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Abstract. Time synchronization plays an important role in the per-
formance of wireless sensor networks. It can enhance the throughput
and the lifetime of the network by improving the energy-efficiency, the
freshness of collected data and reducing the network traffic and message
conflicts. Due to the constraints on sensor nodes’ energy resources and
the vulnerability of the distributed infrastructure of wireless network,
an efficient, scalable and accurate time synchronization protocol is de-
sirable. This paper presents an accurate and efficient reactive protocol,
named HRTS, that synchronizes the sensor nodes’ clock based on the
node’s demand. It minimizes the synchronization region dynamically to
the set of nodes which request synchronization. HRTS improves the ac-
curacy of the synchronization procedure by measuring time parameters
accurately and removing delays accordingly. Compared with the conven-
tional time synchronization protocols like PCTS and TPSN, HRTS also
reduces energy consumption by decreasing the traffic overheads.

Keywords: wireless sensor networks, time synchronization protocol, end-
to-end delay, on-demand synchronization.

1 Introduction

Wireless Sensor Networks (WSNs) are typically comprised of a large number
of sensor nodes which are distributed in the sensing area and connected either
randomly or hierarchically [1]. There is no specific distribution topology for ran-
dom distributed WSN, whereas sensor nodes might be organized in a number
of separate groups, called “clusters” in an hierarchical WSN. Sensor nodes typ-
ically have three main capabilities: sensing, processing, and communication [2].
The nodes usually measure/sense the environmental data and then transmit
through either single or multi-hop paths to the end consumer’s access point
which is called the Sink. WSN is utilized for a set of diverse applications like
environmental monitoring, education, surveillance, health and micro-surgery [3].
For example, in the case of environmental monitoring, this technology might be
used to detect the air pollution, forest fire, level of humidity and natural disease.
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Hardware imposed restrictions like the amount energy, memory, the commu-
nication radio range and processing power [4] need to be taken into account.
Studies [5] show that both the computational and communicational tasks may
consume the sensor node’s power. Hence, decreasing the computational as well
as communicational overheads to the greatest possible extent is the main goal
of the research in WSNs.

Time synchronization has the ability to improve the network’s energy effi-
ciency by synchronizing sensor nodes to sense, process and communicate at cer-
tain intervals [6]. Using this technique, sensor nodes would be able to wake up
at a specific time to perform processing and communication tasks and after that
go to sleep to save the network energy. Owing to this, the nodes would consume
the energy just over the specific period which they are awake to perform either
the computation or communication tasks. On the other hand, the nodes might
consume energy continuously to stay available over long period for performing
the tasks when the network is not synchronized. Time sycnhronization also may
improve the quality as well as freshness of data by collecting and monitoring
sensor data at specific intervals which the consumer is interested in[7]. Owing to
these issues, time synchronization can be considered as a common requirement
for most WSNs applications like data aggregation and mobile object tracking to
collect the realtime data.

The time on a sensor node is measured as a function of an oscillator and
counter. The angular frequency of the oscillator increases the counter and so the
value shows the time locally at each node [8]. The accuracy of angular frequency
is very important for time accuracy. Any expected or unexpected changes and
delays can lead to divergence between sensors’ clocks [9, 10]. As Prakash and
Kendall mention [6], there are three main reasons for the nodes to show different
times: (1) the start time of nodes might be different (set-up error), (2) envi-
ronmental parameters like vibration, temperature, pressure, and battery voltage
change the angular frequency of the oscillator (drift error), (3) different operat-
ing frequency of quartz crystals of the nodes’ clock might change the time (skew
error).

In addition to these errors, communication delays can cause time uncertain-
ties. As Miklos et al mention [11], there are nine time factors that may cause
communication delays during synchronization procedure:

1 - Send time: time for assembling and transferring messages to the MAC layer
on the transmitter side. It is nondeterministic (hundreds of milliseconds) and
depends on the node’s operating system.

2 - Access time: time to access the transmitting channels. It is deterministic
and due to the network traffic can vary from milliseconds to seconds.

3 - Transmission time: time the transmitter spends to transmit the messages.
It depends on the length of message and is the order of a few milliseconds.

