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Abstract—We investigate the distribution of cells by dimension
in cylindrical algebraic decompositions (CADs). We find that they
follow a standard distribution which seems largely independent
of the underlying problem or CAD algorithm used. Rather,
the distribution is inherent to the cylindrical structure and
determined mostly by the number of variables.

This insight is then combined with an algorithm that produces
only full-dimensional cells to give an accurate method of predict-
ing the number of cells in a complete CAD. Since constructing
only full-dimensional cells is relatively inexpensive (involving no
costly algebraic number calculations) this leads to heuristics for
helping with various questions of problem formulation for CAD,
such as choosing an optimal variable ordering. Our experiments
demonstrate that this approach can be highly effective.

I. INTRODUCTION

A. Background on CAD

A cylindrical algebraic decomposition (CAD) is:

• a decomposition of Rn, meaning a collection of cells
which do not intersect and whose union is Rn;

• cylindrical, meaning the projections of any pair of
cells with respect to a given variable ordering are
either equal or disjoint;

• (semi)-algebraic, meaning each cell can be described
using a finite sequence of polynomial relations.

The first algorithm to produce CADs was introduced by Collins
[1]. Here we start with a projection phase to derive a set
of polynomials relative to the input, then CADs are built
incrementally by dimension according to the zeros of those
polynomials (a process known as lifting).

Each cell is represented by a cell-index: an n-tuple of
integers defining its position in the CAD. An even integer is
referring to a variable taking the value of one of the (ordered)
real roots of the projection polynomials and an odd integer
means that a variable is within an interval between two of
these. In addition each cell would usually be accompanied by
a sample point used in the construction.

We would normally compute a CAD to solve an under-
lying problem. Most notably, it can be a tool for quantifier
elimination (QE) over the reals. Here we must build a CAD
relative to a quantified formula such that the Boolean value
of that formula is invariant (true or false) in each cell. Then
an equivalent quantifier-free formula may be computed from
the semi-algebraic descriptions of the true cells. CAD has
been applied elsewhere, including problems in parametric

optimisation [18], epidemic modelling [7], theorem proving
[24], motion planning [28] and reasoning with multi-valued
functions and their branch cuts [13].

The original, and most common CAD algorithm gives out-
put that is sign-invariant with respect to a set of polynomials.
This means that each polynomial in the input has constant sign
on each cell of the CAD created. However, a CAD can be
produced more efficiently if we work closer to the underlying
problem, for example, by building CADs invariant with respect
to the truth of formulae [4], or making use of the structure
of the quantifiers [11]. Other important advances in CAD
theory include the use of certified numerics [26], [20] and
an alternative approach to Collins’ algorithm using the theory
of regular chains and triangular decomposition [9], [2].

In this paper we are more concerned with a CAD as the
mathematical object satisfying the definition above (rather than
the particular algorithm which produces one).

B. Contribution

Each cell in a CAD has a dimension which can range
from 0 (when the cell is a point) to n (when the cell is of
full-dimension in Rn). We describe a subset of cells from a
CAD as a sub-CAD. The sub-CAD consisting of only those
cells with full-dimension has been a much studied topic [21],
[25]. It can be identified far more efficiently than the CAD
itself and is sufficient to solve certain classes of problems.
More generally, we define those cells in a CAD with the same
dimension as a layer and an `-layered sub-CAD as a sub-
CAD of Rn consisting of those cells with dimensions d ∈
[n − ` + 1, n] (i.e. the top ` layers of the CAD). We call the
CAD consisting of all n + 1 layers the complete CAD. See
Section 2.2 of [27] for details including algorithms to produce
such sub-CADs both directly and recursively (where additional
layers are created one at a time).

In Section II we investigate the spread of cell dimensions
in a CAD. We discover that they conform to a common dis-
tribution regardless of the problem studied or algorithm used.
Rather the distribution is a feature of the cylindrical structure
and determined mostly by the number of variables. This means
that the size (number of cells) of a CAD may be predicted
accurately by the number of full-dimensional cells (which
can be computed far quicker). In Section III we investigate
using this as a heuristic for deciding questions of problem
formulation for CAD, showing promising experimental results.
We now continue the introduction with a simple example to
illustrate the ideas so far.



