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Abstract 

The spinning cloth disc reactor (SCDR) is a novel mesh supported enzyme rotating reactor 

system for process intensification. In this study, to increase the enzyme loading in the SCDR, 

a new reactor operational mode was designed by increasing the number of cloths used in the 

SCDR to form a multi-cloth stack on the spinning disc. To test its effectiveness, the influence 

of the number of cloths in the SCDR on reaction conversion and rate was investigated. The 

flow within the multi-cloth stack was characterized by residence time distribution (RTD) 

analysis and an imaging of the flow and dye penetration in the SCDR. 

For different tributyrin substrate concentrations (10-40 g L
-1

), the reaction rate and 

conversion increased when the number of cloths was increased from one to two, indicating 

that the enzyme loading in the SCDR can be easily tailored to the desired reaction system by 

simply changing the number of immobilized enzyme cloths. The mean residence time 

increased with an increase in the number of cloths at different spinning speeds and flow rates, 

due to flow existing inside the volume of the multi-cloth stack. The number of tanks-in-series 

(N) decreased as the increase of cloth number on the spinning disc, indicating that more 

cloths caused larger deviation from plug flow. The visual study showed that the multi-cloth 

stack would not essentially change the flow types in the SCDR, and the fluid could penetrate 

through the three layers of multi-cloth at both low (100 rpm) and high (400 rpm) spinning 

speeds.  

Keywords: spinning cloth disc reactor; lipase immobilization; residence time distribution; 

visualization; multi-cloth stack. 
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1. Introduction 

The spinning disc reactor (SDR) is a process intensification technology, which utilizes 

centrifugal forces to produce a thin and highly sheared film on the spinning disc surface, 

resulting in rapid mixing and short residence time. Research has shown that the heat and mass 

transfer in the SDR can be significantly enhanced due to the fluid dynamics within the films 

[1-4]. The SDR has been applied in several chemical reactions such as polymerization [5], 

photocatalysis [6, 7], transesterification [8] and nanoparticle preparation [9-12]. Recently, the 

SDR concept has been introduced to enzymatic reactions by using a novel mesh supported 

enzyme rotating reactor system: the spinning cloth disc reactor (SCDR) [13-15]. As shown in 

Fig. 1, similar to the SDR configuration, the SCDR is also driven by the centrifugal forces on 

the spinning disc, however, this disc has immobilized enzymes on a woolen cloth resting on it. 

Therefore, the thin film is expected to be produced both on top of and within the cloth, where 

mass transfer enhancement and rapid mixing can be achieved. 

The SCDR, like the conventional SDR, is scaled up through the microreactor concept of 

‘numbering-up’ rather than traditional scale-up. This means that feasibility proven at the 

small scale in these reactors (such as in this work) can be almost directly translated into an 

industrially feasible system. The SCDR has been successfully applied to oil hydrolysis 

reactions, primarily to tributyrin emulsion hydrolysis. The results have shown higher reaction 

rates and conversions in comparison to the equivalent reaction system in a conventional batch 

stirred tank reactor (BSTR), for example, under comparable conditions (i.e. the same reaction 

conditions and the same enzyme to substrate ratio), the conversion of tributyrin hydrolysis 

increased by 18.1% and 13.5% in 4 h for substrate concentration of 10 g L
-1

 and 40 g L
-1

 

respectively, indicating process intensification has been achieved. This reaction rate and 

conversion enhancement is considered to take place through a combination of enhanced mass 
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transfer and mixing, increased interfacial surface area, the protection of the enzymes by 

woolen cloth from deactivation, and the increased residence time of the substrate on the disc 

due to the liquid holdup within the cloth [13]. Besides, the immobilized enzyme in the SCDR 

had good reusability maintaining 80% of its original activity after 15 consecutive runs. The 

enzyme leakage from the cloth support was very slight when the SCDR was operated under 

surface shear of 9500 s
-1

: only accounting for 0.32% of total immobilized enzyme amount on 

the cloth [13]. The thermal stability of immobilized lipase was significantly improved 

compared to its free form. The thermal deactivation rate of immobilized lipase was found to 

follow the Arrhenius law with the thermal deactivation energy of 199 kJ mol
-1

 [14]. 

