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Abstract 

This paper is focused on the analysis of a novel structural health monitoring 

technique based on the inclusion of a thermoresistive network within the structure of 

a traditional CFRP laminate. By exploiting the thermoelectrical properties of shape 

memory alloys (SMA) it is possible to employ them as an embedded heat source to 

rapidly identify the presence of internal defects in composite structures by monitoring 

the time history of the superficial thermal contrast. The sensitivity of the methodology 

was evaluated by testing several samples characterised by embedded defects in 

different positions and with different sizes, together with an analysis of the effect of 

the position of the SMA grid and the intensity of the feeding current. The results 

obtained were compared with traditional NDT inspections such as ultrasonic C-Scan 

and Shearography and showed that material-enabled thermography is able to give 

results comparable with other techniques, saving inspection time and reducing the 

total costs of the analysis. In addition, because the only requirements for the test are 

the presence of an embedded heat source and simple electrical contacts, the 

inspection does not need any external heaters, therefore it is possible to rapidly 

monitor the health status of complex parts without dismounting them from the 

structure.  
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Introduction 

The rapid development of composite materials during the last two decades has 

underlined the necessity for new materials characterised by improved mechanical 

properties in order to extend their fields of applications. However, one of the most 

severe disadvantages of composite structures is constituted by the weak interfacial 

strength between the laminae under compressive loads which makes them sensible to 

impact damage, thus leading to the generation of barely visible impact damage 

(BVID), microcracks and delaminations. 

 

Over the past years, a considerable amount of research has been devoted to evaluate 

an effective solution to this issue, aimed towards the improvement of the impact 

resistance of composite structures [1-3]. According to the literature, this can be 

achieved following different approaches, depending on the typology of intervention 

on the material structure. A first approach consists is the modification of one of the 

components of the material in order to increase its specific properties, reducing its 

weaknesses, thus improving the compatibility between the different phases that form 

the composite structure. Strengthen mechanisms such as matrix toughening [4], 

interface toughening [5] and fibres surface modification [6] belong to this category as 

they operate by increasing the properties of one or more existing phases within the 

material structure.  

 On the other hand, a different approach involves the hybridisation of the composite 

laminate through the embodiment of an additional engineered component 

characterised by specific functions, in order to exploit them to improve the impact 

resistance without affecting the other (desirable and needed) mechanical properties. 
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Hybrid materials reinforced with several engineered phases (such as hollow fibres [7], 

single and multi-walled carbon nanotubes [8, 9], graphene nanolayers and through-

the-thickness reinforcements [2]) have been studied extensively during the last decade 

in order to evaluate how they can enhance the impact resistance of traditional 

laminates, showing good results in terms of energy absorption rate and structural 

vibrations damping . 

Based on these considerations and following a similar methodology, impact properties 

can also be improved by embedding shape memory alloys (SMA) wires within a 

traditional laminate in order exploit their unique properties (superelasticity [10] and 

shape memory effect [11]), to reduce the extent of the internal delamination caused by 

low velocity impacts. These particular properties rise from the transitions between 

two different crystalline structures (martensite and austenite) that can be activated by 

applying temperature gradients or loading the material with an external force.  

Several studies have been focused on the analysis of the enhanced mechanical 

properties of SMA based composites, and a comprehensive review has been carried 

out by Angioni et al [12].  However to this date, only few works have been focused on 

the possibility to exploit the presence of the internal network of SMA to enable 

additional non-structural functions for structural health monitoring (SHM). 

Hideki et al [13] demonstrated that SMA can be used to evaluate the amount of 

damage in a hybridised GFRP by measuring the variation of the electrical resistance 

of embedded NiTi wires. The correlation between strain and electrical resistance 

variation for strain sensing is also the main objective of the work made by Cui et al 

[14] who demonstrated that for the purpose of strain sensing the material must be in 

its martensitic form so that this relationship is linear and independent from 

temperature. Localisation of the damaged areas and extent of the internal strain 
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distribution was also evaluated by Oishi et al [15] who analysed the acoustic emission 

signals generated from the austenite/martensite transformation.  

 

Among the existing damage detection methods, active infrared thermography (IRT) 

represents one of the most promising non-destructive techniques, being able to detect 

subsurface defects for a wide variety of structural materials, including metals and 

composite media [16]. Contrary to passive thermography (which is based on the 

analysis of materials that are naturally at higher temperature than ambient), in the 

active approach an external stimulation is used to induce relevant temperature 

gradients that are recorded using an infrared camera, providing information regarding 

the integrity of structural components.  

Indeed, as the presence of defects reduces locally the heat diffusion rate, when the 

surface temperature is analysed, damaged locations appears as areas of higher 

temperature than the rest of the sample [17, 18]. As a consequence, the thermal 

contrast can be used to locate invisible defects embedded within the material and 

measure their extent. Thermography can detect cracks in Glass Fibre Reinforced 

Plastics (GFRP) composites and it has been also proved to give good results in 

detecting voids, inclusions, and impact damage in Carbon Fibre Reinforced Plastics 

(CFRP) laminates [19]. However, some cracks could pass as undetected in case they 

are aligned parallel to the direction of heat flow.  