4 - Propagation time: sensor nodes spend propagation time to transmit mes-
sage from the transmitter channel of sender side to the receiver channel of
other side. This time depends on the distance between the nodes.
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5, 6 - Reception and receive time: respectively, the time of receiving mes-
sages by the MAC layer on the receiver side and passing the message to its
application layer.

7 - Interrupt handling time: this is the response delay of sensor nodes’ micro-
controller to an incoming interrupt.

8, 9 - Encoding and decoding time: deterministic time spent to encode or
decode a part or even the whole of the message.

This paper proposes a hierarchical reactive three-phase time synchronization
protocol that takes into account the time parameters and delays. During the first
phase, the protocol measures the time parameters locally at the sensor nodes. In
the second-phase, it reduces the role of initial time on the sensor nodes’ clocks
to remove the set-up errors. Finally, it reduces the skew errors throughout the
network by updating sensor nodes’ local time reactively on demand.

Our approach is able to improve the throughput of synchronization by de-
creasing the energy consumption and synchronization errors. HRTS also may
increase the network lifetime by reducing the number of transmissions. It means
that, the synchronization transmissions would be limited within the synchro-
nization regions which are created by the nodes (instead of the whole network)
that ask for synchronization. In addition, decreasing the traffic overhead of syn-
chronization messages may reduce the message conflicts in the network. So, a
greater number of synchronization messages are delivered to the nodes correctly
and the number of unsynchronized nodes is decreased.

The rest of paper is organized as follows: Section 2 describes some of the
principal WSN time synchronization protocols. Section 3 presents HRTS and
Section 4 discusses its performance evaluation. The last section concludes the
paper and presents some plans for future work.

2 Related Work

There are a number of time synchronization protocols for WSN [6]. This sec-
tion summurizes Reference Broadcast Synchronization (RBS) [12], Timing-synch
Protocol for Sensor Network (TPSN) [10], Scalable Lightweight Time synchro-
nization Protocol (SLTP) for wireless sensor network [13] and Passive Cluster
based Clock Synchronization (PCTS) in sensor networks [14] as the most rele-
vant protocols to HRTS in the term of hierarchical structure of synchronization.

Reference Broadcast Synchronization (RBS) is proposed by Elson et al [12].
It uses a sender-to-receiver scheme to synchronize the network nodes. In this
protocol, the reference node synchronizes the network by broadcasting the time
reference beacons. When a node receives the message, it records the local time
and then exchanges the received time with its neighbours. The nodes estimate
their clock offset and skew with the neighbours using linear regression methods.
The main drawbacks of RBS are: (1) the protocol does not consider some of the
time parameters/delays like access time in calculating the synchronized time.
It does not consider network traffic to measure the access time which might
increase skew errors especially when the network works over an extended period
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of time, (2) RBS cannot be considered a scalable protocol for WSN, as sensor
nodes would consume a great deal of energy to exchange the synchronization
messages during the synchronization procedure, (3) readjusting the nodes’ clock
in RBS (updating the reference time) has high communication cost and also
might increase time errors. Frequent updates of the reference time may increase
the probability of message failures and skew errors due to messages conflicts at
the reception time.

The Timing-synch Protocol for Sensor Networks (TPSN) is another proto-
col based on sender-to-receiver scheme [10]. TPSN consists of two main phases:
level discovery and synchronization. During the first phase, a tree-based infras-
tructure is created by assigning level tags to the nodes hierarchically. In this
phase, the node willing to become a reference node marks itself as level 0 and
starts to broadcast the level-discovery packet throughout the network to create
the hierarchical synchronization infrastructure. Each receiver increases the level
value by one and then re-sends the level-discovery message to its neighbours.
Then, this process is repeated until hierarchical levels are assigned to all nodes.
In the second phase, the source node starts to synchronize its single-hop neigh-
bours using a two-way message exchange. The synchronized nodes continue this
procedure repeatedly until all the nodes are synchronized. TPSN has the po-
tential to synchronize a large network in a multi-hop style in a simple manner.
The existing drawbacks of TPSN are: (1) the overhead of creating a tree-based
structure to assign the level tags and also broadcasting the two-way messages to
synchronize the nodes is relatively high for WSN, (2) adding new sensor nodes
to the network might increase energy consumption significantly as TPSN should
perform the level-discovery phase to assign new level tags to the new nodes.