The flow characteristics in the SCDR was also investigated by using residence time 

distribution (RTD) analysis and visual dye staining of the cloths with immobilized enzyme 

[15]. The results indicated that the flow pattern in the SCDR was essentially well-mixed – a 

vast contrast to the plug flow behavior found in the conventional SDRs. This indicates that 

the SCDR is a different class of rotating process intensification reactor from the traditional 

SDR – a new reactor class the authors have classified as the Spinning Mesh Disc Reactor 

(SMDR). The flow patterns and regimes in the SCDR were also classified at different 

spinning speeds and flow rates, with two flow regimes observed in the visual study within the 

spinning cloth: radial finger-like flow and concentric flow [15].  

The previous research has also shown that the liquid in the SCDR can penetrate through the 

cloth and there is immobilized enzyme inside the cloth, thus allowing the enzyme catalyzed 

reaction to occur inside as well as on the outside of the woolen cloth [13, 16]. This allows the 

SCDR to utilize all the available surface area of the woolen cloth that has been occupied by 

the immobilized enzymes for reactions. Currently only one woolen cloth has been 

characterized in the SCDR, however this has also limited the enzyme loading in the SCDRs 
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to the maximum amount that can be immobilized on one woolen cloth. In order to increase 

the enzyme loading in the SCDR, the simplest method would be to increase the number (or 

thickness) of cloths used in the reactor to form a multi-cloth stack on the spinning disc. This 

is desirable, since a higher catalyst loading brings more catalytic sites being available and 

therefore should result in faster reaction rates and a higher volumetric efficiency in the SCDR, 

as long as there are no negative consequences of additional cloth layers present in the SCDR 

(which could include: poor penetration of the liquid throughout the multi-cloth stack, poor 

mass transfer and mixing within the cloth stack). Therefore, to test this hypothesis, in this 

study the effect of the number of cloths in a stack in the SCDR on reaction conversion was 

investigated using tributyrin emulsion hydrolysis as a model reaction. The flow within the 

multi-cloth was characterized by conventional RTD analysis and image study [15].  

2. Materials and methods 

2.1. Materials 

Unbleached organic woolen cloth (color: natural cream, thickness: 1.5 mm) was purchased 

from Treliske (Otago, New Zealand). Amano lipase derived from Pseudomonas fluorescens, 

tritonX-100, tributyrin (98%), sodium bicarbonate, sodium carbonate and polyethyleneimine 

(PEI) were obtained from Sigma-Aldrich (New Zealand). Hydrogen peroxide 30% was 

obtained from Scharlau (Thermofisher, New Zealand). Glutaraldehyde (GA) 25%, disodium 

hydrogen phosphate, sodium dihydrogen phosphate, potassium chloride and hydrochloric 

acid were purchased from Unilab (ECP, New Zealand). Water color dyes (Reeves, UK) were 

obtained from a local market. All solutions were prepared using deionized water (produced 

from Milli-Q Gradient A10 made by Millipore). 

2.2. Preparation of immobilized lipase on woolen cloth 
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The main immobilization procedure has been described in our recent publications [14, 16]. 

The woolen cloth was cut into circular pieces with diameter of 250 mm. The natural woolen 

cloth was first pretreated with a solution containing 30 mL L
-1

 hydrogen peroxide (30%) and 

2 g L
-1

 sodium silicate at pH 9 (0.1 M Na2CO3, NaHCO3 buffer) at 55 °C for 70 min. The 

pretreated woolen cloth was then soaked in 500 mL 2% PEI solution at pH 8 for 2 h at room 

temperature and rinsed with deionized water. The cloth was then dipped in 1 L 2 mg mL
-1

 

lipase solution (0.1 M Na2HPO4, NaH2PO4 buffer, pH 6) for 24 h, followed by immersion in 

500 mL 0.5% (w/v) GA solution (0.1 M Na2HPO4, NaH2PO4 buffer, pH 6) for 10 min to 

achieve crosslinking. The cloth was finally washed with deionized water until no free enzyme 

was detected in the washed solution. The enzyme loading was 46.8 mg per gram of dry cloth 

and activity was 178.3 U per gram of dry cloth determined by using the tributyrin emulsion 

hydrolysis method [16]. 