C. Motivating Example

Example 1: Consider f = x−y2 and g = x2−y2−1; the
polynomials graphed respectively by the circle and parabola
in the first image of Fig. 1.

A CAD is defined implicitly with respect to a variable ordering
(defining the projections used for cylindricity). Assume an
ordering y � x meaning projections are from (x, y)→ x. The
second image of Fig. 1 visualises a sign-invariant CAD for
{f, g} in this ordering by marking each cell with a black box.
If a box lies at the intersection of two curves, including the
dotted lines) then they indicate a cell of dimension 0: just that
point. Otherwise, if the box lies on one of the curves or dotted
lines then it indicates a cell of dimension 1: that line segment.
The remaining boxes indicates cells of full dimension: portions
of R2 bounded by the curves or dotted lines.

In fact this is the minimal sign-invariant CAD for {f, g}
in the ordering, that is, the one with the fewest number of
cells which satisfies the definitions. For example, consider
x ∈ (−1, 0). Then the sign-invariant condition means we must
distinguish the five cells indicated (the two portions of the
circle and the spaces between, above and below). We could
not extend these cells beyond (−1, 0) without violating the
cylindricity or sign-invariance conditions. Similar arguments
show that the 51 cells indicated are indeed the minimum.

The third image in Fig. 1 shows only the full dimensional
cells (as portions of R2 coloured differently to neighbouring
cells). There are 17 of these. The question answered affirma-
tively in this paper is whether the complexity of the second
image (number of black squares) can be predicted accurately
by the complexity of the third image (number of different
coloured portions). The experiments in Section II suggest
that for a CAD in two variables approximately 0.334 of the
cells are full dimensional. Hence knowing the number of full
dimensional cells only, we would correctly predict there to be
17/0.334 = 50.898 ' 51 cells in the complete CAD.

Remarks: We note the following about this example:

1) Although the full dimensional cells may be sufficient
to solve certain problems others will require knowl-
edge of the complete CAD. For example, the formula
f = 0∧g < 0 is not true on any cell of full dimension.

2) The images above relate to a hypothetical minimal
CAD, not necessarily one produced by a known algo-
rithm. CAD algorithms identify points of intersection
by taking resultants. In this case we have

resy(f, g) = (x2 + x− 1)2

which has roots at x = 1
2 (−1 ±

√
5). The root at

0.618 identifies the real intersections of f and g while
the other at −1.618 identifies intersections in C2 (at
points with complex y coordinate). Hence, while not
required for sign-invariance, known CAD algorithms
would split the leftmost cell into three (the line x =
−1.618 and two full dimensional cells either side).
The number of full dimensional cells then increases
to 18 and the predicted number of total cells becomes
18/0.334 = 53.892 ' 54, one more than the total.

Constructing CADs for the example above is easy with
modern technology. However, for larger problems (particularly

Fig. 1: From top to bottom: graphs of f = x−y2 and g = x2+
y2 − 1; a sign-invariant CAD for {f, g}, the full dimensional
cells in the CAD. The latter two use variable ordering y � x.

those with more variables) CAD can be challenging. The cost
of computing full-dimensional cells also increases with the size
of the problem, but it is much simpler as it avoids computation
with algebraic numbers. Hence, in many situations it is feasible
to use the full dimensional cells as a metric to predict the size
of the complete CAD, or the feasibility of computing it.

This approach can be useful for deciding questions of
problem formulation for CAD, such as when there is a free
or constrained choice over the variable ordering. For example,
when using CAD for QE variables must be projected in the
order they are quantified but we can change the ordering of
free variables, or variables in blocks of the same quantifier.
The minimal sign-invariant CAD for Example 1 with ordering
x � y has 47 cells, 16 of which are full dimensional as shown
in Fig. 2. If we calculated just these we would predict 16/0.334
' 48 cells in the complete CAD. Hence using the number of
full-dimensional cells as a heuristic would lead us to use the
variable ordering producing the smaller complete CAD.