Scalable Lightweight Time synchronization Protocol (SLTP) for wireless sen-
sor networks is another synchronization protocol that uses passive clustering and
linear regression to synchronize sensor nodes [13]. This protocol has two phases:
configuration and synchronization. During the first phase, SLTP utilizes a pas-
sive clustering approach to create a set of clusters in the network. At the begin-
ning, a node is selected either dynamically or statically as the reference node to
broadcast configuration message with a boolean flag. The initial value of flag is
0 and each node that receives it becomes a cluster member. Then, cluster mem-
bers set the flag to 1 and re-broadcast it. Each node that receives it becomes
a cluster head recursively. In the second phase, the cluster heads broadcast the
synchronization packet frequently at specific intervals. When the cluster mem-
bers receive the packet, they firstly record the local time of transmission and
then estimate the clock skew and offset with the sender using linear regression.
However, SLTP drawbacks are: (1) it is not very accurate because firstly it just
estimates the offsets as well as skews between the nodes and secondly ignores
measuring some of the time parameters like access, transmission and propaga-
tion time, (2) this protocol is not very suitable for dense and large networks that
operate over a long period because the message conflicts between cluster heads
as well as members may increase skew and synchronization errors.
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Passive Cluster based Clock Synchronization (PCTS) in sensor networks also
presents a two-phase protocol to synchronize sensor nodes [14]. First, PCTS di-
vides the network into a set of clusters using a passive clustering approach. Then,
the cluster heads collect their cluster members’ local time. Afterwards, the clus-
ter heads calculate the average time of all nodes and send it to their cluster
members as the reference time. Although PCTS is scalable and simple to set
up, it has some drawbacks that might reduce the accuracy and efficiency of syn-
chronization: (1) the overhead of creating and maintaining the clusters is high
and may threaten the network lifetime especially for large and dense networks,
(2) PCTS does not measure send, receive and reception time for synchroniza-
tion, (3) sending the inter/intra-cluster messages can increase the network traffic
which consequently may increase the reception time. Because of this, and due to
the fact that reception time is not included in calculating the synchronized time,
skew errors between nodes are increased especially when the network operates
over a long period of time.

According to the literature, synchronization traffic overhead is the main
drawback of the conventional protocols. This overhead might be due to broad-
casting frequent synchronization messages or constructing the hierarchical in-
frastructure to synchronize the sensor nodes. The drawback may increase the
transmission ratio throughout the network that consequently reduces the effi-
ciently of protocols energy. In addition, some of the protocols may ignore con-
sidering the skew and set-up errors by estimating the time parameters. Owing
to these issues, we are motivated to propose a novel and more efficient time
synchronization protocol which is able to synchronize sensor nodes accurately.

3 HRTS Approach

HRTS is a time synchronization protocol that synchronizes the clock of sen-
sor nodes based on their demands. It means that, this protocol allows the sensor
nodes be synchronized when they ask for synchronization based on their applica-
tion or synchronization scenario. HRTS is a three-phase protocol that firstly mea-
sures communication delays for the sensor nodes locally (set-up phase). Then, it
collects the timing parameters for the sensor nodes that intend to be synchro-
nized based on their demands in a multi-hop manner (updating phase). Finally,
HRTS synchronizes the part of network that is defined by the sink for the syn-
chronization (synchronization phase). In this protocol, each node has a unique
id, a local clock and two tables to record and monitor the synchronization in-
formation: the Information (ITable) and Synchronization Table (STable). These
tables (at each node) maintain the required synchronization information about
their neighbours. Using the information, each node would be able to set its own
local clock with its single-hop neighbours which already are synchronized.

Basically, the ITable provides the information for the nodes to know the mes-
saging delays with each of their single-hop neighbours. It also shows the available
multi-hop links between the node and its multi-hop neighbours. HRTS keeps
the information in a three-column table: the single-hop neighbours’ id of the
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node(NID), the end-to-end delay (Edelay) between the node and its single-hop
neighbours and finally the ID of multi-hop neighbours (MID). The STable sup-
plies the history information of the synchronization events. This table provides
the information for the nodes to avoid transmitting the redundant synchroniza-
tion messages to the same nodes. The information contains the source/reference
nodes’ ID (SID), version of synchronization message (V), the list of nodes which
are included in the synchronization event and synchronized time (ST).

