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Examining the feasibility of using a modelling tool to assess resilience 

across a health care system and assist with decisions concerning 

service reconfiguration 

 

Abstract 

Changes in medical practice, demographic shifts and financial pressures are all 

examples of factors that may contribute to demand for periodic changes in the 

configuration of health services. When reconfiguring a service, health planners often 

take into account projected demand for services, patient access criteria and budgetary 

constraints (amongst other things), but typically give little consideration  regarding its 

resilience to deliver services during and after external disruptions to its capability to 

deliver. In this paper we discuss a study conducted in response to a direct request 

from the National Health Service (NHS) Resilience Project within the Department of 

Health to explore the feasibility of assessing resilience across local services within the 

NHS and developing a computer software tool to assess resilience of different service 

reconfigurations. We give an account of the modelling process used, including the 

analytical framework we developed using both optimisation and heuristic methods, 

and an illustrative example of usage of a prototype software tool. We also highlight 

the key lessons that emerged during this project, which may be helpful to OR analysts 

working on similar projects regarding resilience in the public sector. 

 

Keywords 

Practice of OR, Health service, Optimization. 

 

Introduction 

Emergency preparedness can help reduce the impact to society and the economy of 

major disruptions such as fuel shortages, an influenza pandemic or widespread 

flooding. Preparing for such events may comprise a range of measures and is often 

required to be co-ordinated across local, regional, national and sometimes 

international borders. In this paper, we focus on emergency preparedness in health 

care and, in particular, those aspects that are related to resilience. In the context of this 

work and as defined by the project’s client, we use the term resilience to mean the 
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capability of a health system to mitigate the impact of major external disruptions on 

its ability to meet the needs of the population during the disruption. Considerations of 

health system resilience may include strategic decisions, such as the allocation of 

health service provision across different sites, as well as operational decisions, such as 

the design of robust stock management for essential health care supplies. In this work 

we focus on the former.  

 

Periodic alterations in the configuration of health services arise as a result of political 

cycles, changes in medical practice, demographic shifts and financial pressures 

amongst other things. The decision-making behind reconfiguration is complicated and 

multifaceted, with health planners taking into account factors such as budgetary 

constraints, projected demand for services, the accessibility of services to patients, 

economies of scale and quality of service provision (Imison, 2010; Fulop et al., 2010). 

The configuration of a health system can affect its resilience. For example, 

reconfiguration often involves the concentration of services to enhance safety, 

effectiveness and efficiency, but this might result in a system with key services 

available at fewer sites which may be more liable to disruption. Yet it is not common 

for resilience to be taken into account explicitly in decisions concerning service 

reconfiguration within the English National Health Service (NHS). The desire to 

routinely and systematically include considerations of resilience within planning 

motivated the NHS Resilience Project within the UK Department of Health to 

instigate the research presented here.  

 

In this paper, we give an account of an Operational Research (OR) project conducted 

in response to a specific request from the Department of Health to explore the 

feasibility of assessing resilience across local health services and developing a 

computer software tool to assist with decisions concerning service reconfiguration in 

the NHS in England. The aim of the work was to investigate the potential role of OR 

in assessing resilience at a local-regional level in England and to explore the 

feasibility of developing a computer software tool to assist with decisions concerning 

service reconfiguration. We note that this request was made within the context of a 

broader UK-wide program on resilience (Cabinet Office, 2013) and other initiatives 

relating to the NHS being conducted by the Department of Health (e.g. Department of 

Health, 2008). 
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In the next section we describe in more detail the background of this work and give a 

brief summary of some relevant literature in the field. We then give a detailed account 

of the project, including an outline of an analytical framework devised, a model and 

prototype software tool developed to facilitate engagement with the envisaged end 

users, and a brief example of illustrating the use of the tool. Finally, we summarise the 

project outcomes and discuss the insights generated by the project including the 

challenges faced and the key lessons learned.  

 

Background 

In recent years there has been a number of relevant editorial, review and position 

papers on the role of OR in emergency preparedness and emergency response 

management (Altay and Green, 2006; Brandeau et al., 2009; Green and Kolesar, 

2004; Larson, 2004; Larson, 2006; Simpson and Hancock, 2009; Wein et al., 2009; 

Wright et al., 2006). The problems tackled cover a wide variety of application areas. 

Up until the 1990s, the majority of work in the field focused mainly on ‘routine 

emergencies’ within the context of established emergency services such as fire, police 

and ambulance (Simpson and Hancock, 2009). Research was largely concerned with 

determining the optimal number, location and allocation of response units within 

municipal services, as exemplified by the large body of influential work emanating 

from the New York City - RAND Institute (Green and Kolesar, 2004; Larson, 2002).  

 

More recently, there has been a shift in focus away from routine emergencies towards 

larger scale ‘disaster emergencies’, which occur “when resources become stressed, 

when non-standard procedures must be implemented to save life or when special 

authorities must be invoked to manage the event” (Altay and Green, 2006). Much of 

this work focuses on applications in security (Larson, 2004; Wein et al., 2009; Wright 

et al., 2006), the health care component of which is mainly concerned with the 

response to bioterrorist threats such as deliberate introduction of anthrax or smallpox 

(Hupert et al., 2002; Lee et al., 2009; Wein et al., 2003; Zaric et al., 2008). Other 

published examples of OR applied specifically to health care within a disaster 

emergency context, of which there are relatively few, include planning for emergency 

mass dispensing and vaccination clinics – in a pandemic influenza or otherwise (Aaby 
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et al., 2006), the routing of ambulances to hospitals in a disaster (Jotshi et al., 2009) 

and the design of interventions in a pandemic influenza (Eichner et al., 2007). 