Fig. 2: The full dimensional cells in a CAD for f = x − y2

and g = x2 + y2 − 1, with variable ordering x � y.

There do exist other heuristics for making such choices,
which can be cheaper, although they may not be as closely cor-
related. See [16] for a recent summary. An important example
is Brown’s heuristic [6] which uses only simple measures on
the input to decide an ordering. Recent studies show that while
it usually gives a good choice, there are classes of problems
where it is not successful [19]. For this example the measures
used by this heuristic do not discriminate between y � x and
x � y. The heuristic sotd [14] goes further by considering the
full set of projection polynomials produced by a specific CAD
algorithm. It measures the total degrees of every monomial in
every projection polynomial. For this example, sotd is misled
to pick y � x (because the resultant of the polynomials in y
factors so that as a projection polynomials it has lower sotd,
despite the same number of real roots as the resultant in x).

The heuristic ndrr [5] goes further and counts the size of
the induced decomposition of the real line. It would identify
the optimal ordering, but only due to the extra root at −1.618
being identified despite not being required for the minimal
sign-invariant CAD in y � x. The heuristic based on number
of full dimension cells proposed in this paper goes further still
by building the full-dimensional cells, but predicts the correct
minimal CAD for this problem.

II. DISTRIBUTION OF CELLS BY DIMENSION

A. Distribution for existing problems

We studied a set of problems from the CAD Example
Bank [29], sourced in turn from the papers [8] and [9]. For
each problem a sign-invariant CAD was calculated using an
implementation of [22] in MAPLE as detailed in [17]. Then
for each problem the distribution of cells by dimensions was
plotted, as displayed in Fig. 3. In all such plots (Figures 3, 4
and 5) the horizontal axis refers to the cell dimensions and the
vertical axis the proportion of the cells in the CAD with those
dimensions. We see that examples with the same number of
variables share similar distributions of cell dimensions: roughly
normal but biased towards cells of large dimension. The closest
standard distribution is binomial with a p-value > 0.5.

Recall that the binomial distribution for n trials with
probability p of success is given by:

P(X = x) :=

{ (
n
x

)
px(1− p)n−x 0 ≤ x ≤ n,

0 otherwise.

Fig. 3: CAD cell dimension distribution for examples in [29].
Lines coloured the same relate to problems with the same
number of variables (from 2 to 6 going from left to right).

Fig. 4: Binomial distributions which match the distribution
of CAD cells in Figure 3. Calculated from left to right with
(n, p) = [(2, 0.6), (3, 0.6), (4, 0.65), (5, 0.7), (6, 0.7)].

We determined by eye the p-values that best match the
examples from [29] and plot these in Fig. 4. We find that
as n increases, the most suitable value of p increases.

B. Distribution for random cylindrical decompositions

Our experiments so far suggest the distribution of cell
dimensions is largely independent of the individual problems,
instead being determined mostly by the number of variables
present. We would like to go further and show they are also
independent of the CAD algorithm and implementation used.

We define combinatorially random CADs. These are not
CADs constructed for randomly generated problems: instead



they are hypothetical decompositions of real space made
randomly, but with a cylindrical structure. First a number of
variables is chosen at random and then the real line is decom-
posed into a random number of points and intervals between
(a CAD of R1). Then each cylinder over a cell is split into a
random number of cells: these are assumed sections (zeros
of some polynomial) and sectors (the regions in between)
but actually here we are constructing just a combinatorial
object: a collection of cell indices with no associated projection
polynomials. The process is continued until we reach Rn.