2.3. Equipment 

As shown in Fig. 1a, the SCDR consists of a liquid feeding system, an overhead stirrer 

connected to a disc, a vessel for catching, containing and funneling liquid from the disc, and a 

reactant solution storage vessel. The spinning disc for supporting the cloth in this SCDR was 

a Perspex disc, 250 mm in diameter, which was driven by a variable speed motor (Glas-Gol, 

US). The multi-cloth (up to 4 cloths) with immobilized lipase was rested (with no means of 

fastening) on the disc as shown in Fig. 1b. Further details can be found in our previous 

publication [13]. 

The tributyrin emulsion was made by adding tributyrin and triton X-100 to phosphate buffer 

(0.1 M, pH 7) with a final concentration range of 10-40 g L
-1

 and 3.5-14 g L
-1

, respectively. 

The mixture was then emulsified with a motor homogenizer (IKA T25 digital, Japan) at 

12,000 rpm for 5 min. The reaction was carried out at 45 °C for 4 h. During the hydrolysis, 
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sodium hydroxide was added into the reactant vessel with a pH stat to keep a constant pH and 

the data was recorded continuously with a PC. Reaction conversion was calculated through 

the amount of sodium hydroxide consumed during the reaction according to Eq. 1: 

(%) 100%
moles of free butyric acid

Conversion
moles of original esters in tributyrin

   

2.4 RTD study 

The schematic diagram of the equipment for the RTD study is shown in Fig. 1a. The cloths 

with immobilized lipase prepared as described in Section 2.2 were used for the RTD study. 

The experimental procedure for this was the same as that used in characterizing the flow 

properties in the SCDR with a single cloth [15]. A solution of 0.5 M KCl was used as the 

tracer and deionized water was used as the test fluid. The tracer conductivity and 

concentration showed a good linear relationship in a concentration range between 0.005 and 

0.5 M, so the RTD can be directly related to the conductivity of the tracer. A conductivity 

probe (Mettler Toledo, Switzerland) was placed in a small vessel which collected the outlet 

solution continuously and the data was logged to a PC every second via LabX direct software 

(Mettler Toledo, Switzerland).  

The deionized water was first fed to the reactor at the desired spinning speed and flow rate 

until the conductivity in the outlet was stable and close to that of deionized water. Then, 1 

mL of KCl was injected quickly to the center of the spinning disc with a syringe. The 

concentration change in the outlet was measured as a function of time.  

The RTD data was analyzed according to references [17, 18]. For the pulse injection of tracer, 

the distribution density function of the residence time E(t) was obtained from the following 

equation: 

(1) 
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The variance of RTD, σt
2
, stands for the discrete level and was obtained from Eq. 4: 
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The dimensionless forms of σt
2 

can be derived from Eq. 5: 

2
2

2

t

t



 

 

The number of tanks-in-series (N) has been widely used to describe the flow pattern in a 

quantitative way. N was calculated as follows: 

2

1
N




 

As can be seen from Eq. 6, N is in reverse relation with σθ
2
, so a high N is characteristic of the 

ideal plug flow (N>50 is usually considered to be a small deviation from plug flow [18]). 

2.5 Visual study 

A dye staining technique was used to study the flow characteristics on and within the 

spinning multi-cloth. The equipment setup for visual study is shown in Fig. 1a, and the feed 

is a dye solution. A blue water color was selected as the tracer. For each run, deionized water 

(2) 

(3) 

(4) 

(5) 

(6) 
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was first fed to the spinning multi-cloth at the desired spinning speed and flow rate until the 

cloth was fully saturated. The feed was then changed to the dye solution. As soon as the dye 

came out at the center of the cloth, images were taken until the cloth was completely covered 

with the dye. 

