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ABSTRACT 33 

Ultra-endurance races are extreme exercise events that can take place over large parts 34 

of a day, several consecutive days, or over weeks and months interspersed by periods 35 

of rest and recovery. Since the first ultra-endurance races in the late 1970s, around 36 

1000 races are now held worldwide each year, and more than 100,000 people take 37 

part. While these athletes appear to be fit and healthy, there have been occasional 38 

reports of severe complications following ultra-endurance exercise. Thus, there is 39 

concern that repeated extreme exercise events could have deleterious effects on health 40 

which might be brought about by the high levels of reactive oxygen species (ROS) 41 

produced during exercise. Studies that have examined biomarkers of oxidative 42 

damage following ultra-endurance exercise have found measurements to be elevated 43 

for several days, which has usually been interpreted to reflect increased ROS 44 

production. Levels of the antioxidant molecule reduced glutathione (GSH) are 45 

depleted for one month or longer following ultra-endurance exercise, suggesting an 46 

impaired capacity to cope with ROS. This article summarises studies that have 47 

examined the oxidative footprint of ultra-endurance exercise in light of current 48 

thinking in redox biology and the possible health implications of such extreme 49 

exercise.  50 

 51 

 52 
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ULTRA-ENDURANCE EXERCISE 59 

Traditional endurance exercise is usually defined as activity that is sustained 60 

for between thirty minutes and four hours [1]. The term “ultra-endurance” is used to 61 

describe a variety of extreme and prolonged exercise racing events, which can involve 62 

either single or multiple sporting modalities. These activities are usually undertaken 63 

with little or no rest, over large parts of a day or consecutive days. Other types of 64 

ultra-endurance races happen over several days or weeks, interspersed by periods of 65 

recovery, and can take place in a variety of environmental conditions (e.g., tropical, 66 

temperate or desert climates, sometimes at high altitude). Consequently, the 67 

physiological demands of ultra-endurance events differ considerably.  68 

Various interpretations have been made as to what constitutes ultra-endurance 69 

exercise, some of which are sport-specific and defined by distances travelled, rather 70 

than the duration of exercise. For example, with foot races (i.e., walking or running), 71 

ultra-marathons involve competitors covering a distance greater than a traditional 72 

marathon (26.2 miles or 42.2 km; with typical marathon completion time ranging 73 

between 2 and 6 hours). With triathlon, ultra-distance exercise (also branded 74 

“ironman”) involves swimming for 2.4 miles (3.8 km), cycling for 112.0 miles (180.2 75 

km) and running for 26.2 miles (42.2 km). Typical ironman completion times range 76 

between ≈8 and 17 hours. While broader duration-based definitions of ultra-77 

endurance exercise include activities undertaken for more than four hours [2], this 78 

review considers ultra-endurance exercise to be; performed for at least six hours [3]; 79 

running over a distance of ≥50 miles (80.4 km); and when triathlon events meet ultra-80 

distance criteria. The majority of studies discussed examine continuous ultra-81 

endurance exercise that it is not separated by periods of recovery (i.e., sleep). 82 

Although analysis of some oxidative stress biomarkers suggest an additive effect of 83 

repeated ultra-endurance exercise, analysis of other biomarkers suggests that 84 

clearance or repair processes can be initiated between sampling points and bouts of 85 

exercise [4]. Thus, studies investigating multi-day events including rest periods, or 86 

those that focus on nutritional interventions are beyond the scope of this review.  The 87 

aim of this work is to discuss ultra-endurance exercise in the context of current 88 

thinking in redox biology, highlighting the possible implications of engagement in 89 

extreme exercise. 90 

 91 

SCIENTIFIC INTEREST IN ULTRA-ENDURANCE EXERCISE 92 

With a few exceptions (e.g., continental expeditions and the Tour de France 93 

cycling race), mass-participation in ultra-endurance exercise began in the late 1970s. 94 