We constructed 45 of these objects in MAPLE using the
rand command to iteratively build the cell indices (from
which cell dimension are easily determined). Variables were
chosen randomly from {2, . . . , 6} and cylinders were split
using a random number of sections from {1, . . . , 7}. Fig. 5a
shows the distribution of cell dimensions, and is given along-
side the examples from [29] showing the similarity between
distributions with the same number of variables.

C. Investigating the combinatorial structure of a CAD

We now provide some formal justification of the binomial
distribution observed in examples. In this subsection assume
that D is a CAD or sub-CAD of Rn and Di the number of
cells in D of dimension i (for i = 0, . . . , n). We consider
the induced CADs of D: the CADs of Rj (j = 1, . . . n − 1)
formed by projecting D with respect to the ordering in which
it is defined. The induced CAD of R1 is a decomposition of
the real line into k1 points and k1 + 1 intervals.

We make the simplifying assumption that when considering
the cylinders over cells from the same induced CAD of D they
are split into the same number of cells. That is, we assume
the cylinder over each cell of Rm consists of 2km+1 cells in
Rm+1 (km of which are the same dimension as the base cell).

Lemma 1: Let D be as described above. Then

Di =
∑

P⊆[n]
|P |=i

∏
a∈P

(ka + 1)
∏

b∈[n]\P

kb

 ,

where [n] is the combinatorial shorthand for {1, . . . , n}.
In particular we have:

D0 =

n∏
i=1

ki, Dn =

n∏
i=1

(ki + 1).

Proof: The dimension of a cell in D is equal to the sum
of the parity of its cell indices. For a cell to have dimension
i, it must therefore have i odd indices and n− i even indices.

We can characterise an i-dimensional cell by the position of
its odd indices. Call the set of these positions P . For a fixed
P there are many cells associated. There are a total k1 + 1
choices of 1-cells if 1 ∈ P and k1 choices of 0-cells if 1 /∈ P .
Continuing to build the CAD, at level j there are kj + 1 cell
choices if j ∈ P and kj choices if j /∈ P .

Therefore, for a fixed P , the number of cells that have
an appropriate cell index is given by the product inside the
parenthesis. All that remains is to sum over all possible subsets
P of [n] which have cardinality i.

Fig. 5: Comparing the distribution of cell dimensions of
combinatorially random CADs with those created for real
examples.

(a) Combinatorially random. (b) Examples from [29].

We can see above that in the case where ki = k for all i,
then {Di} is simply the sequence of binomial coefficients of
(k + (k + 1)x)n. In fact, we can see the relationship with the
binomial distribution without this extra assumption.

Lemma 2: Let D be as given in Lemma 1. Then the
generating function for Di is given by:

n∏
i=1

(ki + (ki + 1)x).

That is, Di is the coefficient of xi in the expansion of the
above product.

Proof: Expanding out the product you obtain xi precisely
by choosing x from i different linear factors. This amounts to
selecting i integers from the set [n]. For a given P , each j ∈ P
contributes kj+1 to the coefficient of the generated monomial,
and each j /∈ P contributes kj . Hence the coefficient of the
generated xi is: ∏

a∈P
(ka + 1)

∏
b∈[n]\P

kb.

The coefficient of xi in the expansion of the product is
precisely the summation of all such coefficients:∑

P⊆[n]
|P |=i

∏
a∈P

(ka + 1)
∏

b∈[n]\P

kb

 ,

which from Lemma 1 is precisely Di.

III. HEURISTICS FOR CAD PROBLEM FORMULATION

As suggested in the introduction, the consistent distribution
of cell dimensions can be used for predicting the size of the
complete CAD. Since constructing these cells is far simpler
(avoiding all computation with algebraic numbers) we can use
it as the basis for heuristics to answer questions of problem
formulation. To experiment with this idea we collated the
distributions for our example set [29], split them by number of
variables, and calculated the average proportion of cells that
were full-dimensional (shown in Table I). We can then make
predictions by comparing the 1-layered CAD for a problem to
the average distribution for the number of variables present



TABLE I: Average fraction of cells with full-dimensional in
CADs for the examples in [29].