3. Results and discussion 

3.1. Preparation of multiple lipase immobilized cloths with similar enzyme activity 

Ten new cloths with immobilized lipase were prepared for the multi-cloth SCDR study. Each 

of the ten new cloths was placed in the SCDR using deionized water as feed and spun at 350 

rpm for 2 h to wash off the free lipase. After that, the activity of each cloth was tested in the 

SCDR for 1 h with 10 g L
-1 

tributyrin emulsion as feed. The reaction time course is shown in 

Fig. 2. The conversion among the ten different new cloths is similar (conversion ranges from 

48.4 % to 51.6 %) and the relative standard deviation among them was 2.4 %. This shows 

that the immobilization technique developed gives a repeatable and consistent immobilization 

onto the woolen cloths, which further indicates that this protocol is a significant step toward 

enabling the use of wool as a cheap, renewable and effective lipase support material [16]. 

Although the cloths can provide similar enzyme activity, there are still some small 

differences in activity, so the ten cloths were used equally across the experiments and divided 

into four groups for testing the differences among one cloth, two cloths, three cloths and four 

cloths in the SCDR. To keep the activity balanced between each group, the cloths with 

relatively high and low activity were divided into the same group. By doing this, the spread 

of activity between the groups (determined as relative standard deviation in terms of 

conversion) for the four groups is reduced to 0.76 %, which is acceptable within the 

experimental uncertainty present in the data. 
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3.2. Comparison of usage of one and two cloths at different substrate concentrations 

As can be seen from Fig. 3, at all the different concentrations studied, tributyrin showed a 

higher conversion with two cloths, which further proves that the reaction also happens inside 

the cloth, since the cloth volume (enzyme loading) increases with the number of cloths 

present. Since the outer surface area of cloth present does not increase significantly with two 

cloths, this result means that it is unlikely that it is only the outer surface bound enzymes that 

are catalyzing the reaction. In addition, different concentrations showed different magnitudes 

of increases in conversion: only a slight increase in conversion was observed for tributyrin 

concentration of 10 g L
-1

 and 20 g L
-1

 (1.5 % and 2.3 % respectively), whilst a larger increase 

in conversion was observed for tributyrin concentration of 30 g L
-1

 and 40 g L
-1

 (5.7 % and 

5.3 % respectively). For lower substrate concentrations, the reaction goes to completion faster 

(since the catalyst-substrate ratio is higher) even with one cloth, indicating that the required 

number of active sites (lipase) available for the reaction time is most likely already present, 

and so an additional cloth (and therefore additional enzymes) would not further increase the 

reaction rate or conversion. However, for reactions with a higher substrate concentration, 

there is a lower catalyst-substrate ratio, and it is likely that there is insufficient enzymatic 

catalyst available for the amount of substrate present in the residence time on the cloth, 

resulting in only a partial conversion of the substrate, so an increase in enzyme loading (via 

an increase in the number of cloths) results in a higher reaction rate and conversion.  

Overall, these results confirm the hypothesis that increasing the number of lipase 

immobilized cloths in the SCDR is an effective way of increasing enzyme loading. 

3.3. Optimization of number of cloths in the SCDR 

As stated in Section 3.2, a significant increase in tributyrin conversion was achieved by 

increasing the cloth number from one to two at the higher substrate concentration of 40 g L
-1

. 
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To find the optimal number of cloths for this substrate concentration (since increasing the 

enzyme loading should in theory increase reaction rate and overall conversion in the time 

period studied, up to the point at which all enzyme active sites are occupied for the residence 

time available), three and four cloths in the SCDR were further investigated in this section.  

As can be seen from Fig. 4, as expected, the tributyrin conversion increased with an increase 

in the number of cloths in the SCDR. As the number of cloths increased from two to three, 

the conversion of the 40 g L
-1 

tributyrin increased from 55.4 % to 67.2 % after 4 h, which was 

close to the completion of reaction, since the conversion becomes very slow after 66.7 % 

conversion due to 1,3 specific property of the lipase used in this study [19]. Considering the 

relative standard deviation was 1.3 % and 0.98 % for 2 cloths and 3 cloths respectively, this 

increase in conversion caused by using more cloths (and therefore more enzyme) was 

significant and again indicates that there is most likely good wetting and penetration of the 

reaction liquid throughout the cloth stack (this will be further studied in Section 3.4 and 3.5). 