 

An extensive selection of OR techniques has been used by researchers in the area of 

emergency preparedness. The most common appear to be mathematical programming 

including heuristics (e.g. Rolland et al., 2010), probability and statistics, and 

simulation (Green and Kolesar, 2004; Simpson and Hancock, 2009). More 

specifically in health care, discrete event simulation has been applied to the problem 

of designing antibiotic and vaccination distribution centres in the case of bioterrorist 

attacks or pandemic influenza (Aaby et al., 2006; Hupert et al., 2002; Lee et al., 

2009), whilst compartmental modelling and queuing theory have been used to 

compare various emergency responses in the event of an anthrax attack (Wein et al., 

2003; Zaric et al., 2008). Tufekci and Wallace (1998) point out a lack of information 

and decision support systems in the field, whilst Simpson and Hancock (2009) note 

that OR studies within disaster emergency preparedness have had relatively little 

influence on policy or practice, highlighting the need for positive engagement with 

responders and policy makers in future research. 

 

To the best of our knowledge, there are no OR studies reported in the literature that 

address the problem of health system resilience. Whilst we have not conducted a 

systematic review of the area, a search of the PUBMED, Web of Science and 

INFORMS databases using the keywords “resilience” and “health system” or “health 

service” did not return any relevant articles (although we acknowledge that these 

search criterion may have excluded other related keywords used by authors). A 

similar outcome was obtained by back-referencing the recently published review 

articles in OR and emergency preparedness or disaster planning (Brandeau et al., 

2009; Green and Kolesar, 2004; Simpson and Hancock, 2009). The relatively small 

body of OR work applied to health care in disaster emergencies is generally focused 

on a specific type of disaster and/or a narrow range of emergency responses affecting 

a small part of the health care system. The work reported in this paper is more 

generic, motivated by our aim of scoping a tool for use in aiding decisions concerning 

service reconfiguration at a strategic level.  
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Modelling process 

MODELLING APPROACH  

Given the remit of the project (to explore the feasibility of developing a computer 

software tool to assess resilience of different service reconfigurations), and the wide 

scope and complexity of the problem, we decided to formulate a deterministic model 

in the first instance. This approach was based on the notion that if one cannot build 

and populate a simple model of service delivery, as required for the purposes of this 

problem, then doing so for a more complex, stochastic model would be unrealistic.  

 

The intended use of the proposed model is to give an assessment of the impact of a 

given pattern of disruption to health care resources and infrastructure, including 

supply chains, on the capability of the health system to respond to the attendant 

pattern of demand (in terms of number of cases) for certain care services. In doing 

this, it seems sensible to consider feasible responses to disruption in terms of 

reallocation of resources. In this work we have chosen to incorporate a range of such 

responses within the model (using optimisation and heuristic methods to capture 

response) to take into account inherent uncertainty surrounding the nature of this 

response. 

 

The schematic diagram in Figure 1 gives an overview of how the proposed modelling 

tool fits into a broader analytical framework. The specific cause of the disruption 

under consideration (e.g. pandemic influenza, inland flooding or severe weather) does 

not explicitly inform the assessment of impact other than by informing, in some 

process outwith the scope of the model, both the pattern of disruption to health care 

infrastructure and the pattern of demand for acute care services. We envisage that 

users would generate disruption scenarios in line with regional and national initiatives 

for disruption planning such as the Community Risk Registers (see, for example, 

Warwickshire County Council, 2011) and the National Risk Register for Civil 

Emergencies in the UK (Cabinet Office, 2008). The pattern of disruption associated 

with a scenario is taken as an input to the model and is defined by reductions in 

resources (in the broadest sense) at specific hospitals. In a similar fashion, the pattern 

of demand associated with a scenario is taken as an input to the model and is defined 

by demand for health care services at each hospital.  
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Figure 1: A schematic diagram showing the scope of the model (inside the dashed 

line) within a broader analytical framework. 

MODELLING TOOL 

Conceptually, the model represents a stylised health system comprising three basic 

entities: care services (each a combination of a defined set of health care interventions 

for a specified group of patients), hospitals and resources (such as staff, clinical 

environments, utilities, and clinical and non-clinical supplies). Figure 2 illustrates the 

relationships between these three entities. The ‘requirement’ relationship gives the 

numerical amounts of each resource required to deliver care services, whilst the 

‘availability’ relationship gives the amount of each resource available at each hospital 

(intrinsically or via a supply chain). The demand for care services (‘demand’) is 

quantified in terms of the number of cases.  
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Figure 2: The three conceptual entities (hospital, service and resource) and their 

relationships as used in the model. Resources are assumed to be intrinsic to a hospital 

or available via a supply chain (organisat7ions and/or companies that are not under 

the direct control of the NHS).  

Summary of modelling assumptions  

The health care system is modelled in simple terms akin to an industrial process, 

whereby a range of different activities (health care services) take place, each requiring 

resources of different types. We assume that hospitals may provide a number of care 

services and that each individual case is managed entirely at a single hospital. 

Furthermore, we assume that there is no variability in the resources required to deliver 

a single case of a given service, either between individuals or across hospitals. 

Disruption to the availability of resources is assumed to be fixed over a single period 

of interest. We also assume that demand for services is deterministic and that, 

immediately prior to the period of interest, demand for health services is met. Finally, 

we assume that resources within each hospital can be re-allocated and that, subject to 

resource constraints, the level of each type of care service provided can be adjusted. 

Resilience planning based on unmet demand  

The focus of our analysis is the unmet demand that may occur as a result of disruption 

to resources or a changed pattern of demand, alone or in combination.  In order to 

estimate unmet demand however, a view has to be taken as to what might constitute a 

plausible response to disruption on the part of the local health system. Given that we 

do not know what the precise nature of such a response will be, we formulated a range 

of possible responses of varying degree of sophistication (using optimisation and 

heuristic methods) based on discussions with stakeholders and for the specific 

purposes of this feasibility study. We note that some unmet demand (e.g. elective 

cases that can safely be delayed) could potentially be deemed less important than 

others (e.g. emergency cases that cannot safely be delayed). For this reason, the model 

was designed to allow for an optional weighting to be associated with the perceived 

importance of each service by the user. We did not address in our research the actual 

method for allocating these weights. 
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Optimisation-based response to disruption  

The optimisation-based approach, which represents the most sophisticated response to 

disruption considered, is based on an assumption that resources would be optimally 

allocated to services within and between hospitals in order to minimise unmet 

weighted demand. Technically, an integer programming problem is formulated to 

express the problem of minimising unmet weighted demand by reallocating resources 

and determining levels of different forms of care service within each hospital. The 

optimisation is subject to constraints related to the observation that care service 

activity over the period of interest (in terms of number of cases treated) cannot exceed 

demand (and must be non-negative) and that such activity is also constrained by the 

availability of each resource. A mathematical description of the optimisation model is 

in the Appendix.  

