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Abstract 

In gas turbines, rim seals are fitted at the periphery of the wheel-space between the turbine disc and its 

adjacent casing; their purpose is to reduce the ingress of hot mainstream gases. This paper describes the use of 

a three-dimensional (3D), steady-state model to investigate ingress through engine-representative single and 

double radial-clearance seals. The 3D Reynolds-Average Navier-Stokes (RANS) computations of a simplified 

turbine stage are carried out using the commercial computational fluid dynamics code ANSYS CFX v13, and 

the model is based on the geometry of an experimental test rig at the University of Bath. The measured 

variation of the peak-to-trough pressure difference in the annulus, which is the main driving mechanism for 

ingress, is reproduced well qualitatively by the computations; quantitatively, the maximum local differences 

between computation and experiment are less than 20% of the measured peak-to-trough circumferential 

variation. The radial variation of swirl ratio in the rotor-stator wheel-space is well predicted over the range of 

flow rates and rim-seal geometries studied. The radial distribution of sealing effectiveness determined from 

experiments is reproduced inward of the mixing region near the seal clearance over a range of sealing flow 

rates; some over-prediction of the effectiveness was found for both seals at high radius, probably due to 

limitations in the turbulent mixing modelling.  
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The 3D steady-state approach may be a practical tool for the engine designer where there is a lack of 

experimental data, providing quantitative predictions of the flow structure within the rotor-stator wheel-space 

and qualitative predictions of the sealing effectiveness for a given rim-seal geometry. 
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Introduction 

A typical high-pressure gas-turbine stage is depicted in Figure 1(a). Cooling of the turbine components 

allows the mainstream gas temperature to exceed the blade and vane material melting point without affecting 

the integrity of these components. It is important to prevent the ingress of hot mainstream gas into the wheel-

space between the stator and rotating disc; this is achieved by supplying the required quantity of cooling and 

sealing air, which flows outwards over the disc face. The flow is usually controlled by an inner seal (not 

shown in Figure 1) and is expelled from the wheel-space into the mainstream gas path through the rim seal. 

Although the sealing air can reduce ingress, superfluous use reduces the engine efficiency and insufficient 

flow can cause serious overheating, resulting in damage to the turbine rim and blade roots. Rim seals, such as 

that shown in Figure 1 (b) are fitted at the periphery of the wheel-space to limit ingress. 

 

Figure 1: (a) Typical high-pressure gas-turbine stage; (b) Detail of rim seal
1 
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The flow past the stationary vanes and rotating blades in the turbine annulus creates an unsteady 3D 

variation of pressure radially outward of the rim seal, as depicted in Figure 2. Ingress and egress occurs 

through those parts of the seal clearance where the external pressure is higher and lower, respectively, than 

that in the wheel-space; this non-axisymmetric type of ingress is referred to as externally-induced (EI) 

ingress. In gas turbines, EI ingress is dominant. Engine designers often use double rim seals (such as that 

shown in Figure 2) where the circumferential variation in pressure is attenuated in the outer wheel-space 

between the two seals. 

 

Figure 2: Typical pressure asymmetry in the annulus and outer wheel-space for a double seal 

 

Figure 3 is a simplified, axisymmetric diagram of the fluid mechanics of ingress and egress through an 

axial-clearance rim seal. The flow structure in a typical rotating-disc system is governed by λT, the turbulent 

flow parameter, and depends weakly on Reϕ, the rotational Reynolds number
2,3

. A value of λT = 0.22 is 

associated with the flow-rate entrained by a free disc, and values above this level are expected to suppress the 

core rotation (with swirl ratio ) in the wheel-space. In Figure 3, where λT << 0.22, there are separate 

boundary layers on the rotating and stationary discs with a rotating core of inviscid fluid between the 

boundary layers. The superposed sealing flow enters the system through an inner region and is entrained into 

the boundary layer on the rotor. In the outer region, where the ingress and egress mix, fluid leaves the system 

through the rim seal; conservation of mass, angular momentum and energy will determine the resultant swirl, 

concentration and temperature of the fluid in the outer region, which is the source of the flow in the boundary 
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layer on the stator. Between the inner and outer regions, fluid leaves the boundary layer on the stator to be 

entrained by that on the rotor. Consequently, if the fluid is fully mixed in the outer region, the concentration of 

the fluid in the boundary layer on the stator, and that in the adjacent core, will be invariant with radius. 