According to equation 1, Edelay is the messaging delay between two node that
has the potential to influence the quality of time synchronization. It means that,
the synchronization errors might be increased if Edelay is not measured accu-
rately during the time synchronization procedure. As equation (1) shows, HRTS
divides this parameter into two main parts: sender side (SS) and receiver side
(RS) times. The parameters are measured locally at sender and receiver nodes.
SS includes: send time (S), access time (A), encoding time (E) and transmission
time (TT). RS on the other hand involves reception time (RP), propagation time
(P), receive time (R), and decoding time (D). We may omit measuring interrupt
delays in this paper as it is usually negligible in WSN [15].

Edelay = Sender delay(SS) + Receiver delay(RS) (1)

3.1 Set-up Phase

The main objective of this phase is measuring the Edelay between the nodes.
This metric would utilized to measure the communication delays during which
might influence the accuracy of synchronization procedure. Edelay is calculated
at each node locally with its single-hop neighbours. The sensor nodes firstly reset
their local timer and then measure their own SS and RS during sending and
receiving the AirFrame message respectively. The AirFrame message is the basic
and lightweight message frame that is utilized for calculating the local SS and RS
at each node. As TT and RP depend on the length of transmission [11], nodes
utilize the lightweight AirFrame messages (as reference message) to measure the
RS and SS uniformly. It allows them to calculate the delay parameters for the
further transmissions by scaling the transmission ratio based on the reference
size of AirFrame messages. After calculating SS and RS at a particular time (Si),
which is fixed and can be defined by the network’s consumer, the nodes measure
the Edelay by broadcasting a “hello” message containing the SS, Si and their
ID. The receiver nodes calculate the Edelay value by adding its own RS to the
received SS for each neighbour. Figure 1 shows how the Edelay is filled by the
information which is collected during the setup phase. According to the figure,
node 4, for example, updates its own ITable by the Edelay of its neighbours as
follow: (node 1, 12ms), (node 13, 1ms) and (node 2, 5ms).

3.2 Updating Phase

This phase discovers the multi-hop neighbourhood around the source node to
establish the synchronization region. In other words, the nodes find the available
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Fig. 1. An example for ITables

communication links to their multi-hop neighbours in their vicinities on demand
of synchonization. Based on the collected information, sensor nodes would be
able to perform partial synchronization within the particular regions of network
that ask for synchronization in the case of adding or replacing new nodes.

After a specific interval (H) (should be greater than all Si because the updat-
ing phase should be performed after all setup executions), the nodes which are
residing in the synchronization regions broadcast an updating message including
their ID as well as NID column of their ITables (their single-hop neighbours).
These regions are established by the sensor nodes that ask for synchronization.
When the neighbour nodes receive the updating message, they find any row
whose first field is the same as the sender ID in its ITable. If the row is found,
the node updates its ITables by adding the received NID to its MID column.
Figure 1 shows the status of ITables at the end of updating phase. For example,
node 4 broadcasts an update message like ({4, {1, 2,13}}), which contains its
single-hop neighbours and then the receiver nodes (that can be any of node 1, 2
or13) update their ITables subsequently.

3.3 Synchronization Phase

The objective of this phase is synchronizing the sensor nodes which are in the
synchronization region. This phase synchronizes any region of network like a
cluster of nodes that intends to be synchronized with the source nodes. The
structure of synchronization messages is different. They are composed of five
main fields: (1) Source node’s ID (SI), (2) Sequence number of synchronization
message (Sq), (3) Receiver’s ID (RI) (to synchronize a specific part of network),
(4) Reference Time (ST) and (5) the SS time (SSi) of the last node in the
synchronization event.