Heuristics-based response to disruption  

In addition to the integer programming method, three different heuristic algorithms 

were formulated, each reflecting plausible rules for resource allocation in the face of 

disruption. The first algorithm represents a ‘business-as-usual’ approach until the first 

resource constraint is reached. It calculates the service activity under disruption by 

scaling down the pre-disruption activity by the minimum feasible proportion given the 

reduced resource availability. The second algorithm considers each resource in turn 

and scales down the caseload delivery by an appropriate factor to reflect the reduction 

in resource availability. Finally, the third algorithm attempts to prioritise the highest 

priority care services (ranked according to user-defined weights) as far as possible by, 

potentially, redirecting resources away from services deemed to be of lower priority. 

A technical description of all three algorithms is in the Appendix. 

Suspension of non-emergency care services 

In the description above we have assumed that service managers will attempt as far as 

possible to maintain the delivery of all types of care services during a disruption (with 

some services potentially having higher priority). An alternative response, which was 

included in the modelling tool, may be to temporarily suspend low priority care 

services in times of disruption to free up resources to deal with more urgent or higher 

priority care services. 
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Prototype software tool 

A working version of a prototype software tool was developed to facilitate the 

engagement with potential end users and project stakeholders and the communication 

of the proposed model’s structure and data requirements. It was also used to test the 

computational feasibility of the envisaged mathematical framework by enabling the 

construction of illustrative examples (see below for example). In the prototype, the 

user can enter realistic test data in terms of number of services, resources, hospitals 

and the supply chain, as well as an optional weighting associated with the perceived 

importance of each service. The relationship between services and resources and the 

availability of resources at each hospital are also user-defined. Scenarios are specified 

as changes to the quantity of resources available at each hospital and the post-

disruption demand for services associated with each hospital. The prototype was 

developed using MS Excel, making use of Solver to implement the optimisation 

problem and Visual Basic for Applications (VBA) routines to code the heuristic 

algorithms.  

ILLUSTRATIVE TOOL USAGE 

As part of the process of engaging with project stakeholders, we populated the 

prototype software using an illustrative example involving a hypothetical local health 

system under different service configurations. We used the example to showcase the 

analysis of the effects on the health system of resource reductions of a type and 

magnitude thought to be plausible by the sponsors of this study and of interest to them 

within the remit of this work. The model parameters were estimated, in part, by 

publicly available data regarding the English NHS (where possible) and with other 

estimates based on expert opinion. We stress that the example was developed for 

illustrative purposes only and is not intended to represent any real health care system. 

A fully calibrated case study would potentially consider a larger range of services and 

resources (for example, a richer and more representative range of staff inputs and 

some attempt to capture the range of equipment and drugs used in care provision) as 

well as more detailed data describing the demand. 

 

The example was designed to reflect some stylised aspects of acute care service 

provision in an area with a population of about 500,000 people. We considered three 
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service configuration scenarios informed by a well-documented tendency towards 

centralisation in healthcare (Academy of Medical Royal Colleges, 2007; King's Fund, 

2007; Pollock et al., 1999). The first was the ‘status quo’ scenario under which all 

services take place at all hospitals (Figure 3a). In the remaining two scenarios 

paediatric and paediatric and maternity care services were centralised at a small 

number of the hospitals in the local health system (Figure 3b and 3c).   

 

The reductions to the resources at each hospital were of a type and magnitude that 

might reasonably be associated with widespread inland flooding within the catchment 

area of the health system as outlined in national and regional emergency preparedness 

planning scenarios. We considered three levels of resource disruption associated with 

the flooding, corresponding to mild, moderate or severe disruption (Table 1).  

 

Table 1: Disruption levels and corresponding resource reduction 

Disruption 

scenario  

Disruption to 

availability of 

beds  

Disruption to 

availability of 

staff 

Disruption to 

own-source 

resources 

Disruption to 

supply-chain 

resources 

mild 0% 30% 10% 20% 

moderate 0% 50% 20% 40% 

severe 20% 70% 30% 70% 

 

The adoption of these resource disruptions was based on the following assumptions: 

 Flooding is more likely to disrupt the supply chain provision of resources than 

on-site resource provision due to disruptions in the transport infrastructure.  

 Flooding is unlikely to affect the availability of beds unless it is severe and 

directly affects hospital infrastructure. 

 Flooding is likely to cause a relatively large scale disruption to staff 

availability via its effects on the transport infrastructure. 
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Figure 3: Schematic representation of the example scenarios of service 

reconfiguration and disruption considered. 

 

We assumed that flooding causes resource disruption at three of the medium-sized 

hospitals, two of which coincide with hospitals at which maternity and paediatric 

services are centralised (the third hospital at which maternity services are centralised 

was assumed not to have been affected), Figure 3d. 

 

The resilience of acute care service provision under differing levels of service 

centralisation was analysed in terms of unmet demand for a range of disruptions (of 

differing severity) that affect resource availability but maintain fixed levels of 

demand. The model inputs and the particulars of the disruption and centralisation 

scenarios are outlined briefly in Table 1 and Table 2; further details of the numerical 

inputs used, along with the assumptions used to arrive at these inputs, are contained in 

the Supplement. 

 

a) Existing configuration of services b) Centralisation of paediatric services 

c) Centralisation of paediatric and maternity services d) Levels of flooding leading to disruption 

paediatric 

services 

maternity 

services 

surgery 

acute 

medicine 
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Table 2: Model inputs and description of the disruption and centralisation scenarios of 

the illustrative example (further details of the numerical inputs used, along with the 

assumptions used to arrive at these inputs, are contained in the Supplement) 

Model inputs Description 

Care services  Eight care services are offered within hospitals of the local health 

system, namely: Paediatric, Maternity, Surgery and Acute 

Medicine, each subdivided into emergency and non-emergency 

care services. 