It is now estimated that more than 1000 ultra-endurance events take place worldwide 95 

each year with more than 100,000 people competing [5]. Despite reports that 96 

prolonged exercise and large training loads may impair immunity and increase the 97 

incidence of upper respiratory tract infections [6], ultra-endurance athletes report 98 

fewer missed work or school days due to illness and injury compared with the normal 99 

population, and generally exhibit a low incidence of chronic disease [7]. However, 100 

health concerns have been raised about participation in ultra-endurance events, 101 

including long-term cardiac damage, potentially mediated by the high levels of 102 

reactive oxygen species (ROS) that are produced during exercise [2, 8]. Thus, a 103 

number of studies have examined whether redox homeostasis is altered after bouts of 104 

ultra-endurance exercise.  105 

 106 

EXERCISE-INDUCED REACTIVE OXYGEN SPECIES PRODUCTION 107 
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 Molecular species, including superoxide (O2
−), hydrogen peroxide (H2O2,), 108 

nitric oxide (NO) and peroxynitrite (ONOO−), collectively referred to as ROS, are 109 

formed within and around most body cells through normal processes such as 110 

respiration and signalling [9]. A number of sources have been identified that increase 111 

ROS output in a variety of cells during exercise, including the mitochondrial electron 112 

transport chain, prostanoid metabolism, and the autoxidation of haemoglobin, 113 

myoglobin and catecholamines [9-11]. Another significant example includes the 114 

production of O2
−  by nicotinamide adenine dinucleotide phosphate (NADPH)-115 

oxidase for signalling purposes in contracting muscle and some types of immune cells 116 

(e.g., T-lymphocytes) or for destruction of pathogens by others (e.g., activated 117 

phagocytes such as neutrophils) [9, 10]. Finally, during ischemia reperfusion, the 118 

conversion of purines to uric acid, which normally proceeds via xanthine 119 

dehydrogenase, instead occurs via xanthine oxidase, producing O2
−[9, 10].  120 

Within the intracellular and extracellular fluid, and embedded within cell or 121 

organelle membranes, various molecules with antioxidant properties exist to buffer 122 

ROS [9, 10]. Examples include vitamins (e.g., vitamin C; ascorbic acid, and vitamin 123 

E; tocopherol), enzymes (e.g., superoxide dismutase; SOD, catalase; CAT, 124 

glutathione peroxidase; GPx, peroxiredoxins; PRDXs and thioredoxins; TRXs) and 125 

various co-factors, such as the thiol, reduced glutathione (GSH). Sometimes these 126 

antioxidant molecules participate in signalling cascades themselves following 127 

interaction with ROS [9, 10]. However, it is thought that the production of ROS 128 

during exercise can be so large that antioxidant defences are overwhelmed, resulting 129 

in oxidative damage to proteins, lipids and DNA [9, 11]. Adducts on these molecules, 130 

referred to as biomarkers of oxidative stress, have been shown to be increased 131 

following ultra-endurance exercise, and speculated to indicate clinically relevant 132 

alterations to redox homeostasis [2, 9, 11]. 133 

 134 

ULTRA-ENDURANCE EXERCISE AND OXIDATIVE STRESS  135 

  Table 1 shows studies that have investigated non-stop ultra-marathons [12-136 

17]. With the exception of one study [12] and the non-finishers included in another 137 

[15, 16], the duration of ultra-marathons (27 to 48 hours) was considerably longer 138 

than the ultra-distance triathlons [18-23] and multi-sport events [24, 25] shown in 139 

Table 2 (7.5 to 12.5 hours). It can also be seen that generally, the alterations in redox 140 

homeostasis, indicated by measuring biomarkers of oxidative stress, are more 141 

consistent between ultra-marathon athletes (and between different biomarkers in these 142 

studies), compared to investigations of ultra-distance triathletes (see Table 2). For 143 

example, biomarkers of lipid peroxidation, such as malondialdehyde (MDA), lipid 144 

hydroperoxides (LPO) and F2-isoprostanes (F2iso) are consistently higher 145 

immediately after ultra-marathons, and remain elevated for 24 to 48 hours [12-15] 146 

(see Table 1). Thiobarbituric acid reactive substances (TBARS) appear to be a less 147 

robust measure of lipid peroxidation following exercise, often showing counter-148 

intuitive decreases soon after ultra-marathons and ultra-distance triathlons [17, 19]. 149 