 

 

Figure 3: Simplified flow structure for a rotor-stator system with superposed sealing flow and ingress 

 

Engine designers need to know: 1) how much sealing air is required to prevent ingress; 2) when ingress 

occurs, how much ingested fluid enters the wheel-space; and 3) what is the effect of ingress on the flow 

structure in the wheel-space. This paper describes the use of a three-dimensional, steady-state computational 

fluid dynamics (CFD) model to investigate ingress through two engine-representative turbine rim seals. The 

computations are validated using experiments conducted at the University of Bath; Scobie et al.
4
 presented 

data which showed little effect of the rotor blades on the pressure downstream the vanes, suggesting this rig 

was suitable for steady CFD codes. The next section discusses previous CFD research associated with ingress 

in gas turbines. The experimental test facility used to validate the computations is then described. The 

computational model, the results and finally the conclusions are then presented. 

 

Review of computational fluid dynamics related to ingress 

There is a growing trend in industry to use complex 3D unsteady CFD codes to design rim seals and 

explore the mechanisms of ingress. Wang et al.
5
 carried out 360 degree, time-dependent numerical 

simulations of a complete turbine stage with a rim seal and cavity. The results showed complex pressure 
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patterns which resulted from interactions between the blade and vane, while providing insight into the 

irregular circumferential pressure distribution known to be the driving force for ingress. Wang et al.
5
 showed 

that the circumferential distribution of velocity of the ingress through the rim seal did not have a periodicity 

associated with either the blade or vane exit pressure variations. 

  

Jakoby et al.
6
 carried out unsteady simulations and identified energetic, large-scale flow structures which 

perturbed the pressure in the wheel-space at low sealing flow rates and increased ingestion levels. Increasing 

the sealing flow rate was found to dissipate these large-scale flow structures; these findings have been 

supported by recent unsteady computations by Julien et al.
7
 and Dunn et al.

8
. 

 

Laskowski et al.
9
 performed both steady and unsteady computations for ingress. Their computed results 

showed a difference in the contours of effectiveness between the two approaches. The steady results showed 

that while ingress occurred in the rim seal, it did not necessarily penetrate into the wheel-space; these results 

differed from the time-averaged unsteady results under similar conditions. 

 

An alternative study involving Unsteady Reynolds-Averaged Navier-Stokes (URANS) computations and 

Large Eddy Simulations (LES) on rim-seal ingress was carried out by O’Mahoney et al.
10

. The results of both 

simulations were compared to experimental data, and it was found that the LES results gave better predictions 

(when compared to the measured sealing effectiveness) however, at the expense of much larger computational 

cost. 

 

 The experimental facility at the University of Bath (described in the next section) has been used to 

validate both steady and unsteady CFD models. Three-dimensional unsteady CFD simulations were carried 

out by Zhou et al.
11

 for a simple axial-clearance seal, using a sector model with a single stator vane and rotor 

blade. To determine the sealing effectiveness, this model employed the solution of a transport equation for a 

passive scalar variable to represent the seeded tracer gas used in the experiments. Zhou et al.
11

 confirmed, 

using unsteady computations, that the magnitude of the peak-to-trough pressure difference in the annulus is 
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the principal driving mechanism for ingress. Teuber et al.
12

 carried out URANS computations for two-

different rim seal geometries based on the same experimental rig. Two different pitch ratio models were 

tested: a 1:1 sector model (corresponding to 32 vanes and 32 blades) and a 4:5 model (corresponding to 32 

vanes and 40 blades), that better represented the pitch variation in the experimental rig. The two models 

returned a virtually identical pressure distribution and non-dimensional pressure coefficient in the annulus, 

indicating that the (1/32) sector model was able to produce the correct annulus pressure variations to drive 

ingress at reduced computational cost. Teuber et al.
12 

also computed swirl ratios and sealing effectiveness 

distributions in the wheel-space that matched experiments reasonably well over a range of sealing flow rates 

for both an axial and radial-clearance seal. 