Hospitals Ten hospitals of varying size are included in the example. It is 

assumed that of these hospitals, two are large, five are medium-

sized and three are small, in terms of demand for various services 

(see Supplement). The total demand for services was considered to 

remain unchanged under disruption. 

Resource 

availability 

The resources available to each hospital prior to disruption were 

calculated based on the demand for services, the resource 

requirement to deliver each service and the assumption of zero 

unmet demand prior to disruption. The Supplement contains 

further details on the calculations involved. 

Configuration 

options 

In addition to the ‘status-quo’ option already discussed, we 

considered two possible reconfiguration options (see Figure 3): 

Option 1 - Centralisation of paediatric services. Paediatric services 

are concentrated at two medium-sized hospitals, with total demand 

for these services unchanged from the status quo but distributed 

equally between the two specialist paediatric hospitals. 

Option 2 - Centralisation of paediatric and maternity services. 

Paediatric services are concentrated as in option 1; maternity 

services are concentrated at three medium-sized hospitals, with 

total demand for these services unchanged from the status quo but 

distributed equally between the three specialist maternity hospitals. 

Scenarios 

 

The reductions to the resources at each hospital were of a type and 

magnitude that might reasonably be associated with widespread 

inland flooding within the catchment area of the health system as 

outlined in national and regional emergency preparedness planning 

scenarios and agreed by project stakeholders (Figure 3). We 

considered three levels of resource disruption associated with the 

flooding, corresponding to mild, moderate or severe disruption. 

The details of the numerical effects on resource availability are 

summarised in Table 1 and the Supplement. 

 

Results of illustrative example 

The model was run for each of the three service configurations and each of the 

disruption levels (mild, moderate and severe). The outputs are summarised in Tables 

3-4, where unmet demand is reported for the optimisation and three heuristic 
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modelling approaches described previously. Table 3 summarises results where it is 

assumed that both emergency and non-emergency services are retained whilst Table 4 

summarises results under the suspension of non-emergency services (see relevant 

subsection above). 

 

The results indicate that in resilience terms, centralisation may reduce the ability of 

the health service to meet demand for health care. Unsurprisingly, this is especially 

true if disruptions occur at hospitals where specialties serving a wide catchment area 

are located. As expected, more severe disruptions are associated with higher unmet 

demand across the range of system responses. The scale of unmet demand varies 

across the range of models, with its smallest value for the optimisation and largest 

outputs corresponding to the single-step scaling algorithm.  

 

Table 3: The impact of flooding on services, expressed as percentage of unmet 

demand for all services (retaining both emergency and non-emergency services). 

 

Table 4: The impact of flooding on services, expressed as percentage of unmet 

demand for all emergency services, with non-emergency services suspended. 

  Optimi-

sation 

response 

Heuristics response 

Disruption 

severity 
Configuration 

Resource-

based 

Service-

based 

Single 

step 

Mild 

No centralisation 5% 8% 8% 8% 

Paediatrics centralised 7% 10% 9% 10% 

Maternity and paediatrics 

centralised 8% 12% 10% 12% 

Moderate 

No centralisation 10% 13% 13% 14% 

Paediatrics centralised 12% 17% 15% 17% 

Maternity and paediatrics 

centralised 14% 20% 18% 20% 

Severe 

No centralisation 15% 19% 18% 19% 

Paediatrics centralised 19% 24% 23% 24% 

Maternity and paediatrics 

centralised 23% 28% 26% 28% 



 14 

 

Engagement with stakeholders 

The stakeholders in this project can be separated into two groups, namely the “client” 

who defined the project remit and commissioned the work, and the “envisaged end 

users” of any potential software tool. The former was the UK Department of Health 

and the latter are, broadly speaking, national and regional emergency planners. At the 

time of conducting the project, the client defined the primary envisaged end users to 

be the emergency planning leads of the 10 UK Strategic Health Authorities (SHA EP 

leads). 

 

Throughout the project we held regular discussions with the client regarding the remit 

of the work, development of a suitable modelling approach, engagement with end 

users, illustrative prototype usage and the lessons learned from the feasibility study. 

We used the model and accompanying prototype software tool and illustrative 

example to raise awareness of the complex issues involved and to provide a focus for 

these discussions. We also used them to engage with the SHA EP leads in considering 

data requirements and their availability within the health service, and in seeking 

opinion on issues around suitability and usability of tool. 

  Optimi-

sation 

response 

Heuristics response 

Disruption 

severity 
Configuration 

Resource-

based 

Service-

based 

Single 

step 

Mild 

No centralisation 0.4% 4% 0.4% 8% 

Paediatrics centralised 0.4% 5% 0.4% 10% 

Maternity and paediatrics 

centralised 0.9% 7% 0.9% 12% 

Moderate 

No centralisation 5% 8% 5% 14% 

Paediatrics centralised 5% 9% 5% 16% 

Maternity and paediatrics 

centralised 8% 13% 8% 20% 

Severe 

No centralisation 14% 14% 14% 19% 

Paediatrics centralised 15% 18% 15% 22% 

Maternity and paediatrics 

centralised 20% 24% 20% 28% 
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The early stages of the modelling approach were informed by interviews with two 

SHA EP leads. Subsequently, a meeting was held with all of the SHA EP leads in 

which we addressed the following questions: Would the envisaged output of the tool 

be useful to you? What level of detail would such output need to have to be useful? 

Would it help you contribute to the decision-making process? What level of 

confidence in the tool would you need to have? Supplementary questionnaires 

regarding the availability of parameters that would need to be estimated based on 

local knowledge were completed by SHA EP leads as well as a consultant in General 

and Geriatric Medicine, a consultant in Cardio-Thoracic Surgery and a senior 

operations manager of a large teaching hospital. The outcomes of these consultations 

and the lessons learnt informed the final decision taken by the client. 

 

Discussion 

This paper gives an account of an Operational Research (OR) project conducted in 

response to a specific request from the National Health Service (NHS) Resilience 

Project within the Department of Health to explore the feasibility of assessing 

resilience across local health services and developing a computer software tool to 

assist with decisions concerning service reconfiguration in the NHS in England.  