As the number of cloths in the SCDR stack further increased to four, the conversion was 

similar to that of three cloths, and only a slight increase of 2 % conversion was obtained. 

However, as can be seen from Fig. 5, the reaction rate in the first 30 min of four cloths (4.0 

mM min
-1

) was higher than that of three cloths (3.0 mM min
-1

). Therefore, for 40 g L
-1 

tributyrin, three cloths could completely hydrolyze all the substrate within 4 h, and further 

increase in cloth number would not significantly increase the conversion, but the reaction 

would proceed much faster with higher reaction rate, due to the more available active sites for 

the residence time provided by the higher catalyst-substrate ratio with more immobilized 

enzyme cloths. These results indicate that the enzyme loading in the SCDR can be simply 

adjusted by changing the cloth number on the spinning disc.  

3.4. RTD analysis of the effect of multiple lipase immobilized cloths 
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The above results indicate that an increase in the number of cloths can increase the enzyme 

loading in the SCDR, thus producing higher reaction rates and conversions, up to the point at 

which no further rate increase is possible at the substrate concentration being used. To 

determine if this limitation is a result of a limit on substrate to enzymes/active sites needed in 

the residence time available, or is related also (or perhaps even primarily) to the flow 

behavior within the cloth, an analysis of the RTD and a visual characterization of the liquid 

flow within and on top of the cloths was performed. The results from the RTD analysis will 

be presented first. 

As can be seen from Fig. 6, the mean residence time (from center of disc to the reactor outlet) 

increased with an increase in the number of cloths. As expected (based on our previous work 

[15]), this increase in mean residence time was also controlled by spinning speed and flow 

rate: at a low spinning speed and flow rate, the increase in mean residence time with number 

of cloths was significant for all of the conditions tested (for example, the mean residence time 

is 56.2 s, 65.2 s, 77.5 s at disc speed of 50 rpm and flow rate of 2 mL s
-1

 for one cloth, two 

cloths and three cloths respectively); however, as the increase of spinning speed and flow rate, 

the increase in mean residence time with increasing numbers of cloth in the SCDR became 

insignificant (for example, the mean residence time is 15.2 s, 17.8 s, 18.4 s at disc speed of 

500 rpm and flow rate of 8 mL s
-1

 for one cloth, two cloths and three cloths, respectively). 

These results can be explained in terms of the increased liquid trapped hold-up volume 

(considered as a resistance to flow) created by increasing numbers of cloths in the SCDR 

versus the increased centrifugal force on the fluid at increased spinning speeds and the 

amount of volume that can be trapped within the cloth being exceeded with increased flow 

rates. For a greater number of cloths, the trapped volume of liquid will increase under the 

same conditions, since there is a greater volume and therefore greater resistance to flow over 

the cloth covered, increasing the residence time of the disc as a result. At higher spinning 
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speeds, the increased centrifugal force on the fluid will act to decrease the amount of liquid 

hold-up (essentially compressing the volume and forcing liquid out of the cloths and off the 

disc at a faster rate than at lower spinning speeds). At higher flow rates, the residence time 

decreases for the same number of cloths, since the increased flow rate is pushing liquid 

through the cloth discs at a faster rate (as expected). Therefore, as the spinning speed and 

flow rate increases, the effect of the trapped volume of liquid provided by multi-cloth 

becomes less significant compared to the higher centrifugal force, thus leading to the similar 

mean residence time for different cloth numbers.  

There is one exception to this however - at flow rate of 2 mL s
-1

, the residence time of two 

cloths and three cloths at 150 rpm was longer than that at 50 rpm, which was abnormal 

because in theory, no matter how many cloths were on the disc, the mean residence time 

should decrease with an increase in disc speed and flow rate. One explanation is that at disc 

speed of 50 rpm, the centrifugal force was too low to facilitate the liquid going through all the 

cloths, which means the liquid only passes through part of the volume of the cloths. This is an 

exception, since as the disc speed increased to 150 rpm, there was sufficient centrifugal force 

to force the liquid through more of the volume of the cloths, therefore increasing the mean 

residence time.  