 

Rabs et al.
13

 modelled the University of Bath rig using a steady frozen rotor approach, which fixed the 

rotor blade at a given position. It was found that the relative position of the blade with respect to the vane had 

a strong effect on the computed ingress. The frozen rotor approach was able to successfully compute the 

asymmetric pressure distribution in the annulus (where it was measured just downstream from the vane 

trailing edge); however, the measured radial distributions of effectiveness on the stator were not fully 

reproduced by computations for any of the fixed blade positions. 

 

In this paper, 3D steady-state CFD has been carried out for a single and double clearance seal, without a 

rotor blade. This approach would be limited for situations where the annulus pressure asymmetry is strongly 

dependent upon the rotor. However, Scobie et al.
4
 have presented experimental data in the test rig at Bath 

which showed little effect of the rotor blades on the pressure distribution downstream of the vanes. The 

steady-CFD approach has its limitations but provides insight into the fluid-dynamics of ingress at 

significantly reduced computational effort in comparison to the more complex unsteady codes used by engine 

designers.  

 

Experimental test facility at the University of Bath 
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This paper makes use of the measurements of Sangan et al.
4, 14-16

, who conducted extensive experimental 

research related to hot gas ingress into the wheel-space of a simplified axial turbine stage. The test section of 

the facility, shown in Figure 4, features a turbine stage with 32 stator vanes and 41 symmetric NACA 0018 

section rotor blades. These unloaded blades eliminated the need for a dynamometer. 

 

Figure 4: Rig test section highlighting pressure instrumentation (red, stationary; blue, rotating) 

 

The disc could be rotated to a maximum speed of 4000 rpm, giving a maximum rotational Reynolds 

number, Reϕ (based on disc radius) of 1.1 x 10
6
. This value is an order of magnitude less than that typically 

involved in gas turbines. However, for flows in rotating disc systems, the flow structure is controlled by the 

turbulent flow parameter, λT, and depends only weakly on Reϕ
2
; therefore the flow structure in the test rig is 

believed to be representative of the wheel-spaces found in engines. 

 

The vanes and blades in the annulus also produced a flow structure representative of that found in 

engines, albeit at lower Reynolds and Mach numbers. All experimental data for EI ingress presented in this 

paper is for the design condition listed in Table 1, where the flow coefficient and hence Reϕ / ReW = 0.538. 

The circumferential variation of static pressure in the annulus was determined from 15 taps in the vane 

platform arranged across one vane pitch
14

. At design conditions, with constant flow coefficient, the measured 

pressure distributions were independent of Reϕ for M < 0.45. 
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Table 1: Parameters for experimental EI ingress data at Bath Rig 

Parameter Disc Speed (RPM) 

 3000 

Reϕ 8.17 x 10
5
 

ReW 4.4 x 10
5
 

ReW / Reϕ 0.538 

M 0.339 

 

Sealing air was introduced into the wheel-space at a low radius. The sealing flow was seeded with a 

carbon dioxide (CO2) tracer gas in order to measure the amount of ingestion. Concentration measurements 

were used to determine the concentration effectiveness εc. This is defined as 

ao

as
c

cc

cc
ε




     (1) 

where the subscripts a, o and s respectively denote the air in the annulus, the sealing air at inlet, and at the 

surface of the stator. For the experiments, ca and co were constants (approximately 0% and 1% respectively) 

and cs varied with radius on the stator. In particular, εc = 1 when cs = co (zero ingress) and εc = 0 when cs = ca 

(zero sealing flow). The concentration measurements were made within a combined uncertainty of +/- 0.015 

%CO2; a detailed uncertainty analysis is presented in Appendix 2. 

The radial variation of concentration on the stator in the wheel-space, cs, was measured by sampling 

through 15 tubes (0.55 < r/b < 0.993). The same taps were used to make measurements of the static pressure, 

p, on the stator. Seven complimentary pitot tubes, aligned with the tangential direction and at z/S = 0.25, were 

used to measure the total pressure pT in the rotating core of fluid in the wheel-space. The tangential 

component of velocity in the core at each of the seven radial locations was calculated from Bernoulli’s 

equation: 

  21
2













 




p
T

p
V

   (2) 

The estimated uncertainty in the measurements of Vϕ were +/- 3% of the measured value. 
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A single seal configuration and a double seal configuration have been investigated in this paper, as 

illustrated in Figure 5. Experimental data for these seals has been previously published by Sangan et al.
15

. The 

notation used in this paper is S1 for the single seal and D1 for the double seal, which has the same outer rim 

seal geometry as S1. Further geometric details are shown in Figure 5. 