Variables 2 3 4 5

Fraction 0.334 0.192 0.161 0.181

A. A new heuristic for choosing a variable ordering

Example 1 in the introduction already demonstrated the
idea of a heuristic based on full-dimensional cells for picking
a variable ordering. In that example a modest saving was made
but more generally the choice of ordering can determine the
tractability of a problem. In [3] a class of examples were
presented where the ordering changed the complexity from
constant to doubly exponential in the number of variables.
The following examples show that a heuristic based on full-
dimensional cells works for problems in higher dimensions
also, and the potential costs and benefits of using it.

Example 2: Consider the set of polynomials,

F :=
{
x2 + y2 + z2 − 1, xy − yz + 3, x+ y − yz4

}
.

There are six possible orderings of (x, y, z). We assume all
are admissible and seek the one producing the smallest CAD.

For each variable ordering, we create a 1-layered sign-
invariant sub-CAD for F using the algorithm in [27] and a
complete sign-invariant CAD for F using the algorithm in [22]
(both implemented in the MAPLE package ProjectionCAD
[17]). The number of cells and computation times for these are
recorded, along with the prediction of the number of cells in
the full-CAD that would be made by considering the number of
full-dimensional cells (multiplying the number of cells in the
1-layered sub-CAD cell count by 1

0.192 ). Table II displays these
results with the minimal value in each column emboldened.

We see that x � y � z offers the smallest and quickest
1-layered sub-CAD, and correspondingly, the smallest and
quickest complete CAD. The total time for computing all
six 1-layered sub-CADs is 3.829 seconds which, along with
computing the CAD for x � y � z, means that it would take
6.748 seconds to obtain a CAD using this heuristic. This means
the heuristic offers a maximum potential saving of 43.402
seconds over computing directly the CAD for z � y � x and
1672 cells over the CAD for y � z � x. If we had just picked
one variable ordering at random then on average our CAD
would have taken 18.773 seconds to compute and have 1431
cells. Hence on average the heuristic saves 892 cells (62% of
the average) and 12.025 seconds (64% of the average).

TABLE II: Using 1-layered sub-CADs as a heuristic to pick
the variable ordering for a CAD in Example 2.

Cells Time

Order 1-LCAD Prediction CAD 1-LCAD CAD

x � y � z 118 615 539 0.341 2.919
x � z � y 160 833 789 0.474 5.720
y � x � z 340 1771 1799 0.736 13.055
y � z � x 432 2250 2211 0.950 30.638
z � x � y 224 1167 1133 0.549 10.156
z � y � x 392 2042 2117 0.779 50.150

TABLE III: Using 1-layered sub-CADs as a heuristic to pick
the variable ordering for a CAD in Example 3.

Cells Time

Order 1-LCAD Prediction CAD 1-LCAD CAD

a � b � c � d 7640 47453 75923 10.242 387.233
a � b � d � c 7776 48298 78187 9.212 396.658
a � c � b � d 10644 66112 106319 13.692 565.694
a � c � d � b 11196 69540 108753 13.945 557.628
a � d � b � c 2852 17714 26903 3.477 131.893
a � d � c � b 4340 26957 41953 5.177 207.154
b � a � c � d 6000 37267 59383 9.970 316.153
b � a � d � c 4844 30087 47879 6.755 250.658
b � c � a � d 1946 12087 18159 3.933 94.145
b � c � d � a 1224 7602 10933 1.676 52.973
b � d � a � c 1608 9988 14895 2.264 73.724
b � d � c � a 1624 10087 14595 2.174 66.825
c � a � b � d 7684 47726 72391 11.666 379.539
c � a � d � b 6324 39279 60129 8.027 308.732
c � b � a � d 2592 16099 23705 3.509 120.485
c � b � d � a 1404 8720 12271 3.139 59.653
c � d � a � b 3384 21018 30529 4.137 142.523
c � d � b � a 3140 19503 27545 3.811 122.740
d � a � b � c 1184 7354 10403 1.946 59.057
d � a � c � b 1296 8050 11651 1.989 62.944
d � b � a � c 1676 10410 14927 2.628 79.229
d � b � c � a 1172 7280 10213 2.989 51.696
d � c � a � b 2364 14683 21077 3.321 101.045
d � c � b � a 1876 11652 16487 2.559 76.796

