc. The DSD is largely uniaxial away from the vertical line defects,
the principal eigenvector has a diagonal profile on the bottom surface(z =
0) and there are localized pear-shaped biaxial neighbourhoods near each
vertical edge, the rims of which exhibit maximal biaxiality. We believe that
the macroscopic properties of the DSD solution are qualitatively similar to
the diagonal solution in [20, 29] and our 3D modelling recovers the biaxial
structure of the defect cores, which is expected but not reported in previous
work.

We progressively decrease the ratio η = R

ξ
(0)
b

and at a critical value

η = ηc(τ), (e.g. ηc(4) = 3.28±0.01) we observe a global WORS pattern with
a star-shaped ring of maximal biaxiality connecting the four vertices of the
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square cross-section on z = 0. This ring is repeated throughout the height
of the cell. The biaxial ring separates uniaxial states with negative order
parameter along the square diagonals from uniaxial states with positive or-
der parameter outside the ring respectively. The critical value depends on
the temperature and on the anchoring strength on the lateral surfaces. We
define a quantitative criterion for the onset of the WORS pattern, in terms
of the maximum value of β2 (β2

m) along a square diagonal. The onset is
defined by the critical value of η, denoted by ηc, for which β2

m = 0 and the
WORS is the only observed state for η ≤ ηc. The DSD-WORS transition is
a continuous transition and we interpret stable states with β2

m =< β2 >d 6= 0
for η > ηc as being a variant of the DSD state. Further, we study the depen-
dence of ηc on the temperature and the anchoring strength on the lateral
surface, with no external fields in Figure 6. Numerical simulations show
that interior locally melted regions, do not substantially alter the symmetry
of WORS but substantially increase the stability window of the WORS.

Next, we discuss the reliability of the mesoscopic LdG theory for sub-
micron and nano-scale systems, such as the model systems studied here.
Firstly, the LdG theory has been used, with success, to study nano-scale
defect structures [28] and the OR phenomenon in nano-confined systems
[5, 25, 16, 17, 18]. Recent experimental work in [13, 15, 18] confirms that
mesoscopic modelling yields surprisingly good predictions, even on the nm
scale. For example, a simplified LdG-type model can reproduce experimental
observations in cylindrical nano-channels with radius of order ∼ 5nm, in
[13]. Secondly, our model predicts that WORS patterns are observable for

R ∼ 3.28ξ
(0)
b for temperature, τ = 4. As stated in the Introduction, ξ

(0)
b is

typically tens of nm [6]. Recent experimental work in a π-cell geometry, with

conventional optical microscopy techniques, suggests that ξ
(0)
b ∼ 33± 9 nm

[10]. This would correspond to cell sizes, R ∼ 78 − 138 nm, and such
dimensions are widely modelled by LdG approaches in the community. At
higher temperatures, the WORS is observable in even larger wells, with
dimensions R ∼ 240−420 nm (see Figure 6a). Furthermore, polymeric LCs
can have correlation lengths which are an order of magnitude larger than
that of their conventional nematic counterpart [7]. In such cases, the WORS
pattern would be observed even in micron-scale wells.

Biaxial patterns have been extensively found in the literature; see [16,
17, 19, 24, 25, 28] etc., the reported textures are heavily localized near de-
fects or boundaries. The WORS is a new global 2D biaxial texture predicted
for sub-micron and nano-systems with moderate to strong anchoring con-
ditions, for temperatures below the supercooling temperature. The WORS
is qualitatively different to the reported diagonal and rotated solutions in
[29, 20]. As such, we expect that it will offer different optical properties and
new responses to electric fields etc. Our numerical work can give engineers
quantitative information about the scale and shape of prototype devices
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Figure 1: The degree of biaxiality, β2(x, y), in a square well with R/ξ
(0)
b =

4.5, τ = 4 and strong anchoring conditions. The shading code for β2 ∈ [0, 1]
is on the right side.

that can support the WORS pattern. Once such devices are actually en-
gineered, one could experimentally measure the electro-optical responses of
the WORS pattern, possibly by analogy with similar experimental work on
OR patterns in one-dimensional hybrid cells in [3, 12]. Whilst our work
sets up a sound foundation for the study of the WORS pattern, there are
several directions for further study which include (i) field-induced effects,
(ii) dynamic phenomena, (iii) effects of elastic anisotropy, (iv) non-cuboid
geometries and (v) inclusion of interior defects. A comprehensive study on
these lines can yield vital information about systems with intrinsic biaxiality
and how biaxiality can be exploited for new nano-scale applications.
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b = 4.5, τ = 4, strong anchoring. (a) The DSD in
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center of the well. (c) The melted region is displaced below the center of
the well.
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