 

 

Figure 5: Rim-seal configurations investigated with geometric dimensions (mm); (a) Single seal, S1; (b) 

Double seal. D1 

 

Computational Model 

The commercial software package ANSYS CFX v13 was used for this investigation for continuity with 

the previous study of Teuber et al.
12

. The geometry (not to scale) and boundary conditions are shown in 

Figure 6, with two interfaces used between the three different model domains; the first Frame Change 

Interface (FCI) connects a stationary domain (stator) to a rotating domain (wheel-space), taking into account 

the change in frame reference, while the second General Grid Interface (GGI) connects the wheel-space to the 

rotor domain. The model geometry (including that of the stator vane) is based on the experimental test rig 

described above. For simplicity and for the other reasons discussed above, a geometry corresponding to 32 

vanes and no blades has been used. The geometry of the rotating and stationary surfaces in the mainstream 

annulus and wheel-space is directly taken from the experimental rig. Figure 6 shows the geometry of the rim 

seal region and the wheel-space. A mass flow-rate boundary setting was applied at the mainstream and wheel-

space inlets, with the sealing air seeded (using an additional passive scalar) to simulate the CO2 tracer gas and 
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with no initial swirl. A fixed average static pressure condition was used at the outlet, and smooth wall settings 

were made for all solid surfaces. 

 

Figure 6: 1/32 sector CFD model with boundary conditions 

 

The annulus height is 10 mm. The wheel-space gap between the rotor and stator is 20 mm, the axial 

clearance portion of the seal is 2 mm and the wheel-space outer radius is 190 mm. Further geometric 

properties of the various seal clearances are given in Figure 5. 

 

ICEM v13 was used to generate the computational grid shown in Figure 7. The grid contained only 

hexahedral cells, using a j-grid topology for the stator domain (for which computations used a stationary 

frame of reference). This modelling approach does not involve a rotating blade in the rotor domain, reducing 

the mesh size significantly for the domain. The wheel-space was computed in the rotating frame of reference, 

with the frame-change interface (FCI) positioned between the stator and wheel-space domains as shown in 

Figure 6. The mesh contained 70 cells in the circumferential direction and 35 cells radially in the mainstream 

annulus. The two different rim seal computational models studied in this paper contain approximately 2.06 

million nodes and 1.97 million hexahedral elements. 
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Figure 7: (a) Stator domain mesh with NGV; (b) Full model mesh shown in axial-radial plane (left, stator; 

right, rotor); (c) Seal gap region mesh  

 

Mesh independence checks (covering a range of 0.5 million to 3.2 million nodes in total, due to the 

restrictions on computing facilities available) were carried out for the annulus pressure distribution 

downstream of the vane trailing edge and for the radial distribution of effectiveness in the wheel-space. 

Values of y
+ 

were less than 1 for the rotor, stator and wheel-space domains. The change in volume between 

adjacent cells was less than 10. 

 

The steady RANS equations and the Shear-Stress-Transport (SST) turbulence model were used for the 

computations. The SST model offers a good compromise between accuracy and computing cost (Menter et 

al.
17

). The use of the SST turbulence model for ingestion computations is supported by the findings of Zhou et 

al.
11

, Rabs et al.
13

 and Teuber et al.
12

. 
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The computations were conducted using two different settings, the Upwind Differencing Scheme and 

High Resolution Scheme. This was carried out to check whether the fluid dynamics, hence velocity profiles, 

within the rotor-stator wheel-space were influenced by the advection scheme. Figure 8 presents a comparison 

of a previous non-axisymmetric rotor-stator study against an experimental study by Chen et al.
18

, which 

compared the predictive capabilities of the steady model and the effect of the advection scheme. The fluid 

dynamics in the wheel-space were found to be insensitive to the advection scheme, therefore a 1st order 

upwind difference scheme was used since it provided a robust method to compute ingestion at various 

different values of sealing flow rate. Another point to be noted is that the convergence level achieved by the 

Upwind Differencing Scheme is better than that of the High Resolution Scheme. An additional transport 

equation for a passive scalar was solved to simulate the CO2 seeding of the sealing flow used in the 

experiments to obtain values of concentration effectiveness. 