 

We developed a generic analytical framework for modelling the impact on care 

service activity of potential disruptions to a health system and, as a means of 

communicating with stakeholders and to test the feasibility of the suggested model 

and subsequent software tool, we constructed a prototype tool and an illustrative 

example that involves a hypothetical local health system under different service 

configurations. We deliberately adopted a modelling approach that led to simple and 

static model of service delivery, as opposed to a more complex, stochastic model that 

would have allowed the capturing of notions of service variability, on the assumption 

that if it is infeasible to build and populate the former, then it would also be infeasible 

to build the latter. System dynamics, in particular, was considered and rejected on the 

basis of the need for a simple, static approach and the perceived lack of added value 

to the modelling in this particular study by including feedback loops.  
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We note that our approach does not address the capability of the system to return to 

routine activity, which may involve dealing with a backlog of routine activity 

resulting from resources being diverted to deal with the disruption (e.g. increased 

waiting lists for elective care). Nor does our approach allow for disruptions to health 

systems with existing waiting lists (we use a simplifying assumption that, 

immediately prior to a disruption, demand for services is met), and we note that the 

long terms effects on such services could be substantial even if the immediate 

emergency response is adequate. 

 

Both the mathematical model and accompanying prototype software tool differ 

substantially from other published modelling work in the field of emergency 

preparedness, not least because we addressed issues of strategic decisions in health 

system planning as opposed to operational issues arising from disruptions (Green and 

Kolesar, 2004; Simpson and Hancock, 2009). Whilst the benefits of computer 

simulation methods have been exploited in a number of context-specific applications 

within the field (Aaby et al., 2006; Hupert et al., 2002), our choice of modelling 

methodology arising from the envisaged use of the tool, has the benefit of lending 

itself more readily to iterative use as a planning tool and ultimately free distribution to 

end users. 

 

A number of learning points have emerged during this project, both from the research 

and development conducted in relation to the modelling tool and from our 

engagement with potential end users and other health professionals. From a health 

system’s perspective, there seems to be very limited detailed knowledge on the 

number and quantity of services and supplies that are outsourced or provided through 

external supply chains (organisations and/or companies that are not under the direct 

control of the NHS). In addition to having an impact on the calibration of the tool, it 

raises the related question of the actual resilience of the NHS supply chain.  

 

The envisaged end users of the modelling tool voiced concerns regarding the scope 

and utility of introducing new software tools given their workload levels and the 

number of tools and new initiatives for other purposes demanding their attention. Any 

decisions regarding eventual tool implementation and deployment would have to 
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include extensive further engagement with those end users and provisions for 

soliciting and incorporating their feedback. 

 

A key requirement for appropriate use of any modelling tool is knowledge or data 

concerning the resources (such as staff time, clinical environments and equipment, 

supplies and utilities) used in delivering different services. Readily available patient 

activity and administrative national data sources could be used to derive estimates of 

historical demand for services and the quantity of resources required to deliver these 

services to a patient population. Indeed, a calibration strategy was devised as part of 

this project using data from the Hospital Episode Statistics for patient activity and the 

NHS Information Centre for Health and Social Care workforce database for staffing. 

Inevitably, a number of parameters that need to be estimated are not available directly 

from data sources. Although, any existing data could potentially be augmented with 

the tacit knowledge of clinical experts and health managers, with recourse to 

guidelines and other clinical texts where appropriate, it is important to note that 

questions remain as to whether such a tool could be calibrated at a sufficiently 

detailed level for it to be useful. Maintaining and updating the calibration data would 

pose additional and substantial burdens, especially considering the dynamic and 

rapidly changing nature of the NHS.  

 

A number of questions arise in the discourse about the role and scope of OR in 

projects with a strategic focus, as opposed to an operational one, and where the 

constituent elements of the problem are intrinsically unstructured. For example, can a 

simplified model ever capture enough of the essential details of the problem to 

meaningfully address it? On the other hand, is it practical or even possible to build a 

model that includes all necessary details and relaxes most of the restrictive modelling 

assumptions?  Which exactly are the trade-offs between how comprehensive the 

model is, the level of detail within the model and the feasibility of model calibration? 

 

In this paper, we have given a detailed account of an OR project that investigated the 

feasibility of developing a modelling tool that can be used to provide estimates of 

unmet demand for services under conditions of disruption while allowing for different 

levels of system response. The intended usage of such tool would be to provide 

emergency planning personnel with a systematic means of informing improvements to 
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NHS resilience and in assessing the potential impact on resilience of any proposed 

reconfiguration of services. Despite this important role, we identified a number of 

significant barriers to successful implementation and deployment including those 

arising from computational, calibration, maintenance, user acceptability and 

practicality issues.  

 

A sensible way forward for a national or regional health care service interested in 

resilience planning would include an investment into creating and maintaining a data 

repository that will include detailed and current information on health care facilities 

(hospitals etc.), the local availability of resources (staff, supplies etc.) and the 

availability of resources and services that are outsourced to external organisations. 

Such a data repository, in addition to assisting in the operational decision during an 

emergency, should provide the foundation and data needed to then develop a 

modelling tool to assist in resilience planning. 

 

Our work demonstrates the intrinsic difficulty, and yet potential value, of using OR to 

support policy-makers in addressing complex strategic questions for which there is no 

obvious, well-structured method or approach. Informing such debates demands a 

more nuanced approach than that of modelling to support a well-defined operational 

decision. There is a lack of explicit, clear thinking about resilience and the strategic 

consequences of service reconfiguration at present: the work discussed in this paper 

was used to good effect in identifying and presenting different elements of this 

problem both to policy colleagues and regional planners and exploring the potential 

viability of developing and putting to use a software tool. In this regard, our work 

made a beneficial contribution to the decision making process, which, ultimately 

concluded that such a tool was infeasible at present without significant additional 

investment. 
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Appendix 
 

In this section we introduce the notation used to characterise the demand for and 

delivery of health care services within a local health system and its capability to adapt 

service activity in the face of disruption or changed patterns of demand. We begin by 

describing the main elements associated with service activity. This is followed by 

descriptions of the supply and demand relationships which link these elements and the 

various levels of service activity. We then set out the integer programming problem 

that represents the most sophisticated response to disruption considered and discuss 

the computational feasibility of solving such problems. Finally, we describe the three 

heuristic algorithms each reflecting less sophisticated but perhaps more plausible rules 

for resource allocation in the face of disruption. 