Example 3: Consider the next set of polynomials,{
a2 + b2 + c2 + d2 − 1, a2 − 4, a− d, b− c, a− c, b− 1

}
,

in four variables (a, b, c, d) and thus with 24 possible or-
derings. We repeat the experiment detailed in Example 3 to
produce Table III.

The 1-layered sub-CAD cell counts correctly identifies the
ordering with the most efficient complete CAD. However,
in this case the timings we would have identified another.
Cell count is likely a more consistent measure for CAD
complexity since it avoids many idiosyncrasies of an individual
implementation. The total time to compute all 1-layered sub-
CADs for F is 132.238 and so using the heuristic to produce
a CAD takes 183.934 seconds. If we picked an ordering at
random then on average the CAD would have 27921 cells and
take 194.382 seconds. Hence for this example the heuristic
would save a significant number of cells but the time savings
would be very modest due to the cost of using the heuristic.

We repeated these experiments on 75 examples each with
{f1, f2, f3} where fi are random polynomials in {x, y, z} (two
quadratic, one linear) generated with MAPLE’s randpoly
command. This time we build the 1-layered sub-CADs using
the recursive algorithm (Algorithm 4 in [27]). This not only
constructs a layered sub-CAD, but also a set of unevaluated
function calls. When evaluated these produce both more CAD
cells and another set of unevaluated calls. Combining the new
cells with the existing layered sub-CAD will give a sub-CAD
with an extra layer (that is, including those cells of one lower
dimension). If we proceed until there are no evaluated calls left
then the cells obtained give the complete CAD. The advantage
here is that once an ordering has been selected we do not
need to repeat the construction of the full-dimensional cells
(giving a further modest saving). In the event that more than
one ordering had the minimal number of full-dimensional cells
we selected the first ordering lexicographically (equivalent to
a random choice for these random examples).



TABLE IV: Using the number of full dimensional cells to pick
the variable ordering for 75 random examples.

Cells Time

Problem Max Problem Av Problem Max Problem Av

Average 4, 719 2, 220 64.3 10.0
Example 55.0% 38.7% 38.7% 12.9%

Best 12, 816 5, 204 631.9 143.3
Example 93.6% 84.6% 84.6% 70.1%

Worst 762 297 −44.1 −66.1
Example 13.9% 6.49% −27.9% −49.3%

We found that on average the heuristic saved 38.7% of
the cells and 12.9% of the computation time for a problem
when compared to picking an ordering at random. However,
this masks a lot of variance in the data. Table IV gives more
details, showing also the examples with the best and worst
savings. We see that even for the worst example the heuristic
makes a cell saving, but that for some examples a time saving
does not occur (or rather, the saving is outweighed by the cost
of the heuristic). Table IV compares not only to the average
of the different orderings but also to the maximum values,
showing the worst cases that can be avoided. Fig. 6 shows box
plots summarising the 75 examples reinforcing the findings:

• The cell savings are always positive, meaning the
heuristic is an excellent tool for achieving a near min-
imal CAD. If the CAD in question is to be computed
with extensively in a further application then such cell
savings will be of great importance.

• The time saving can be negative (a cost). Hence when
the aim is to use the heuristic to speed up computations
care must be taken. Further, as the number of variables
n increases so too will the time required to compute
n! 1-layered sub-CADs and these potential costs. It
is likely that a more appropriate use of the full-
dimensional cells from this perspective may be to
break ties that result from other (cheaper) measures,
or for use when the underlying application (such as
quantifier structure) limits the permissible orderings.