The efficiency of the technique is strongly dependent on the way the thermal 

solicitation is given to the sample, being able to affect its feasibility and resolution. 

Indeed, according to the thermal stimulation, it is possible to identify three different 

kinds of thermographic inspection: pulses of light/heat in pulse thermography (PT), 

continuous heating (long pulse) in step heating thermography (SHT), and a sinusoidal 
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heat wave in lock-in thermography (LT). Nonetheless, all the above mentioned 

techniques require the use external heat sources such as infrared radiators or high-

power photographic flashes, which makes them unsuitable for in situ aerospace 

applications as they require each part to be dismounted from the structure in order to 

set-up the heaters and proceed with the inspection.  

 

The aim of this work is the analysis of a novel technique based on the use of SMA 

hybrid composites for in-situ NDT/SHM analysis of aerospace structures. The method 

combines the multi-physical properties of SMA composites with the benefits of 

thermal analysis, being able to guarantee the autonomous inspection of complex parts 

without the needs for expensive external heating devices. Indeed, the heat wave 

generated by a current passing through the internal SMA network will be delayed due 

to the presence of an internal damage, causing a difference in the apparent 

temperature on the sample’s surface that is detected and captured using a thermal IR-

camera (see Figure 1).  
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Thermal images were captured using an electrically cooled IR camera (CEDIP) with a 

resolution of 320 x 240 pixel (width x height), maximum frame rate up to 150 Hz and 

a temperature sensitivity of 30 mK. All tests were conducted at ambient settings (25 

°C). Step Heating Thermography (SHT) was the adopted technique used for the 

estimation of apparent temperature variation at the sample’s surface.  

Aside from the hidden flaws, there are other factors that could affect the acquired 

signal such as optical and electromagnetic noise, local variation of apparent 

temperature (heat noise) and uniformities due to imperfect heating. Therefore, in 

order to avoid any measuring errors, the first 100 frames of acquisition were 

subtracted and then the average for every pixel across the pre-activation frames was 

computed. This “background subtraction” allows focusing only on the thermal 

variation generated by the presence of internal defects, thus eliminating the effect 

given by others variables.  

 

 

Results and discussions 

The first series of tests was conducted on Sample I, in order to analyse the sensitivity 

of the technique when several defects (characterised by different dimensions) are 

embedded at the same depth within the laminate. As it is possible to see from Figure 

7, each wire of Sample I (labelled from 1 to 6) was individually connected to a 

circuitboard in order to regulate the resolution of the thermograms acquired with the 

IR Camera. Indeed, feeding the circuitboard with a constant power, it is possible to 

divert a larger amount of current through a specific portion of the sample by switching 

off some of the SMA connectors, resulting in a local increase of the heat generated by 

Joule effect in that specific area. As a consequence, the resolution of the acquired 
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Figure 8b shows the thermal image acquired for Sample I feeding 5 wires with 0.36 A 

each. Analysing the thermogram, it is possible to notice that because of the higher 

temperature gradient generated by the circulating current, the small damage (PTFE 3) 

starts to become visible. The resolution can be further increased by a further reduction 

of the number of wires used for the inspection, as showed in Figure 8c (3 wires with 

0.6A for each wire) and Figure 8d (2 wires with 0.9 A for each wire)..  

 

Data recorded from the IR camera are represented in Figure 9, where the response 

obtained from a damaged area (black continuous curve) is compared with the signal 

from an undamaged one (blue dashed curve). 

 
Figure 9 - Differences in the behaviour of the superficial thermal contrast between damaged and 

undamaged areas 

 

As it is possible to see from the image, the presence of an internal damage strongly 

affects the thermal contrast by lowering the total amplitude of the recorded signal 

during the entire length of the test. Moreover, due to the variation of the thermal 

diffusivity in the damaged area, both heating and cooling ramps show strong phase 

differences and can be used to evaluate the presence of damage [23].  
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Effect of feeding current 

The results obtained with Sample I underlined the importance of the feeding current 

on the feasibility and sensitivity of material-enabled thermography. Figure 10 

represents the thermal response recorded from the same damaged area when an 

increasing amount of current is fed through the same NiTi wire. Analysing the results 

it is possible to observe that the hindering effect of the Teflon patch on the 

propagation of the heat wave is lowered when higher currents are used, showing an 

increase in the amplitude of the recorded signals (Figure 10a).  

a) b) 

Figure 10 – Effect of feeding current intensity on the response from a damaged area: a) apparent 
temperature variation behaviour with an increasing feeding current; b) contrast signals evaluated from the 

same data 

However, in order to identify the exact location of the delamination on the xy plane, 
the readings from damaged areas ( ( )

iundW t ) must be compared with those acquired 

from undamaged areas placed along the same NiTi wire ( ( )
idamW t ). This operation 

can be carried out using a contrast analysis ( ( )
iWC t ) according to the equation: 

 ( ) ( ) ( )
i i iW und damC t W t W t= −  

 

Contrast signals are represented in Figure 10b and the results are quite revealing. 