According to Algorithm 1, when any node receives the synchronization mes-
sage, it firstly checks its role as a Target, Gateway or T-Gateway. The node is
Target if the sink node puts its address in the message to synchronize. The node
is Gateway if it is supposed just to broadcast the message until the Target nodes
in its neighbourhood receive. The node is a T-Gateway node if a Target node
relays the synchronization message to other ones. These roles define how the
nodes should deal with the messages. In the Target case, the receiver should be
synchronized with the source node using the information of the message, whereas
the receiver just broadcasts the message to inform other multi-hop neighbours
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input : Node’s ID, ITable and synchronization message{SI, Sq, RI, ST, SSi}
output: Role

if NodeID ∈ RI then
Role ← Target;
if (NodeID ∈ NID) or (NodeID ∈ MID) then
Role ← T-gateway;

end
else Role ← Gateway;

Algorithm 1: Node’s role check Algorithm

input : Node’s STable, ITable, Role and Message {SI, Sq, RI, ST, SSi}
output: updated STable

if SI ∈ STable(SID) then
if (Message(Sq) > ST (V )) then

go to the Synchornization Algorithm ;

end
else

the message is old, ignore that;
end

end
else

add new row to STable using {SI, Sq, RI, Synchronized Time};
Go to Synchronization Algorithm;

end

Algorithm 2: Freshness check Algorithm

in the Gateway case. If the node is T-Gateway, it should do both tasks respec-
tively. In this case, the node firstly synchronizes itself by the source node and
then broadcasts the message to synchronize other ones.

After the role check, the nodes check the freshness of synchronization message
using Algorithm 2. If the synchronization message is being sent to the particular
group of nodes for the first time, the SI field of message does not match with
any SI column of the receiver nodes’ STables. So, the receiver nodes record a
history of the synchronization message in their STable as a new synchronization
event. Otherwise, the message is not new and the receiver nodes just update the
current record using the information of the message. At the end, sensor nodes
synchronize either themselves or their neighbours with the source node based
on their role using Algorithm 3. Target nodes just update their local time and
discard the messages, Gateways do not change their local information and just
broadcast the message for their neighbours and G-Target nodes broadcast the
messages after synchronizing and updating their local time as well as information
of the local tables.

4 Discussion and Evaluation
4.1 Simulation

To test HRTS, We utilize the OMNET++ [16] simulator. At first, we setup a
network with 32 sensor nodes which are distributed randomly on a 150×150
metre field. According to table 1, the whole simulation time is 1000 seconds for
each experiment and the first 50 seconds of each experiment is utilized for the
network initialization (network deployment and performing set-up and updat-
ing phases). Si (the setup phase initialization time) and H (the updating phase
initialization time) are set to 15 and 35 seconds respectively. The initial energy
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input : Node’s STable, ITable, Role and Message {SI, Sq, RI, ST, SSi}
output: Updated STable and Synchronized Network

if (Role − is − Target) then
{ New Time = SSi+Edelay;
Update the current record in STable with (SI, New Sq, RI, ST, New Time);
}

end
else if (Role − is − Gateway) then

{New Time = SSi+Edelay;
Add ID to RI ;
SSi←New Time;
Broadcast the message;
}

end
else if (Role − is − TGateway) then

{New Time = SSi+Edelay;
Add ID to RI;
SSi←New Time;
Update the current record in STable with (SI, New Sq, RI, ST, New Time);
Broadcast the message;
}

end

Algorithm 3: Synchronization Algorithm

Table 1. Experimental setup parameters

Parameters Node Number Radio Range Distribution Model

Values 32 (64, 128, 256, 512, 1024) 20 meters Random

Parameters Sink location Simulation time Iteration

Values Center 75X75 (750X750) 1000 s (50 s for initialization) 5 times per each scenario

Parameters Initial Energy Field Size Energy/Communication Model

Values 10 j 150×150 (1500×1500) Mica2 mote

value for each node is 10j based on the Mica2 energy model [17] to transmit
and process data. The nodes’ radio range is 20 meter and they utilize the Mica2
mote communication model [18] to measure the communication delays. At the
end of simulation time, 96 percent of the synchronization messages are delivered
correctly and so 31 nodes are synchronized accurately. The unsynchronized node
performs set-up and updating phases accurately, but it might miss the synchro-
nization messages due to the message conflicts. The experiments are repeated
five times.