• When compared to the worst possibility for a problem
instead of the problem average of course the savings
are greater. Further, for all but a few outliers the time
savings are positive. Hence the heuristic can be used
as a risk-reduction measure.

B. Algorithms to implement the heuristic

Algorithm 1 demonstrates how the heuristic described
above could be implemented efficiently. We assume a generic
CAD input F : this was a set of polynomials for the examples
above but could more generally be a sequence of formulae
say (see [4]). First in step 1 we must identify all admissible
variable orderings (if there are no restrictions then this is
simply all the permutations of the variables defining the
polynomials). Throughout the variable mc stores the min-
imum number of cells in a computed 1-layered sub-CAD.
The admissible orderings are considered in turn and the full
dimensional cells computed. Here (step 4) an algorithm should
be used that is compatible with the required CAD (i.e. same

Fig. 6: Box plots showing the savings of using the 1-layered
sub-CAD heuristic on the 75 random examples.

(a) Percentage savings in cells. (b) Percentage savings in time.

invariance condition). Ideally it would also be recursive to
avoid unnecessary calculation (as described above and in [27]).
Hence for an ordering v we produce both the 1-layered sub-
CAD Lv and a set of unevaluated function calls Uv . If the
number of cells computed is a new minimum this is stored. At
the end the variable ordering which contributed the minimal
number of full dimensional cells has its layered sub-CAD
extended to a complete CAD for the problem (step 8).

Algorithm 1: LayeredHeuristic
Input : A CAD input F .
Output: A CAD for F and a variable ordering opt.

1 Set V to be the admissible variable orderings;
2 mc←∞;
3 for v ∈ V do
4 Lv, Uv ← OneLayeredSubCAD(F, v);
5 if |Lv| < mc then
6 mc← |Lv|;
7 opt← v;

8 D ← FullCAD(F, opt, [Lopt, Uopt]);
9 return [opt,D];

Algorithm 2 describes a (as yet unimplemented) parallel
algorithm. As before we would construct 1-layered sub-CADs
for all admissible variable orderings (step 3). We then await
the first to finish and abort the rest (step 6). We compute
the complete CAD for this ordering by evaluating the inert
function calls in step 9 (which can also be in parallel).

Algorithm 2 chooses the ordering by time taken to compute
the full-dimensional cells rather than the number of full-
dimensional cells, used by Algorithm 1. We saw in Example
3 that the number of cells can be more closely correlated.
We could modify Algorithm 2 to use cells instead by: starting
computation of a complete CAD for an ordering only if it
had fewer full-dimensional cells than any other computed; if
at any point more than two complete CAD computations had
been launched, abort the one with fewer full-dimensional cells.

C. Other questions of problem formulation

We have focused so far on using the new observations
on the distribution of CAD cell dimensions as a heuristic for
choosing the variable ordering. However, essentially what we



Algorithm 2: ParallelLayeredHeuristic
Input : A CAD input F .
Output: A CAD for F in a variable ordering opt.

1 Set V to be the admissible variable orderings;
2 for each v ∈ V do in parallel
3 launch Lv, Uv ← OneLayCAD(F, v);
4 Let v0 be the first to finish;
5 foreach v ∈ V \ {v0} do
6 abort Lv, Uv;
7 repeat
8 for each c ∈ Uv0 do in parallel
9 evaluate c and add new cells to Lv0 and new

unevaluated calls to Uv0 ;
10 until Uv0 is empty;
11 return [v0, Lv0 ];

have is a measure of CAD complexity and so we could apply
it to other questions of problem formulation for CAD.

Example 4: Consider again the polynomials f, g intro-
duced in Example 1. When considered in Section I we built
minimal sign-invariant CADs for these polynomials. However,
depending on the underlying application these may provide
more information than required. Suppose that f and g both
formed equational constraints (ECs) for the problem: equa-
tions whose truth is logically implied by an input formula. In
[10] a CAD invariant with respect to an EC was defined as
a CAD sign-invariant for the polynomial defining an EC and
sign-invariant for other polynomials only when that EC is sat-
isfied. An algorithm to produce such CADs was later presented
in [23]. An implementation of this in ProjectionCAD [17]
produced a CAD invariant with respect to f using 21 cells,
and one with respect to g using 25 cells.