MODEL NOTATION 

The following definitions summarise the elements used in the mathematical model, 

where possible following mnemonic conventions: 

 

Let H denote the number of hospitals within the health system, indexed h.  

 

Let C be the number of distinct care services, indexed c.  

 

Let R be the number of distinct types of resources that are considered, indexed r.  

 

For Cc 1 , Hh 1 , let hcd ,
  denote the demand (in terms of the number of cases 

presenting for treatment) over the period of interest for the c-th care service at the h-th 

hospital and hcd ,  denote the demand over the equivalent period prior to disruption.  

 

For Cc 1 , Hh 1 , let hcv ,
  denote the number of cases requiring the c-th care 

service that are treated at the h-th hospital over the period of interest and hcv ,  denote 

the number treated over the equivalent period prior to disruption. 

 

For Hh 1 , Rr 1 , let 1,,rhq  and 1,,rhq  be the quantities of resource r that are 

available from on-site resource reserves at the h-th hospital over the period of interest 
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and over an equivalent period prior to disruption respectively. Similarly, let 2,,rhq  and 

2,,rhq  be the quantities available via the supply chain. 

 

For Hh 1 , Rr 1 , let hrT ,
  and hrT ,  denote the total amount of resource 

r available at the h-th hospital during the period of interest and during an equivalent 

period prior to disruption respectively.  

 

For Cc 1 , Rr 1 , let rcx ,  denote the quantity of resource r  required, per case, 

for the delivery of care service c.  

 

For Cc 1  , Hh 1 , let hcw ,  denote a user-defined weight reflecting the 

perceived importance of providing the c-th care service at the h-th hospital.  

RESILIENCE PLANNING BASED ON UNMET DEMAND 

The focus of our analysis is the unmet demand that occurs as a result of a disruption 

and the extent to which this can be mitigated by the choice of the number of services 

to provide in each hospital. In the model we express the unmet demand under 

disruption for care service c at the h-th hospital as hchc vd ,,
 . The corresponding 

weighted unmet demand is  hchchc vdw ,,,
 . 

 

This unmet demand can be summed over all services and hospitals to give the 

aggregated weighted unmet demand as follows: 

 

     
 


H

h

C

c

hchchc vdwU
1 1

,,, .                  (1) 

 

It is important to note that, due to our assumption that demand is met prior to the 

period of disruption, any unmet demand can be attributed to the disruption.  

 

As stated previously, in order to assess impact, a view has to be taken as to what 

might constitute a plausible response to disruption on the part of the local health 

system. We formulated a number of possible responses, chosen as they characterise 
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responses that have varying degrees of sophistication. The first formulation is based 

on an assumption that resources would be allocated to services within each hospital in 

order to minimise unmet demand. There follow three different heuristic algorithms 

characterising plausible rules for resource allocation in the face of disruption.   

OPTIMISATION-BASED RESPONSE TO DISRUPTION 

We begin this section by discussing a number of constraints that are necessary given 

the nature of the model.  

 

We note that, in terms of the notation defined above, the following relationships 

follow from the definitions of the total amounts of different resource types available 

at each hospital over the period of interest: 

 

 2,,1,,, hrhrhr qqT      Hh 1 , Rr 1 .                  (2) 

 

Given that the number of cases treated over the period of interest cannot exceed the 

number of cases presenting for treatment and that both are non-negative, there are the 

following constraints: 

 

 hchc dv ,,0       Cc 1  , Hh 1 .                  (3) 

 

Care activity is also constrained in terms of resource availability, summarised by the 

following: 

 

 hr

C

c

hcrc Tvx ,

1

,,




    Hh 1 , Rr 1 ,                   (4) 

 

which, in view of (2), can be re-written as 

 

 2,,1,,

1

,, hrhr

C

c

hcrc qqvx 


,               Hh 1 , Rr 1 .                 (5) 

 



 24 

An integer programming formulation has been used to express the problem of 

minimising unmet weighted demand by reallocating resources and determining levels 

of different forms of care service within each hospital, by minimising the function U, 

given in (1), subject to (3) and (5) and the requirement that the decision variables 

 hcv ,
  are non-negative integers. 

 

We note that although such modelling implicitly allows for reallocation of resources 

within a single hospital, there are no explicit decision variables related to such 

reallocation, although the numerical values associated with the optimal allocation can 

be inferred from the solution to the integer programming problem. We also note that it 

is theoretically straightforward to extend this approach to include the case where 

resources or demand can be reallocated between hospitals, although at the expense of 

a considerably heavier computational burden (as seen in the results of an investigation 

in the next sub-section). In reality such a response would be challenging given that it 

would require coordinated decision making across hospitals and thus, have opted for 

the more simple case of within-hospital reallocation of resources and demand. 

RESULTS OF COMPUTATIONAL FEASIBILITY TESTS 

Key to assessing the impact of disruption is to gauge what might constitute a plausible 

response to disruption on the part of the NHS. The mathematical framework for the 

impact assessment tool thus introduced various approaches for assessing impact given 

different levels of response. There are limits to the ability of a software tool to solve 

the proposed optimisation problems associated with minimising unmet demand. These 

limits depend on the number of resources, assets, supply chain assets and services that 

are included in the model, as well as hardware and software limitations.  

 

To assess the computational practicalities of the proposed approaches, we compared 

the number of constraints and decision variables for various optimisation problems 

associated with the measurement of disruption and feasible response under illustrative 

but realistic assumptions about the numbers of hospitals, supply chain assets, services 

and resources (Table A1). The first row of the table refers to optimisation within 

individual hospitals, with no reallocation of resources or demand between them; the 

resulting problem is one that could be solved using widely available software. The 
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next three rows refer to optimisation problems concerning the reallocation of 

resources, demand or both across a cluster of five local hospitals; the resulting 

problems could potentially be solved but perhaps only by using specialist software. 