In the second step, we increase the size of network to 64,128 and 256 sensor
nodes respectively to test the scalability of HRTS. In this experiment, the num-
ber of unsynchronized nodes are increased when the size of network is increased.
In other words, increasing the connectivity degree (the number of connected
nodes) between sensor nodes increases the message conflicts. Figure 2(A) shows
the number of synchronized nodes that we got by performing our experiments
for five times based on random node distribution scheme. As figure 2(B) shows,
HRTS outperforms PCTS and TPSN in the case of synchronization error rate
(number of unsynchronized nodes). The synchronization errors are increased
when the network becomes denser because the number of delivered synchroniza-
tion messages is decreased due to the message conflicts.

In the third step, we increase the size of simulation field to evaluate the
efficiency of our work in larger networks. In this case, 32, 64, 128, 256, 512
and 1024 nodes are distributed randomly in a 1500×1500 metre field. Then,
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Fig. 2. A: number of synchronized nodes using HRTS (150×150) in each iteration, B:
synchronization errors (X-Axis: The size of network, Y-Axis: the number of unsynchro-
nized nodes).

we measure the synchronization errors similar to the previous experiments. As
figure 3 shows, the error is increased when the network is sparse because a set
of sensor nodes might miss the messages that the source node sends for either
synchronization or infrastructure establishment. It means that a group of nodes,
which are residing out of the radio range of source node, cannot be synchronized
as they are not able to communicate with the source node to get the reference
time. In PCTS, although the nodes might be able to establish the clusters, they
cannot be synchronized correctly as the cluster-head might be disconnected from
the source node. In TPSN, the unsynchronized nodes cannot receive the level
discovery messages to establish the tree-based synchronization infrastructure and
so they cannot receive the synchronization messages accordingly. In HRTS, the
nodes might miss the synchronization messages although they might perform set-
up or updating phases correctly. For this reason, connectivity is one of the most
critical issues on the performance of the synchronization protocols. Our protocol
works efficiently when the network is fully connected as each node would be
able to receive the synchronization messages correctly from its either single-hop
or multi-hop neighbourhood. On the other hand, the error might be increased
sharply when we add more nodes and the network becomes denser (512 nodes
and more). In this case, the density is the reason for increasing the number of
errors as the higher traffic overhead increases the message failure ratio. When the
connectivity degree is increased between the nodes, they might receive multiple
messages at the same time which increases the message conflicts.

4.2 The accuracy

The conventional time synchronization protocols, like RBS, TPSN and SLTP,
usually synchronize sensor nodes by estimating skew between the nodes through
linear regression methods. In these protocols, the nodes measure their offset
with the reference node and then estimate the synchronized time using linear
regression methods to normalize the clock drift as well as offset after receiving
time reference message. The protocols also may ignore measuring some of the
messaging delays. For example, RBS [12] does not consider send or access time
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number of unsynchronized nodes)

for estimating the synchronized time. PCTS [14] ignores measuring reception
and receive time parameters and SLTP [13] does not measure transmission and
propagation delays. On the other hand, HRTS enhances the accuracy of time
synchronization by measuring and involving all these parameters for synchro-
nizing the network’s nodes. In HRTS, sensor nodes measure the local time by
calculating time skew between the reference and nodes using their clock drift
and offset as equation (2) shows. According to the equation, the local clock of
node i (C) can be calculated by measuring local clock’s drift a(t) and offset b.
The clock drift (a) denotes the clock frequency and the clock offset (b) is the
difference of node’s local clock and the real time.

Ci(t) = ai(t) + bi (2)

Our approach calculates the parameters accurately during the set-up phase
based on the properties of the hardware and the length of transmissions (the
AirFrame messages). Moreover, HRTS might decrease the synchronization er-
rors caused by the uncertainty of the delays. For example, access time is a key
time parameter which depends on the network traffic and has the potential to
influence the accuracy of synchronization. Traffic ratio and message queuing de-
lays may increase its uncertainties which consequently increase synchronization
errors. For this reason, HRTS reduces the queuing delay by decreasing the net-
work traffic and the number of messages. For example, if we assume N and X as
the total number of single and multi-hop neighbours for a particular node like
Node A , the node will receive just M (M is less than N and shows the number
of the neighbours which send the hello messages at time T) messages during the
setup phase in HRTS. On the other hand, the node might receive greater number
of messages from either multi-hop or single-hop neighbours (X+N) during the
network deployment in TPSN and PCTS.
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4.3 Fault tolerance