The full dimensional cells of these CADs are shown in
Fig. 7. Using f as the EC creates 8 full-dimensional cells and
using g creates 9. If both are ECs then we can choose to build
either of the CADs and a judgement based on the number of
full-dimensional cells would lead to the optimal choice.

Remarks: We note the following about this example:

1) Of course, when solving a system of equations there
are far more efficient techniques to use than CAD.
However, the concept of a CAD with respect to an
EC described above is equally applicable to a system
of equations and inequalities.

2) Here, both polynomials were ECs but savings were
only made from one. Ideally, we would produce an
even simpler CAD where cells are invariant only with
the truth of the conjunction of the ECs. Steps towards
this minimal CAD are described in [2] where multiple
ECs may be used (following the approach to CAD
by regular chains computation originating in [9]). In
this case there is an analogous questions of problem
formulation: the order in which ECs are presented to
the algorithm. This was investigated in [15] where
heuristics were developed to help with the problem.
It is likely that the number of full-dimensional cells
could also be used to make this choice

Fig. 7: The image shows CADs built using f = x − y2 and
g = x2 + y2 − 1. The top image is sign-invariant with respect
to f and the second with respect to g. In each case the CAD is
also sign-invariant with respect to the other polynomial when
the first is zero.

Other questions of problem formulation for CAD are
investigated in [5] and it is likely that the number of full-
dimensional cells could be used as a heuristic for each (with
similar caveats on how to use it as outlined above). We finish
by considering a question of problem formulation itself (rather
than how a problem is presented to a CAD algorithm).

Example 5: We consider the problem of moving a ladder
of length 3 through a right-angled corridor of width 1 (moving
from position 1 to position 2 in Fig. 8). This is an example
of a piano movers problem and was first proposed in [12],
where it was noted that a CAD could be analysed to give an
exact solution. Of course, a simple analysis shows there is no
solution (with it possible only is the ladder is less than

√
8) but

we are interested in how this could be decided automatically.

1

2

Fig. 8: The piano movers problem defined in [12]

In [12] the author described the feasible regions for the
ladder, but found that computing a CAD was computationally
infeasible, and 28 years later a CAD for this formulation is still



very costly. In [28] an alternative formulation was proposed: a
description of the infeasible region was provided and negated
instead. This simplified the CAD construction considerably.

We want to identify when such a reformulation of the
problem would be beneficial. In [28], [27] the process of
computing a layered variety sub-CAD is described: as well as
restricting to cells of full-dimension we also restrict to cells on
a given variety. The variety was an EC for both formulations
(defining the length of the ladder). The process took around
200 seconds to produce 101,924 cells for the new formulation
in [28] but timed out for the original one in [12], correctly
identifying the tractable formulation for the complete CAD.

IV. CONCLUSIONS

By considering empirical and combinatorial evidence we
have shown that the distribution of cells by dimension in
a CAD is consistent for a fixed number of variables. This
means the size of a CAD can be accurately predicted from
the number of full dimensional cells offering new heuristics
for CAD problem formulation. Such heuristics can be made
more efficient by using them with the recursive layered sub-
CAD algorithm from [27] which allows for lazy evaluation of
inert computations, avoiding recalculation of results. There is
potential for further time savings through parallelism.

We demonstrated extensively that the number of full-
dimensional cells is an effective heuristic for picking the
optimal variable ordering for CAD, but that depending on
the number of permissible ordering the time savings can be
outweighed by the cost of running the heuristic. We also
demonstrated how the ideas could be used for other questions
of problem formulation, with the final example suggesting that
the heuristic could be tailored further to the CAD required
(using a layered variety sub-CAD when the complete CAD
will be invariant with respect to an EC).
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