The final three rows refer to the reallocation of resources, demand or both across an 

entire region; the resulting problems would test or exceed the capabilities of specialist 

software.   

 

Table A1: Size of the optimisation-based disruption measure problems. 

 
No of 

hospitals 

No of 

supply 

chain 

assets 

No of 

services 

No of 

resources 

No of 

decision 

variables 

No of 

constraints 

Within-hospital 

optimisation   
1 N/A 15 60 15 105 

Resource 

reallocation  
5 10 15 60 5027 3375 

Demand 

reallocation  
5 10 15 60 601 150 

Resource and 

demand 

reallocation 

5 10 15 60 5103 3450 

Resource 

reallocation  
50 10 15 60 39452 33750 

Demand 

reallocation  
50 10 15 60 6001 1500 

Resource and 

demand 

reallocation  

50 10 15 60 40203 34500 

 

HEURISTIC RESPONSES TO DISRUPTION 

We describe below three simple heuristics devised to characterise differing levels of 

potential response. Once more, we assume fixed resource and demand allocation at 

each hospital. 

Algorithm 1 – Single step scaling of service activity  

This algorithm represents a ‘business-as-usual’ approach until the first resource 

constraint is reached. It calculates the care activity under disruption by scaling down 
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the pre-disruption activity by the minimum proportion that is feasible (given the 

disrupted resource availability). Expressed mathematically, the measure of disruption 

is obtained by defining 
hr

hr

rh
T

T

,

,
min


  and then setting ),min( ,,, hchchhc dvv    for 

Cc 1 . This algorithm is relatively simple and easy to implement, although no 

reallocation of resources between services is incorporated within this response and so 

it is likely to over-estimate impact. We have opted to include it in the analysis and the 

prototype modelling tool as it provides a computationally efficient method of 

obtaining an initial lower bound to the problem. 

Algorithm 2 – Iterative scaling of service activity (resource based) 

The main idea behind this algorithm is to consider each resource in turn and scale 

down the caseload delivery by an appropriate factor to reflect the reduction in 

resource availability. In what follows, let K  be the set of all resources and L  be the 

set of care services. For each care service c, define rL  as the subset of L  consisting of 

all c such that 0, rcx  (i.e. the set of all care services that depend on resource r ). 

 

The algorithm is carried out on a hospital-by-hospital basis, so the full algorithm 

consists of carrying out the steps set out below for each hospital (beginning, for each 

hospital, with K  and L  as the full set of resources and services respectively). 

Step 1: From the set K , pick minr  such that 
hr

hr

T

T

,

,


 is minimised. Calculate the 

scaled care activity for all 
minrLc  at h, conditional on the reduced resource 

availability, by setting 

























 


hchc

hr

hr

hc dv
T

T
v ,,

,

,

, ,min

min

min  for .1 Cc    

Step 2: Update resource availability assuming the delivery described in Step 1 

takes place. Thus, for each resource r , replace hrT ,
  by 





min

,,,

rLc

rchchr xvT . 

Step 3:  Remove the resource minr  from the set K  and remove all care services c 

such that 0
min, rcx  from L . If either K  or L  is empty, the algorithm terminates. 

Otherwise, return to Step 1. 
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Algorithm 3 – Iterative scaling of service activity (service-based) 

The motivation for this algorithm is an attempt to prioritise care services according to 

the user-defined weights hcw , ) as far as possible by, potentially, redirecting resources 

away from services deemed to be of lower priority. The algorithm is carried out on a 

hospital-by-hospital basis, so the full algorithm consists of carrying out the steps set 

out below at each hospital (i.e. for each value of h). 

Step1: From the set of weights  Ccw hc 1,  associated with h, choose the 

largest member and calculate the maximum feasible activity of the associated 

service c at h, which is given by 






 


rc

hr

Kr x

T

c
,

,
min  (where  0: ,  rcc xrK  i.e. the set 

of resources r  required to deliver care service c ). The expression for the service 

delivery is then given by 





















 



hc

rc

hr

Kr
hc d

x

T
v

c

,

,

,

, ,minmin , which precludes the 

possibility of service over-provision. The notation  z  refers to the integer part 

of z . 

Step 2: Update all resource availability assuming the delivery described in Step 1 

takes place. Under this scenario, the resource availability is reduced for all 

resources required in the delivery of c. This means that we replace hrT ,
  by 

hchchr xvT ,,,
  for each resource cKr . 

Step 3: Remove hcw ,  from the set of weights associated with hospital h. If the set 

of weights is empty then terminate the algorithm. Otherwise, return to Step 1. 

 

This algorithm implicitly assumes that all weights are distinct. In the case of equal 

weights, the steps are carried out for all different permutations of the services carrying 

equal weights and the permutation which corresponds to the minimal unmet demand 

is chosen. 
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SUPPLEMENT 

In this supplement, we summarise the numerical inputs for the illustrative example 

described in the main paper and the assumptions and data sources used to calculate 

these inputs. The main data sources used for parameter estimation, where possible, 

were the NHS Information Centre for Health and Social Care workforce database 

(http://www.ic.nhs.uk/), used to gauge the size of the health service workforce, and 

the Hospital Episode Statistics (HES) database (http://www.hesonline.nhs.uk/), used 

to estimate the volume of cases by medical specialty. We also used the published 

findings of previous studies as well as expert opinion. We use a ‘finished consultant 

episode (FCE)’, which is defined by HES as a period of care under the responsibility 

of a consultant of a given medical specialty, as a proxy for a case of a given care 

service. 