Therefore, there are two reasons for the higher reaction rates and conversion when increasing 

numbers of lipase immobilized cloths used in the SCDR: the increased catalyst loading (and 

therefore active site availability) and the increased mean residence time of multiple cloths on 

the disc. 

To determine the effect of increasing the number of cloths on the reactor flow behavior, the 

number of tanks-in-series was determined for the RTD data, as presented in Fig. 7. As 

previously noted, a large number of tanks-in-series (N) means that the flow pattern is close to 
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plug flow (N>50 is usually considered a small deviation from plug flow) and the opposite 

indicates a more well-mixed (CSTR) behavior.  

As can be seen from Fig. 7, for the SCDR with one cloth, two cloths and three cloths, N 

generally increased with the increase in spinning speed and flow rate, implying that a more 

narrow distribution of residence time was obtained, which brings the reactor performance 

closer to plug flow. However, the overall flow pattern is always closer to a well mixed reactor 

than a plug flow reactor, which is in stark contrast to conventional SDRs. This is also 

consistent with the previous RTD study with one cloth in the SCDR [15] . N decreased with 

the increase in the number of cloths in the SCDR, indicating the reactor becomes better 

mixed with a greater number of cloths. For example, N decreased from 10 to 6 as the cloth 

number increased from one to three at spinning speed of 500 rpm and flow rate of 8mL s
-1

. 

This is expected since the application of one cloth makes the SCDR deviate away from the 

typical plug flow compared to conventional SDRs [15], so adding more cloths should make 

this phenomena more pronounced. The mechanism would include the change in flow pattern 

caused by the resistance to flow that fiber mesh would create (which would increase mixing, 

sieving and back-mixing) and the fact that more cloths result in more multi-flow channels 

within the SCDR, thus leading to a wider distribution of residence time. In conventional 

SDRs, increased mixing is considered as a disadvantage, however in the SCDR it is an 

advantage, since it facilitates more contact between the substrate and enzyme.  

3.5. Visual analysis of flow types and flow penetration in a multi-cloth SCDR 

The multi-cloth with three layers in the SCDR was run with a blue dye in the water feed to 

allow the flow types and flow penetration to be visualized. As can be seen from Fig. 8 and 

Fig. 9, the two flow types determined for the single cloth SDR are present in the multi-cloth 

SCDR: radial finger-like flow and concentric flow [15]. However, the variation profile of 
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flow type with spinning speed and flow rate was different: for example, concentric flow was 

observed for the multi-cloth SCDR at spinning speed of 400 rpm and flow rate of 8 mL s
-1

 

but radial finger-like flow was observed for single cloth SCDR under the same conditions. 

This might be due to the higher inertial forces (caused by the natural liquid flow paths 

changes within the cloth) present in the three multi-cloth stack, allowing the concentric flow 

to form at a lower spinning speed in the three multi-cloth SCDR [15]. This indicates that the 

use of multiple cloths would not essentially change the flow types, but would instead change 

the flow types present at different spinning speeds and flow rates in the SCDR. Therefore to 

fully characterize the multi-cloth SCDR, these should therefore be mapped out for all the 

different numbers of cloth stacks (as was done for the single cloth SCDR in ref. [15]). 

However, these results will not be presented here. 

One of the key problems that could occur with a multi-cloth SCDR also needs to be tested – 

potentially poor penetration of the liquid throughout the multi-cloth stack. Fig. 8 and Fig. 9 

show that this is not the case: the dye can penetrate through the three layers at both low (100 

rpm) and high (400 rpm) spinning speeds. Generally, the dye did not spread synchronously 

on all the three layers: it spread very fast on the first (top) layer and slowly on the third layer. 

This is due to gradual penetration of the dye through the cloth stack. It was faster for the dye 

to reach the bottom layer at a low spinning speed: cloth layer 3 was completely covered with 

dye after 5 min with a spinning speed of 100 rpm, but was only partially covered with dye 

even after 10 min at spinning speed of 400 rpm.  