To assist with the interpretation the results above, the reader is directed towards a 150 

comprehensive review covering the strengths and weaknesses of commonly measured 151 

oxidative stress biomarkers [26]. 152 

As shown in Tables 1 and 2, the effects of ultra-endurance exercise on 153 

antioxidant levels appear at first glance to be varied. Measures of antioxidant capacity 154 

have been shown to be increased [13, 14], decreased [17, 18] or exhibit no change 155 

[19, 25] in the hours and days after ultra-endurance exercise. The apparent 156 

inconsistency is likely due to one or both of the following factors. (A) The use of 157 
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different methodology to assess antioxidant capability (e.g., measuring the protein 158 

level of a single intracellular antioxidant enzyme vs. the reducing capacity of several 159 

extracellular antioxidants). For example, total plasma antioxidant capacity is typically 160 

elevated for one to two days after ultra-endurance exercise [14, 21]. While this 161 

antioxidant response is partly mediated by acute ascorbic acid flux from the adrenal 162 

glands [27], plasma antioxidant capacity is also influenced by acute dietary intake 163 

[28], which is often not controlled. Increased levels of intracellular antioxidants are 164 

perhaps less sensitive to acute fluctuations with diet [29], and reflect increased protein 165 

transcription or enzymatic re-synthesis in response to ROS [9, 10]. Thus, the levels of 166 

intracellular and extracellular antioxidants may change in response to different stimuli 167 

and may reflect different antioxidant mechanisms post-exercise. (B) The direction of 168 

change in a measurement of antioxidant capability is related to the biological 169 

properties of the antioxidant mechanism. For example, interaction between 170 

antioxidant molecules occurs across a series of reactions (e.g., detoxification of O2
− 171 

by SOD produces H2O2 that is converted to H2O by a number of enzymes, including 172 

CAT, PRDXs and also GPx with GSH as a co-factor) [9, 10]. Thus, increased activity 173 

or levels of one antioxidant molecule influences the activity and levels of others, 174 

making it difficult to interpret values for single antioxidants unless all elements of this 175 

sequence are assessed in the same study, and in the same cell. 176 

The overall picture is that ultra-endurance exercise results in a transient 177 

increase in antioxidant capability, and if the exercise-induced ROS production is 178 

severe or prolonged, then antioxidant molecules are depleted and may not be return to 179 

normal levels for at least one month [15]. Although the source of ROS during ultra-180 

endurance exercise remains unclear, one study has shown that the capacity for 181 

mitochondria to produce ROS is increased immediately after 24 hours of running, 182 

cycling and kayaking, returning to normal within 28 hours [24].  183 

 184 

THE GRAND UNION CANAL RACE: A 145-MILE ULTRA-MARATHON  185 

 Our group have contributed to understanding of how ultra-endurance exercise 186 

affects redox homeostasis by examining a single-stage, 145-mile ultra-marathon that 187 

took place over two days [15, 16]. Blood samples were collected for up to one month 188 

after the race, and multiple processes in redox biology were investigated in plasma, 189 

erythrocytes, and peripheral blood mononuclear cells [15, 16]. In the first report we 190 

showed that plasma lipid hydroperoxides were increased above pre-race values for 24 191 

hours and plasma protein carbonyls were elevated for seven days [15] (see Table 1). 192 

Consistent with other reports [21] non-specific damage to lymphocyte DNA was 193 

detectable for 24 hours, some of which was oxidative-stress specific [15]. As has been 194 

shown previously by others, DNA damage is rapidly repaired by enzymes such as 8-195 

oxoguanine DNA glycosylase the activity of which is up-regulated after exercise [30]. 196 

However, studies examining other measures of DNA damage, including chromosome 197 

breakages or abnormalities, and measures of mis-repaired DNA have shown little 198 

effect of exercise (see Table 2) [20].  199 

Another notable finding from this report [15] was depletion of GSH measured 200 

in whole blood (i.e., GSH that is largely derived from erythrocytes) for one month, 201 

comparable to levels found in a number of pathologies [31]. This result suggests that 202 

ultra-endurance exercise either; results in an excessively large and sustained effect on 203 