 

Figure 8: Comparison of velocity profiles for experimentally measured data and computed CFD models for 

the Chen Rig and Bath Rig (upwind and high resolution advection schemes) for λT = 0.081 at Reϕ = 1.25x10
6 

 

The 3D steady computations were carried out using an eight CPU node of an HPC cluster at the 

University of Bath. Each computation required between around 24 to 48 hours depending on the magnitude of 

the sealing flow rate in the case being studied. 

 

Convergence 
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The steady-state solutions were considered to be converged when residuals fell below the value of 10
-4

 of 

the maximum RMS (Root Mean Square) residuals for each variable and the monitored values of pressure, 

velocity and the additional transport equation reached steady values. The flow in the wheel-space was found 

to converge much more slowly than the flow in the annulus, due to the different timescales for the flow 

behaviour in these regions.  

 

Convergence was affected significantly by the magnitude of the sealing flow rate. It was found that the 

model converged more quickly in computed cases where the wheel-space was nearly sealed from ingestion. It 

was possible to speed up the computations by increasing the (relaxation) time step of the additional transport 

equation by an order of magnitude compared to the conservation equations. Convergence rates were also 

influenced by the rim seal geometry being considered. The single seal was found to converge at 

approximately 10
-4

 for the maximum RMS residuals, compared to approximately 10
-6

 for the double seal.  

     

CFD Validation 

This section presents comparisons made between computational and experimental results, at a rotational 

Reynolds number of Reϕ = 8.2 x 10
5
, for both the single and double seal illustrated in Figure 5. The present 

computations reproduce both the magnitudes and the trends of measured results for the flow in the annulus 

and in the wheel-space, and these are similar to time-averaged results obtained in other studies at greatly 

increased computational cost
12, 19

. 

 

Single Seal (S1) 

Pressure Distribution in the Annulus 

 

 Figure 9 illustrates location A in the annulus (on the stator hub, 2.5 mm downstream of the vane trailing 

edge) where measured circumferential pressure distributions were determined experimentally. The data is 

shown as a non-dimensional pressure, Cp,  
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where p is the mean static pressure in the annulus.  

 

Figure 9: Comparison between measured and computed circumferential distribution of static-pressure in the 

annulus at location A (hub) at Reϕ = 8.2x10
5
  

 

 A comparison between the computed and measured distribution of the circumferential pressure 

distribution at location A for the case of no sealing flow (λT = 0) is shown in Figure 9. There is good 

qualitative agreement between the computations and the measured pressure distributions, although for 0.1 < θ 

< 0.4 there is an underprediction of measured Cp values of up to around 20% of the measured peak-to-trough 

circumferential variation. The computations over predict the measured maximum pressure; however the peak-

to-trough pressure is similar to that in the experiments. This comparison shows that the computational model 

captures the primary driving mechanism for ingress, and that the blades appear to have only a small effect on 

the pressure distribution at this location. 

  



 15  

Swirl Ratio in the Wheel-Space  

Figure 10 illustrates the variation of swirl ratio with non-dimensional radius for the single seal (S1). The 

experimental measurement locations for total pressure in the wheel-space (at z/S = 0.25) are shown on the 

right of the figure in red symbols. The experiments and computations were carried out at Reϕ = 8.2 x10
5
 for 

various values of λT. The symbols denote the experimental data, while the lines represent the computed swirl 

for the same conditions. 

 

Figure 10: Variation of swirl ratio with radius for single seal for different λT at Reϕ = 8.2x10
5 

 

 

The swirl distribution for the single seal S1 shows very good agreement between the computations and 

measurements, suggesting good prediction of the amount of ingestion and mixing of the fluid inside the 

wheel-space using the steady-state CFD model. The swirl distribution for λT = 0 is shown as a contour to the 

right of the plot. There is very good agreement for swirl ratio for r/b < 0.95; outward of this radius, where 

experimental data is not available, the swirl is observed to increase rapidly. The swirl in the annulus is β = 1.8.  
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Figure 10 shows that, as the sealing flow rate is increased, there is a reduction in the core rotation. The 

increased sealing flow rate pressurises the wheel-space; the swirl ratio near the periphery of the wheel-space 

also reduces, as the amount of ingress from the annulus reduces. The parametric variation of the swirl ratio 

with λT is well predicted by the computational model.  