These results can be reconciled in terms of the forces acting on the flow over and through the 

multi-cloth layers: gravity force and centrifugal force. The gravity force favors the dye to go 

through the multiple layers since it acts to push fluid down through the cloth and therefore is 

a force for fluid penetration through the cloth stacks. The centrifugal force prevents the fluid 
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from penetrating through the cloth and facilitates it to exit tangentially from the cloth stack 

instead. At low spinning speeds, the magnitude of the gravity force is greater compared to the 

centrifugal force, so the dye reaches the bottom layer faster. With an increase in spinning 

speed, the magnitude of the centrifugal forces becomes more significant with most of the dye 

forced to move towards to the edge of the cloth and thus less dye penetrating through the 

multiple layers. However, in both cases the dye did eventually penetrate through to the 

bottom cloth layer, indicating that at steady state operation (if the reactor was to be run 

continuously), penetration of the fluid and surface coverage of the reactant onto all the 

available immobilized enzyme is not an issue. 

Overall, by combining the RTD and visual analysis of the flow properties, it can be 

concluded that complete wetting does occur in the multi-cloth SCDR and therefore the 

increased reaction rate and conversions observed with greater number of immobilized cloths 

is caused primarily by two factors: increased enzyme loading and increased residence time. 

These results indicate that there is a further factor that allows easy control and tunable 

operation of the SCDR: the number of cloths. Through this, the enzyme loading can be easily 

varied and tailored to the reaction system desired. 

4. Conclusions 

In this study, a multi-cloth stacked SCDR (using one to four cloths) was investigated using 

tributyrin emulsion hydrolysis as a model reaction. The flow characteristics within the multi-

cloth stack were characterized by RTD and visual/image analysis. Initial experiments showed 

that increasing the number of cloths in the SCDR could increase reaction rate and conversion: 

for different tributyrin concentrations (10, 20, 30, 40 g L
-1

), the reaction rate and conversion 

increased when the number of cloths was increased from one to two. The reaction rate and 

conversion were then optimized: for the higher concentration of 40 g L
-1 

tributyrin, the use of 
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a three-cloth stack was sufficient to completely hydrolyze all the tributyrin substrate. A 

further increase in number of cloths in the stack would not result in an increase in overall 

conversion. However, reaction rate was affected by increasing number of cloths: the reaction 

rate kept increasing from 1.9 to 4.0 mM min
-1

 as the number of cloths in the stack increased 

from one to four.  

The increased reaction rate and conversion observed with greater number of immobilized 

cloths was determined to be caused primarily by two factors: increased enzyme loading and 

increased residence time. RTD studies showed that the mean residence time increased with 

the increase of number of cloths at different spinning speeds and flow rates, due to flow 

existing inside the volume of multiple cloths. The number of tanks-in-series (N) decreased as 

the increase of the number of cloths in the SCDR. This indicates that more cloths can 

increase the well-mixed behavior of the SCDR (decreasing the plug flow behavior), since 

more cloths result in more multiple flow channels within the cloths thus leading to a wider 

distribution of residence time. A visual study tracking a dye staining of the cloths over time 

showed that the multi-cloth stack would not essentially change the flow types already 

observed for a single cloth SCDR. Importantly it showed that the fluid could penetrate 

through the three layers of multi-cloth stack at both low (100 rpm) and high (400 rpm) 

spinning speeds, indicating that complete wetting did occur in the multi-cloth SCDR. 

Therefore, hydrodynamics in the multi-cloth stack SCDR is not a problem.  

Overall, these results indicate that the enzyme loading in the SCDR can be easily varied and 

tailored to the desired reaction system by simply changing the immobilized enzyme cloths 

number, which allows easy control and tunable operation of the SCDR. Considering the merit 

of reaction intensification of SCDR, the results in this study further indicate that the SCDR is 

a superior and flexible new process intensification technology for enzyme catalyzed reactions. 
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Future work will now determine if these benefits can be achieved in a range of different 

enzyme catalyzed reactions. 
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Figure legends 

Figure 1(a) Schematic diagram of the multi-cloth in the SCDR setup for RTD analysis and 

visual study. (b) Top view of a two-cloth stack on the disc, each cloth containing 

immobilized enzymes. (c) Top view of a three-cloth stack on the disc, each cloth containing 

immobilized enzymes.  