ROS production beyond the end of the exercise period; affects the activity of enzymes 204 

that recycle or produce GSH (i.e., glutathione reductase, γ-glutamylcysteine, 205 

glutathione synthetase); or alternatively, depletes key precursors for GSH (i.e., L-206 

glutamine and L-cysteine) as has been shown by some studies [6].  207 
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In our second report, we examined whether the depletion of GSH, the 208 

principal redox regulator in erythrocytes, generalised to similar molecules in 209 

lymphocytes, by examining the antioxidant enzyme peroxiredoxin-2 (PRDX2) [16]. 210 

This molecule is critical for lymphocyte function, including proliferation and 211 

activation [32], and if it is depleted following exercise, might partly explain the 212 

reports of dysregulated immunity following large volumes of exercise [6]. Confirming 213 

the generalisibility of persistent oxidative stress between cell types, lymphocyte 214 

PRDX2 showed comparable changes to GSH in erythrocytes [16]. Central to PRDX2 215 

function is a redox active cysteine, which serves to reduce ROS, becoming oxidised to 216 

form different oligomeric or redox states of PRDX2, each with different fates. Mild 217 

oxidation results in the formation of sulphenic acid whereas severe oxidation (i.e., 218 

over-oxidation) produces sulphinic acid or sulphonic acid. While the first 219 

modification is reversible by antioxidants such as TRX, the latter two modifications 220 

are largely irreversible and subsequently cleared from the cell. Analysis in our second 221 

report [16] showed that PRDX2 was “over-oxidised” by ultra-endurance exercise 222 

suggesting that the mechanism for depleted PRDX2 might involve excessive 223 

production of ROS, subsequent change in oligomeric state and probable clearance by 224 

the proteasome [16]. The implications of these findings and others are presented in 225 

the next section. 226 

 227 

IMPLICATIONS OF ULTRA-ENDURANCE EXERCISE: UNANSWERED 228 

QUESTIONS IN REDOX BIOLOGY AND IMMUNOLOGY 229 

 230 

Should exercise-induced ROS production be prevented with antioxidant 231 

supplementation? 232 

The long-term effects of excessive exercise-induced ROS production are 233 

unknown, but many athletes supplement their diets with antioxidants assuming 234 

protection from oxidative damage. In the context of ultra-endurance exercise, there is 235 

no consistent evidence that antioxidant supplements prevent elevated biomarkers of 236 

oxidative stress, and some studies have even shown an exacerbating effect of 237 

supplementation on biomarker frequency [33, 34]. Further, evidence shows that 238 

athletes are naturally equipped with a strong capacity to buffer exercise-induced ROS. 239 

In a detailed study of antioxidant capacity and ultra-endurance exercise, it was shown 240 

that plasma concentrations of most vitamins remained within a normal physiological 241 

range, were adequate compared to recommended values, remained at levels above 242 

those required to saturate cells, and provided protection against exercise-induced 243 

oxidative DNA damage [35]. However, significant decreases in carotenoids and γ-244 

tocopherol below normal values were reported 24 hours after exercise [35]. In some 245 

studies deleterious effects of supplementation have been reported [33, 34], therefore, 246 

unless nutritionally deficient, dietary antioxidants are probably unnecessary for ultra-247 

endurance athletes, except for perhaps during short periods of recovery [35].  248 

It has been argued that the view of exercise in general causing “oxidative 249 

stress” needs revision [10, 11, 33]. Although ultra-endurance exercise probably causes 250 

a transient and manageable oxidative insult, regular exercise training results in 251 

adaptive processes [10, 33]. ROS-induced adaptation includes an increased capacity 252 

to buffer ROS (e.g., production of enzymatic antioxidants) but also changes 253 

associated with metabolism (e.g., mitochondrial biogenesis), improved exercise 254 

capacity (e.g., vasodilation) and other important health-related processes (e.g., insulin 255 

sensitivity, fatty acid storage, and glucose control) [10, 33]. Thus, the rationale for 256 

preventing or limiting exercise-induced ROS production has been questioned and 257 