 

Sealing Effectiveness 

Figure 11 shows the computed and measured radial variation of sealing effectiveness at the stator wall 

for three different sealing flow rates at Reϕ = 8.2 x 10
5
. The symbols represent the experimental data, while 

the computations are represented by the lines. The computed results show good agreement with the 

experimental distribution for r/b < 0.9. The experimental data in Figure 11 illustrates that for all λT the 

effectiveness is broadly invariant with radius, suggesting that near-complete mixing has occurred in a region 

very close to the rim seal. However, at high radii, (0.9 < r/b < 1) the computations show a divergence from the 

measurements suggesting that the turbulence model and steady state simplifications do not capture fully the 

mixing process, which is inherently a complex unsteady phenomenon. 

 

Figure 11: Effect of λT on radial variation of effectiveness for single seal at Reϕ = 8.2x10
5 
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Jakoby et al.
6
, Teuber et al.

12
 and Rabs et al.

13
 all computed a radial variation of effectiveness which 

over-predicted measurements in the wheel-space; this (as discussed above) can probably be attributed to 

differences in behaviour in the mixing regions near the seal. The steady predictions shown here are better 

match to the experimental data than those obtained by Teuber et al.
12

 (unsteady) and Rabs et al.
13

 (frozen 

rotor). 

 

Figure 12: Computed velocity profiles at r/b = 0.7 for single seal for different λT at Reϕ = 8.2x10
5 

 

Figure 12 shows computed radial and tangential components of velocity for several λT, at r/b = 0.7 and 

for Reϕ = 8.2 x 10
5
 for the single seal, S1. The flow structure is a turbulent version of that predicted for 

laminar flow between infinite disks by Batchelor
20

. There is radial inflow on the stator (z/S = 0), radial 

outflow on the rotor (z/S = 1), and between the boundary layers there is an inviscid rotating core in which Vr = 

0 and Vϕ / Ωr ≈ 0.44 (for λT = 0). The effect of increasing the superposed flow is to reduce both the core 

rotation and the size of the boundary layer flowing inward on the stator, while increasing the flow moving 

radially outward on the rotor. 



 18  

 

Figure 13: Swirl ratio at z/S = 0.5 for single seal at λT = 0.04 

 

Figure 13 shows computed swirl ratio in the plane at z/S = 0.5 for seal S1 at λT = 0.04. The figure reveals that 

there is a non-axisymmetric swirl variation at high radius, which is attributed to the high swirl ingested fluid 

from the annulus. Comparisons of radial swirl variations are carried out by circumferentially averaging the 

computed data across the 11.25° sector model. Figure 14 shows concentration effectiveness on the stator and 

rotor surfaces for the same case. These computed results show that the mixing of the ingested fluid with the 

sealing flow takes place mainly within the seal-clearance and at high radius in the wheel-space; this explains 

the nearly uniform distribution of concentration effectiveness for r/b < 0.9 shown in Figure 11. At all radii, the 

effectiveness on the rotor is greater than that on the stator; this is the protective effect of the sealing flow in 

the rotor boundary layer, as illustrated in Figure 3. 
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Figure 14: Concentration effectiveness on stator and rotor surfaces for single seal at λT = 0.04 

 

Double Seal (D1) 

Swirl Ratio in the Wheel-Space 

Computed values of swirl and concentration effectiveness for the double seal (D1) are compared with 

experimental data in Figures 15 and 16 respectively. The seal geometry and measurement locations are shown 

in the schematic on the right. Figure 15 shows the radial distribution of swirl ratio at z/S = 0.25 in the wheel-

space for the double seal. The symbols denote the experimental data, while the lines represent the computed 

swirl for the same conditions.  The computations match qualitatively the variation of swirl ratio with radius 

for different values of λT, although the magnitude of the swirl ratio is lower for the computations than for the 

measurements in both the outer and inner wheel-space. This is likely to be due to difficulties in predicting 

accurately the details of the mixing in the confined outer wheel-space. In the inner wheel-space, the trends in 

the measurements are reproduced by the computations and agreement with measurements generally improves 

as the sealing flow rate reduces. 