Figure 2 Time course of tributyrin hydrolysis with the ten newly prepared lipase immobilized 

cloths for this study. Reaction temperature: 45 °C, reaction time: 1 h, flow rate: 5 mL s
-1

, 

spinning speed: 350 rpm. 

Figure 3 Comparison of one and two cloths in the SCDR for tributyrin conversion at different 

substrate concentrations. Each experiment was repeated three times and error bars are the 

mean± one standard deviation. 

Figure 4 The effect of using multi-cloth stack (one to four cloths) in the SCDR on conversion 

over time with tributyrin concentration of 40 g L
-1

. Each experiment was repeated three times 

and error bars are the mean± one standard deviation. 

Figure 5 The effect of number of cloths in the SCDR on the overall reaction rate at tributyrin 

concentration of 40 g L
-1

. Each experiment was repeated for three times and error bars are the 

mean± one standard deviation. 

Figure 6 Results from the RTD analysis of multi-cloth stacks in the SCDR: the mean 

residence time of different multi-cloth stacks in the SCDR at different disc speeds and flow 

rates. Each experiment was repeated three times and the error bars are the mean ± one 

standard deviation. 

Figure 7 Results from the RTD analysis of multi-cloth stacks in the SCDR: the number of 

tanks-in-series (N) of different multi-cloth stacks at different spinning speeds and flow rates. 

Each experiment was repeated three times and the error bars are the mean ± one standard 

deviation. 

Figure 8 Images of the different layers in the multi-cloth stack with dye at flow rate of 8 mL 

s
-1

 and spinning speed of 400 rpm. 
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Figure 9 Images of the different layers in the multi-cloth stack with dye at flow rate of 8 mL 

s
-1

 and spinning speed of 100 rpm. 
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Figure 1(a) Schematic diagram of the multi-cloth in the SCDR setup for RTD analysis and 

visual study. (b) Top view of a two-cloth stack on the disc, each cloth containing 

immobilized enzymes. (c) Top view of a three-cloth stack on the disc, each cloth containing 

immobilized enzymes.  

 

  



 

23 

 

 

Figure 2 Time course of tributyrin hydrolysis with the ten newly prepared lipase immobilized 

cloths for this study. Reaction temperature: 45 °C, reaction time: 1 h, flow rate: 5 mL s
-1

, 

spinning speed: 350 rpm. 
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Figure 3 Comparison of one and two cloths in the SCDR for tributyrin conversion at different 

substrate concentrations. Each experiment was repeated three times and error bars are the 

mean ± one standard deviation. 
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Figure 4 The effect of using multi-cloth stack (one to four cloths) in the SCDR on conversion 

over time with tributyrin concentration of 40 g L
-1

. Each experiment was repeated three times 

and error bars are the mean ± one standard deviation. 
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Figure 5 The effect of number of cloths in the SCDR on the overall reaction rate with 

tributyrin concentration of 40 g L
-1

. Each experiment was repeated for three times and error 

bars are the mean ± one standard deviation. 
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Figure 6 Results from the RTD analysis of multi-cloth stacks in the SCDR: the mean 

residence time of different multi-cloth stacks in the SCDR at different disc speeds and flow 

rates. Each experiment was repeated three times and the error bars are the mean ± one 

standard deviation. 
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Figure 7 Results from the RTD analysis of multi-cloth stacks in the SCDR: the number of 

tanks-in-series N of different multi-cloth stacks at different spinning speeds and flow rates. 

Each experiment was repeated three times and the error bars are the mean ± one standard 

deviation. 
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Figure 8 Images of the different layers in the multi-cloth stack with dye at flow rate of 8 mL s
-1

 and 

spinning speed of 400 rpm. 
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Figure 9 Images of the different layes in the multi-cloth stack with dye at flow rate of 8 mL s
-1

 and 

spinning speed of 100 rpm. 