 7

tested experimentally, with some studies showing that antioxidant supplementation 258 

negates the beneficial effects of exercise [36], and others showing that exercise 259 

adaptation occurs despite supplementation [37].  260 

To understand whether exercise-induced ROS production should be limited or 261 

prevented, possible implications for cell function caused by protein oxidation could 262 

be examined in future research. Use of oxidative fluorescence difference gel 263 

electrophoresis (Oxi-DIGE), a novel gel-based proteomic technique, would allow for 264 

the redox proteome of blood samples collected at two different time-points (e.g., 265 

before and upon completion of ultra-endurance exercise) to be examined 266 

simultaneously, and might reveal proteins important for cell function that have been 267 

oxidatively modified [38]. 268 

 269 

Could decreased PRDX2 level and redox-state affect cell-mediated immunity after 270 

ultra-endurance exercise? 271 

Changes in the level and redox-state of PRDX2 in lymphocytes, in particular 272 

T-lymphocytes, might in part explain inflammatory activity following ultra-endurance 273 

exercise [16]. Mild oxidation of PRDX2 (i.e., formation of sulphenic acid) is essential 274 

to control T-lymphocyte activation by buffering hydrogen peroxide levels [32]. 275 

However, depletion of PRDX2, due to excessive ROS production, over-oxidation 276 

(i.e., formation of sulphinic or sulphonic acid), and subsequent removal from the cell, 277 

could result in exacerbated T-lymphocyte activation and proliferation [16]. In support, 278 

mice lacking PRDX2 exhibit uncontrolled T-lymphocyte responses following viral 279 

challenge causing lethal inflammatory pathology [32]. Thus, PRDX2 over-oxidation 280 

might stimulate a T-lymphocyte derived inflammatory response, which is possible 281 

considering these cells are potent producers of cytokines such as interleukin-6 and 282 

tumour necrosis factor-α [39].  283 

It is not known whether the depletion in lymphocyte PRDX2 seven days after 284 

ultra-endurance exercise [16] might also be evident in other cells of the immune 285 

system, and this merits further investigation. For example, dendritic cells are 286 

important tissue sentinels that detect and ingest invading pathogens and parts of dying 287 

or infected body cells in order to initiate immune responses. PRDX2 allows dendritic 288 

cell differentiation by regulating hydrogen peroxide levels via its mild oxidation, 289 

providing protection from ROS-induced cell death [40]. However, if PRDX2 is 290 

depleted in dendritic cells due to over-oxidation and clearance, the ensuing non-291 

reducing intracellular environment, associated with depletion of other antioxidants, 292 

such as thiols, could impair anti-viral immunity. For example, when dendritic cells 293 

activate T-lymphocytes, cysteine is provided to increase lymphocyte surface thiols 294 

[41]. Further, other dendritic cell processes could be impaired, considering that 295 

oxidative stress has been shown to prevent antigen processing [42].  296 

 297 

Could ultra-endurance exercise result in latent viral reactivation? 298 

Herpes viruses are ubiquitous in the population and are never eliminated by 299 

the immune system, remaining dormant (‘latent’) for prolonged periods in infected 300 

host cells, interrupted by periods of viral replication and disease (‘reactivation’). 301 

Examples include varicella zoster virus; the cause of chicken pox and shingles, 302 

Epstein-Barr virus; the cause of infectious mononucleosis, and cytomegalovirus; 303 

implicated in ageing of the immune system. Viral reactivation has been shown in 304 

response to a variety of physiological and psychological stressors, such as very 305 

strenuous exercise training, spaceflight, depression, anxiety, and other forms of acute 306 

psychological stress [43-45]. Moreover, conditions associated with oxidative stress 307 
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and inflammation (e.g., systemic lupus erythematosus) are associated with viral 308 

reactivation [46]. We hypothesise that ultra-endurance exercise may also result in 309 

viral reactivation, which might be brought about by an indirect or direct effect of 310 

ROS. First, ultra-endurance exercise might impair the control of latent viruses due to 311 

suppression of cell-mediated immunity by oxidative stress. Second, exercise-induced 312 