 20  

 

Figure 15: Variation of swirl ratio with radius for double seal for different λT at Reϕ = 8.2x10
5 

 

Figure 16: Effect of λT on radial variation of effectiveness for double seal at Reϕ = 8.2x10
5 
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The data for the double seal for λT = 0 (Figure 15), show an almost invariant behaviour of swirl with 

radius inward of the inner seal (r/b < 0.85). In contrast, the swirl ratio is seen to increase considerably in the 

outer wheel-space (r/b > 0.924) under the influence of the fluid with high swirl ingested from the annulus. For 

all cases, the computed swirl ratio in the outer wheel-space is lower than that measured experimentally; 

however, the qualitative trend is predicted, and the sudden increase of swirl at r/b ≈ 0.875 due to the rotating 

radial insert is captured. As described above, increasing the sealing flow rate (i.e. increasing λT) causes a 

reduction in the swirl ratio in the inner wheel-space for both the computed and experimental results. This is 

the case for both the single and double seal. The swirl ratio in the outer wheel-space also reduces as the 

ingress reduces. For all test cases, the difference between computation and experiment is less than 33% of the 

measured value. The differences are largest in the outer wheel-space, where the variation of swirl with radius 

is greatest. In the inner wheel-space, this difference is about 10% for the λT = 0 case. The difference between 

computations and experiments varies with sealing flow-rate and radial location. 

 

Figure 16 shows the radial distribution of sealing effectiveness on the stator for the double seal. 

Experimental data is also included for comparison. Both computational results and experimental data show an 

increased sealing effectiveness in the inner wheel-space, with most of the high-swirling ingress constrained to 

the outer wheel-space. The computations reproduce qualitatively the trends in the measured sealing 

effectiveness in the outer wheel-space, but with under-prediction of the measurements which again suggests 

some deficiencies with this simplified model. The effectiveness in the inner wheel-space is in good agreement 

with the experimental data, predicting the effectiveness within about 5% of the measured value for all cases. 
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Figure 17: Comparison of computed variation of swirl ratio with radius between double seal and single seal 

for similar λT values at Reϕ = 8.2×10
5 

 

Figure 17 presents a comparison between the double seal and the single seal for the swirl ratio 

distribution for similar λT. The swirl for both seals is similar but with two major differences identified. Firstly 

the double seal experiences a lower swirl in the outer wheel-space than the single seal for similar λT; this can 

be explained as the double seal has a smaller volume (due to the radial inserts), thus requiring less sealing 

flow to pressurise the wheel-space, hence reducing ingress. Secondly, the swirl at r/b ≈ 0.875 for the double 

seal is influenced by the lower section of the rotating inner radial seal. As shown in Figures 11 and 16, there 

are significant differences in the ingress into the wheel-space for the two seals. Despite this, differences in the 

measured swirl only appear near the outer periphery and the flow structure is governed principally by λT. 
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Figure 18: Comparison of computed variation of effectiveness with radius between double seal and single seal 

for similar λT values at Reϕ = 8.2×10
5 

 

Figure 18 presents a comparison of the radial distribution of effectiveness between the double seal and 

the single seal. The effectiveness for the double seal radially inward of the inner seal is significantly higher 

than those for the single seal at the same sealing flow rate. The effectiveness is virtually constant for 0.65 < 

r/b < 0.875. The outer wheel-space (r/b > 0.924) shows a significant decrease in effectiveness as ingested 

fluid is largely contained in the space between the two seals. The reduction of effectiveness with increasing 

radius in this region indicates that the flow in the outer wheel-space has not fully mixed. 
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Figure 19: Swirl ratio at z/S = 0.5 for double seal at λT = 0.04 

 

Figure 201: Concentration effectiveness on stator and rotor surfaces for double seal at λT = 0.04 
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Figure 19 shows the computed swirl ratio in the plane at z/S = 0.5 for seal D1 at λT = 0.04 (similar to 

Figure 13). Highly swirling flow is ingested from the annulus into the wheel-space, increasing the swirl at 

high radii. Figure 20 displays the concentration effectiveness on the stator and rotor surfaces for the same 

case. The figure again clearly illustrates the improved sealing performance of the double seal for the inner 

wheel-space region compared with the single seal results shown in Figure 14. Figure 20 also shows that the 

ingested fluid is confined in the outer wheel-space where some mixing still takes place, with fully mixed fluid 

in the inner wheel-space indicated by the uniform concentration shown in Figure 16 at r/b < 0.875. The 

protective effect of the rotor boundary layer is also observed. 