CARE SERVICE DEFINITIONS 

The service groupings used in the example correspond, as far as possible, to the 

definitions used by the NHS Information Centre for Health and Social Care workforce 

database, with, in some cases, adjustments to the definitions based on differences in 

categorisation between the HES data and the workforce database. The breakdowns are 

as follows: 

 

 Paediatric services consist of Paediatrics and Paediatric cardiology 

 Maternity services consist of Obstetrics and Gynaecology 

 Surgery consists of Cardiothoracic surgery, General surgery, Neurosurgery, 

Paediatric surgery, Plastic surgery, Trauma and orthopaedic surgery, Urology, 

Ophthalmology and Otolaryngology (the last two placed in the surgical group 

according to the Workforce Database). 

 Acute medicine, for our purposes, comprises the following specialties: Ear, 

Nose and Throat, Accident and Emergency, General Medicine, 

Gastroentorology, Critical Care Medicine, Clinical Haematology, Clinical 

Genetics, Palliative Medicine, Respiratory (Thoracic) Medicine, Infectious 

Diseases, Nephrology, Medical Oncology, Neurology, Rheumatology and 

Geriatric Medicine. This categorisation is based on the General Medicine 

http://www.ic.nhs.uk/
http://www.hesonline.nhs.uk/
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group definition from the NHS Information Centre for Health and Social Care 

workforce database and information from the HES database. 

RESOURCE REQUIREMENTS OF SERVICES 

The numerical values for the resource requirement (per case of a given service) 

reported here are, in some sense, averages of the constituent specialties of each of the 

four aggregated service groups we consider. The medical staff figures for the resource 

requirements are based on the ratio between medical staff full time equivalents (FTEs) 

in a given specialty (obtained from the NHS Information Centre for Health and Social 

Care workforce database) and the number of FCEs for that specialty (obtained from 

the HES database), Table S1. These ratios are summarised in Table S2 and are taken 

to reflect the ‘medical staff intensity’ of each specialty group. 

 

 

Table S1: Resource requirements (units of resource required to deliver a case of 

service) 

  Resource requirements 

Services Resources Emergency 

Non-

emergency
*
 

Acute medical 

 

Bed-days 4.2
¶
 2.1 

Nursing staff-days 6.5
†
 3.3 

Paediatrician-days - - 

Physician-days 1.6 0.8 

Surgeon-days - - 

Obstetrician-days - - 

Units of red blood cells 0.1
‡
 0.06 

Clean instruments (relative measure) 1 0.5 

Maternity Bed-days 1.2 0.7 

Nursing staff-days 3.6 1.8 

Paediatrician-days - - 

Physician-days - - 

Surgeon-days - - 

Obstetrician-days 0.8 0.4 

Units of red blood cells 0.05 0.03 

Clean instruments (relative measure) 1 0.5 
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Paediatric Bed-days 2.8 1.4 

Nursing staff-days 4.2 2.1 

Paediatrician-days 1.9 0.9 

Physician-days - - 

Surgeon-days - - 

Obstetrician-days - - 

Units of red blood cells 0.1 0.06 

Clean instruments (relative measure) 1 0.5 

Surgery Bed-days 4.1 2.1 

Nursing staff-days 4.5 2.2 

Paediatrician-days - - 

Physician-days - - 

Surgeon-days 1.8 0.9 

Obstetrician-days - - 

Units of red blood cells 0.2 0.1 

Clean instruments (relative measure) 2 1 

*
 All non-emergency care estimates were calculated based on the assumption that the resource usage 

for non-emergency care is half that for emergency care. 

¶ 
Estimates of bed-days and clean instruments were based on expert opinion. 

† 
All staff-related estimates were based on a combination of data obtained from the NHS Information 

Centre for Health and Social Care workforce database and HES with assumptions based on expert 

opinion. 

‡
 Estimates of blood usage were based on a combination of data obtained from HES, NHS Blood and 

Transplant and a published paper (Wells et al., 2002),  with assumptions based on expert opinion. 

 

Table S2: Staff intensity per specialty group 

Specialty 

Relative number of medical staff 

in each specialty (adjusted so 

that it is equal to 1 for surgery) 

Maternity 0.5 

Paediatric 1.0 

Surgery 1.0 

Acute 

Medical 0.9 
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Nurse FTEs are defined relative to medical staff FTEs, assuming that each case (FCE) 

requires a contribution from both Medical staff and Nursing & Midwife staff, Table 

S3. 

 

  Table S3: Relative nursing to medical staff FTEs 

Specialty 
Ratio of nursing & midwife staff 

FTEs to medical staff FTEs 

Maternity 4 

Paediatric 2 

Surgery 2 

Acute Medical 4 

 

The resource requirement for blood was obtained by combining NHS Blood and 

Transplant (NHSBT) data with published data (Forster et al., 2003) outlining red 

blood cell unit usage by different specialties. Table S4 summarises the blood resource 

requirement. For simplicity, we have chosen to use the usage of red blood cell 

products as a proxy for all blood use. 

 

Table S4: Blood resource requirement 

Specialty Units of blood per case 

Surgery 0.2 

Maternity 0.05 

Paediatric 0.12 

Acute medical 0.12 

DEMAND 

Table S5 summarises approximate relative demand for the different services, 

expressed as a percentage of the overall demand for all services, based on nationwide 

annual HES figures for FCEs. Also listed is the percentage of that demand that is 

attributed to emergency care (again, based on nationwide annual HES figures). 

 

It is assumed that these relative proportions are constant at all locations and that the 

number and relative size of hospitals within the local health system are as in Table S6. 

 

Table S5: Breakdown of admissions by specialty 
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Service 
% of total 

demand 

% of which is attributable 

to emergency care 

Acute 48 49 

Maternity 15 65 

Paediatrics 10 28 

Surgery 27 37 

 

Table S6: Hospitals within the putative local health system 

Hospital Category Small Medium Large 

Relative size (total 

admissions) 
1 1.5 2 

Number of hospitals 

modelled 
3 5 2 

 

These assumptions allow us to further break down the headline FCE figures on a per-

hospital and per-service basis. These disaggregated demand figures were used as the 

demand input for the model runs. 

RESOURCE AVAILABILITY 

In order to populate the pre-disruption resource availability at each hospital in the 

illustrative example, we assumed that it was equal to the pre-disruption demand for 

resources (calculated from the resource requirements per case and the case demand 

inputs described above), with 5% excess capacity. 
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