ROS production might stimulate viral replication directly considering that another 313 

persistent virus, human immunodeficiency virus (HIV), has been shown to reactivate 314 

via redox-mediated transcription of NFκB in virus-harboring cells [47].  315 

 316 

Could decreased GSH levels potentiate acetaminophen (paracetamol) toxicity? 317 

Ultra-endurance exercise depletes erythrocyte GSH levels by ≈66% for 24 318 

hours, and levels remain ≈33% lower than normal one month later [15]. Animal 319 

studies have shown that exercise-induced changes in the levels of GSH measured in 320 

blood also reflect changes in a variety of body tissues, including skeletal and cardiac 321 

muscle, and organs such as the spleen, brain, thymus and liver [48]. If ultra-endurance 322 

exercise depletes liver GSH to the same extent as erythrocyte GSH [15] then these 323 

effects are comparable to acute acetaminophen overdose, which can lower liver GSH 324 

by ≈80-90% [48]. Other animal studies have shown that very strenuous exercise 325 

impairs liver detoxification of acetaminophen and potentiates hepatotoxicity [49]. 326 

Considering the likelihood of ultra-endurance competitors requiring analgesic 327 

medication, the possibility of an impaired capacity to detoxify acetaminophen is of 328 

particular relevance. Moreover, due to recent papers showing that acetaminophen can 329 

improve sports performance by increasing power output during exercise and reducing 330 

thermal strain [50], there is a possibility that use of this medication will become 331 

widespread in athletes. Future research is therefore warranted to examine whether 332 

other pain relief might be more appropriate for ultra-endurance athletes (e.g., non-333 

steroidal anti-inflammatory drugs, that are cleared by other pathways).  334 

 335 

CONCLUSION 336 

As the first wave of ultra-endurance athletes, now aged between 60-70 years, are 337 

examined in studies and receive routine healthcare, data providing insight into the 338 

long term health benefits or risks of ultra-endurance exercise will soon become 339 

available. In anticipation, studies continue to examine the effects of ultra-endurance 340 

exercise on redox homeostasis. The present review highlighted some of the main 341 

findings in this area, discussed possible consequences of exercise induced ROS 342 

production, and suggested several avenues for further research that may help to 343 

advance the field. 344 

 345 

  346 
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Table 1. Oxidative stress and ultra-marathons. 481 

 482 
Study Subjects1 Mode Distance Duration Samples2 Summary of selected results 
Kanter [12] 9 m Running 50 miles  ≈ 8.5 h Post Serum: MDA  
(1998)       
Nieman [13]  22/9 m/f Running 99 miles ≈ 27 h Post Plasma: F2iso, LPO, FRAP 
(2003)       
Skenderi [14] 16/2 m/f Running 153 miles ≈ 33 h Post Plasma: F2iso, =MDA, TAC, Rbc: ns GSH  
(2008)     48 h Plasma: F2iso,MDA, TAC, Rbc: ns GSH 
       
Turner [15, 16] 9 m Running 145 miles ≈12 - 40 h Post Plasma: PC, LPO, Rbc: GSH, PBMC: DNA, FPG, ns PRDX2  
(2011 & 2013)     24 h Plasma: PC, LPO, Rbc: GSH, PBMC: DNA, = FPG,  =    PRDX2 
     7 days Plasma: PC, = LPO, Rbc: GSH, PBMC: = DNA, = FPG,     PRDX2 
     28 days Plasma: = PC, LPO, Rbc: GSH, PBMC: = DNA, = FPG,  =    PRDX2 
       
Klapcinska [17] 7 m Running ≈174 miles 48 h  Post Plasma: ns TBARS, Rbc: ns SOD, ns GSH 
(2013)     24 h Plasma: ns TBARS, Rbc: ns SOD,    GSH 
     48 h Plasma:  =    TBARS, Rbc: ns SOD, ns GSH 
 

Legend for Table 1: 1 m/f is males/females. 2 all post-exercise samples compared to a pre-race sample.  statistically significant increase,  statistically 483 
significant decrease, ns non-significant increase, ns non-significant decrease, = no change, Serum: cell free component of clotted blood, Plasma: cell free 484 

component of anticoagulated blood, Rbc: erythrocytes, PBMC: peripheral blood mononuclear cells, PC: plasma protein carbonylation, TBARS: Thiobarbituric 485 

acid reactive substances, MDA: malondialdehyde, F2iso: F2isoprostanes, LPO: lipid hydroperoxides, FRAP: ferric reducing ability of plasma, TAC: total 486 
antioxidant capacity of plasma, CAT: catalase, SOD: superoxide dismutase, GPx: glutathione peroxidase, GSH: reduced glutathione, DNA: non-specific DNA 487 

damage, FPG: formamidopyrimidine glycosylase sensitive DNA damage, PRDX2: Peroxiredoxin-2.  488 