 

Conclusions 

The commercial computational fluid dynamics code CFX v13 has been used to carry out RANS 

computations to investigate the fluid dynamics of ingress for two different engine-representative rim-seal 

geometries in a 3D model of a turbine stage, without the rotating blades.  

 

The computations reproduce the main features of the measured asymmetric pressure distribution in the 

annulus caused by the stationary vanes, where the peak-to-trough pressure variation is the driving force for 

ingress through rim seals in engines. Determining the annulus pressure variation required significantly less 

computational effort that the corresponding computations of ingress into the wheel-space. There is good 

agreement between the computed and measured trends for swirl ratios in the wheel-space, indicating that 

ingress is predicted well by RANS computations for the geometry and conditions studied here. The greatest 

differences between computed and measured swirl ratios are around 33% of measured values; the differences 

vary with swirl ratio and sealing flow-rate. The present results are similar to time-averaged results obtained in 

other studies at greatly increased computational cost. The steady-state approach to modelling a 3D turbine 

stage used here is an alternative to traditional unsteady CFD codes which can take up to several weeks (or 

months) of computational time. The computational results have provided insight to the mechanisms of ingress 

and how this ingested fluid affects the flow structure within the wheel-space. 
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Appendix 1: 

Notation 

b radius of seal 

c concentration 

Cp pressure coefficient (= (𝑝2 − �̅�2) / (
1
/2 ρΩ

2
b

2
))  

Cw,o nondimensional sealing flow rate (=�̇�𝑜/μb) 

Gc seal-clearance ratio (=sc/b) 

h annulus height  

�̇�𝑜   mass flow rate 

p absolute static pressure 

�̅�   mean absolute static pressure over one vane pitch 

r radius 

ReW axial Reynolds number in annulus (=ρWb/μ) 

Reϕ rotational Reynolds number (=ρΩb
2
/μ) 

S axial gap between rotor and stator in wheel-space 

sc,ax axial seal clearance 

sc,rad radial seal clearance 

ut friction velocity (=(τw/ρ)
1/2

) 

U bulk mean radial velocity component of sealing air through the seal clearance 

Vr,Vϕ radial and tangential components of velocity 

W axial velocity in annulus 

y distance of near-wall node from wall surface  

y
+
 nondimensional wall distance (=yut) 

z axial distance from the stator 
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β swirl ratio (=Vr) 

ε sealing effectiveness (=cs/co) 

λT  turbulent flow parameter (= Cw,oRe
 

μ dynamic viscosity 

θ normalized tangential coordinate across one vane  

ρ density 

τw wall shear stress  

Ω angular speed of rotating disc 

FCI Frame Change Interface 

GGI General Grid Interface 

 

Subscripts 

a annulus 

e egress 

EI externally-induced (ingress) 

i ingress 

max,min maximum, minimum 

s value on stator 

o sealing flow 

 

Appendix 2: 

Uncertainty in effectiveness measurements 

For convenience, the definition of sealing effectiveness (εc denoted here for simplicity as ε) given in eq 

(1) is repeated below: 

 
ao

as

cc

cc




     (4) 
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where the subscripts a, o and s respectively denote the air in the annulus, the sealing air at inlet, and the 

surface of the stator. 

Let aos ,,,  be uncertainties in a,os cc,c,  respectively so that 
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If 1)cc/()( aoao  then 
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Hence, 
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If the uncertainty is a percentage of the full-scale range, which was the case in the experiments, then 

 aos , say, and eq (8) simplifies to 
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or  
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The average standard deviation,  , in the range 10  can be calculated from eq (10) by 
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The CO2 gas analyser had an overall uncertainty of 1½% of each of its ranges. In the tests, where the 1% 

range was used, the concentration of gas in the sealing flow was close to the 1% range maximum. Hence 

015.0)cc/( ao  %CO2, and from eq (11) it follows that 046.0 . 