Indeed, although the absolute value of the signals acquired on damaged areas 
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As it is possible to observe from the normalised curves, the intensity of the apparent 

temperature for the top damage (blue continuous line) is lower than the apparent 

temperature for the bottom one (red continuous line) by more than 10% due to the 

different location of the Teflon patches along the z direction. Indeed, as the heat wave 

propagates through PTFE 1, it has enough time to converge and overcome the delay 

caused by the presence of the Teflon patch before it hits the surface.  

Analysing the curves it is possible to observe that the curve relative to the deeper 

damage is plotted closer to that of an undamaged area, therefore for a given feeding 

current there will be a maximum distance available for the scanning after which the 

signals acquired from damaged and undamaged area will be the same. However, as 

demonstrated previously, it is possible to enhance the difference between signals 

recorded from damaged and undamaged by increasing the amount of current used 

during the inspection thus enhancing the resolution on the system along the z-axis. 

 

Effect of sample’s geometry 

The thermal image in Figure 14 represents the results of the tests conducted on 

Sample IV. As it is possible to see, despite the complex geometry, the damage 

embedded on the top curved portion of the sample was easily detected as in the case 

of the previous flat specimens. The graph in Figure 14b illustrates the time history of 

the apparent temperature difference between damaged (continuous black line) and 

undamaged (dashed magenta line) areas. 
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a) b) 

Figure 14 - Thermogram and apparent temperature behaviour of damaged and undamaged portions of 
Sample IV 

  

These results confirm how the material-enabled thermography can be used to inspect 

irregularly shaped structures without any geometrical limitations, showing good 

results in terms of resolution and sensitivity.  

 

 

Comparison with C-Scan and Shearography 

In order validate the feasibility of the material-enabled thermography, the data 

gathered from the previous tests were compared with traditional NDT techniques such 

as ultrasonic inspection and shearography. 

 

C-Scan Analysis 

The Ultrasonic NDT method used for sample inspection was the pulse-echo method. 

An Olympus 35 MHz pulse-receiver transducer (Panametrics) was employed to test 

the samples in an Ultrasonic Sciences Ltd (USL) C-Scan system. The inspection was 

carried out by submerging the specimen in a water tank and placing it on a glass plate 



 20

used as a reflective medium to distinguish the backwall echo from other echoed 

waves [27]. 

In order to compare the results obtained with the ultrasonic test in terms of both 

resolution and feasibility, two types of tests were performed. The first one was 

conducted in order to get a precise identification of the damaged areas, hence the time 

to complete the test was not a factor. The second test instead, was performed at a 

much faster rate in order to compare the results with the short time required to 

perform the material-enabled thermography inspection.  

Figure 15a shows the C-Scan image of Sample I acquired in a time period of 

approximately 5 minutes. As it is possible from the results, all three PTFE patches can 

be easily identified and a rough evaluation of their extension can be performed 

analysing the contrast image. However, one of the big disadvantages of this technique 

is the time required for the scan which is significantly longer than the one required for 

material-enabled thermography (few seconds). In addition, the C-Scan machine could 

not inspect samples characterised by curved surfaces as the transducer can only move 

along the xy plane, limiting the inspection to planar samples.   

Figure 15b shows the ultrasound acquisition obtained increasing the transducer speed 

to scan the entire sample in 1 minute. Analysing the results, it is possible to notice that 

when the scanning speed is increased, the resolution strongly decreases, lowering the 

feasibility of the inspection to unacceptable levels. Indeed, as it is possible to see from 

the image, some defects remain undetected (PTFE2) and others are detected with 

inaccuracy (PTFE1) resulting in a poor damage evaluation. 
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heaters or the complex signal processing techniques typical of traditional thermal 

analyses. In order to analyse the different factors that can influence the resolution and 

the sensitivity of the technique, several samples were manufactured, embedding 

defects with different dimensions and positioned at different depths along the z-axis. 

Results have demonstrated that internal delaminations can be spotted easily by 

analysing the thermograms acquired from an IR-Camera, giving good results in terms 

of position and spatial extent. Increasing the intensity of the current flowing through 

each wire it is possible to increase the resolution of the system. The sensitivity can be 

further tuned scanning selected portion of the structure by changing the number of 

wires used for the inspection and exploiting the insulating properties of the resin, thus 

lowering the total power requirements. Moreover, because the superficial thermal 

contrast is strongly affected by the time required for the propagation of the heat wave 

through the defect, the relative position between different damaged areas along the z-

axis can be evaluated.  

As several studies have proved that shape memory alloys are able to increase impact 

properties of composite structures, another important advantage of this technique is 

connected with the extreme flexibility of the manufacturing process which permits to 

embed the thermo-resistive grid also in parts characterised by complex shapes and 

geometries. A comparison with C-Scan and Shearography analyses have proved that 

the results obtained with this rapid novel technique can be compared with those 

obtained with traditional NDT techniques.  
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Highlights  

• A material-enabled thermography system was developed  

• Thermoresistive Shape memory alloy wires were embedded in CFRP laminate 

• Accurate detection and sizing of defect was obtained  