  489 
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Table 2. Oxidative stress and ultra-distance triathlon or multi-sport events. 490 
        
Study Subjects1 Mode Duration Samples2 Summary of selected results  
Ginsburg [18] 26/13 m/f Tri ≈ 12.5 h Post Plasma: Vit A, =Vit C, = Vit E, LPO 
(1996)      
Margaritis [19] 12 m Tri ≈ 7.5 h Post Plasma:  =TBARS, Rbc: =GSH, =GSSG, =SOD, =GPx 
(1997)    6 h Plasma: TBARS, Rbc: =GSH, =GSSG, =SOD, =GPx 
    24 h Plasma:  =TBARS, Rbc: =GSH, =GSSG, =SOD, =GPx 
    48 h Plasma:  =TBARS, Rbc: =GSH, =GSSG, =SOD, =GPx 
    96 h Plasma:  =TBARS, Rbc: =GSH, =GSSG, =SOD, =GPx 
      
Reichold [20] 20 m Tri ≈ 10.5 h Post PBMC: Micronuclei,  =Nucleoplasmic bridges,  =Nuclear buds  
(2008)    5 days PBMC: Micronuclei,  =Nucleoplasmic bridges, Nuclear buds  
    19 days PBMC: Micronuclei, Nucleoplasmic bridges,  =Nuclear buds  
      
Neubauer [21] 42 m Tri ≈ 11 h Post Plasma: TAC, MDA, Rbc: SOD,  CAT, =GPx, PBMC: DNA, ns ENDO, ns FPG 
(2008)    24 h Plasma: TAC,  =MDA, Rbc:  =SOD,   CAT, =GPx, PBMC: DNA, ns ENDO, ns FPG 
Wagner [22]    5 days Plasma:  =TAC,  =MDA, Rbc: SOD, nsCAT, =GPx, PBMC: =DNA, ns ENDO, ns FPG 
(2009)    19 days Plasma:  =TAC,  =MDA, Rbc: SOD,   CAT, =GPx, PBMC: =DNA, ns ENDO, ns FPG 
      
Pinho [23] 18 m Tri NR Post Plasma: TBARS, LPO, PC, Rbc: SOD, CAT 
(2010)      
Sahlin [24] 8 m Multi 24 h  Post Mitochon: ns HNE,  ROS, Muscle: ns GPx, =SOD 
(2010)    28h Mitochon:     HNE,  = ROS, Muscle:     GPx, =SOD 
      
Dantas de Lucas [25]  11 m Multi ≈ 10 h Post Plasma: PC, Rbc: TBARS, = CAT 
(2014)      

Legend for Table 2: 1 m/f is males/females. 2 all post-exercise samples compared to a pre-race sample. NR: Not reported. Tri: Ultra-distance triathlon, Multi: 491 

running, cycling, kayaking,  statistically significant increase,  statistically significant decrease, ns non-significant increase, ns non-significant decrease, = no 492 
change, Serum: cell free component of clotted blood, Plasma: cell free component of anticoaggulated blood, Rbc: erythrocytes, PBMC: peripheral blood 493 

mononuclear cells, Mitochon: muscle mitochondria, Muscle: homogenised muscle, PC: plasma protein carbonylation, TBARS: Thiobarbituric acid reactive 494 

substances, HNE: 4-hydroxynonenal, MDA: malondialdehyde, F2iso: F2isoprostanes, LPO: lipid hydroperoxides, FRAP: ferric reducing ability of plasma, TAC: 495 

total antioxidant capacity of plasma, CAT: catalase, SOD: superoxide dismutase, GPx: glutathione peroxidase, GSH: reduced glutathione, GSSG: oxidized 496 
glutathione ROS: reactive oxygen species, Micronuclei: result from chromosome breakages or chromosomes lagging behind at anaphase during cell division, 497 
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Nucleoplasmic bridges and Nuclear buds both originate from mis-repaired DNA. DNA: non-specific DNA damage, ENDO: endonuclease III sensitive DNA 498 

damage, FPG: formamidopyrimidine glycosylase sensitive DNA damage,  499 

 500 