System fault tolerance is another issue for time synchronization protocols. As
drift and skew errors may increase the communication delays between nodes [19]
and these delays increase the fault ratio in synchronization procedure especially
over long time intervals, proposing a fault tolerant approach to deal with these
errors is needed. Frequent updating of the nodes’ local clock is a solution to
decrease both drift and skew errors and consequently improves the fault toler-
ance of the synchronization protocol [20, 21]. However, this method might reduce
the lifetime of WSNs as these frequent updates need consuming a great deal of
sensor nodes’ energy to process and communicate. For example, updating the ref-
erence time needs re-constructing the tree-based communication infrastructure
in TPSN, or exchanging reference messages with all sensor nodes in the network
in RBS. So, this solution is not effective to resolve the fault tolerance problem in
WSN as it may consume a great deal of energy to process and transmit updating
messages through the network.

HRTS enhances the fault tolerance of network because this protocol has
the ability to update the time values in a lower cost manner. As the sensor
nodes record the information of their neighbours including their IDs and timing
information, HRTS would be able to remove any skew or drift error by sending
just a new reference time message to update the nodes’ clock time. In this case,
the problem can be solved when the sensor nodes update their local time based on
the new version of time synchronization message. HRTS decreases the energy cost
of updates to a considerable degree by reducing the traffic overheads that other
protocols might have due to reconstructing the synchronization infrastructure.

4.4 Scalability

HRTS provides a high degree of scalability. As it has the ability to synchronize
or update the nodes’ clock based on the nodes’ demand, new sensor nodes can
be synchronized accurately and efficiently beyond either their time or location of
placement. It means that when new nodes are added into the network, they just
need to establish a connection with any sensor node of the network. Then, the
new nodes would perform the first and second phases of HRTS respectively to
update their ITables. As HRTS allows the sink node to synchronize a part of net-
work separately and without involving other sensor nodes’ clocks, the new nodes
can be synchronized easily by receiving the synchronization messages which are
broadcasted by the sink. It means that, firstly the sink may put the address of
new nodes in the synchroniztion message and then broadcasts it into the net-
work. Then, the nodes that are addressed for synchronization are Target nodes
to update their time accordingly using the message. Otherwise, the nodes just
broadcast the message like Gateway nodes until the target ones receive. So, our
approach presents a low-cost scalable time synchronization protocol which has
the ability to synchronize the new sensor nodes efficiently and without consuming
a great deal of energy for reconstructing the synchronization infrastructures.



HRTS: a Hierarchical Reactive Time Synchronization etc. 13

	  
	   	   	   	   	   A	  

50	  

55	  

60	  

65	  

70	  

75	  

80	  

85	  

90	  

95	  

16	   32	   64	   128	   256	  

HRTS	  

TPSN	  

PCTS	  

	  
	   	   	   	   	   B	  

35	  

45	  

55	  

65	  

75	  

85	  

95	  

32	   64	   128	   256	   512	   1024	  

HRTS	  

TPSN	  

PCTS	  

Fig. 4. energy consumption (A: field 150×150, B: field 1500×1500) X-Axis: The size
of network, Y-Axis: remaining energy

4.5 Energy Efficiency

Time synchronization protocols aim to conserve the network’s energy by mini-
mizing the computation as well as communication overhead of the synchroniza-
tion [22]. According to figure 4, HRTS is more energy efficient when the network
is not very dense. PCTS and TPSN may consume more energy because firstly
both the conventional protocols consume a great deal of energy during their
network deployment phases to establish either the tree or cluster based synchro-
nization infrastructures. Secondly, the sensor nodes should consume energy to
keep the communication paths available during the synchronization procedure.

The network’s node number (density) is the main issue that may influence
the energy consumption of HRTS. According to figure 4, HRTS outperforms
both PCTS and TPSN when the network is not very dense, whereas the proto-
cols are more energy efficient when the network density is very high. HRTS is
able to save up to 10 percent of network energy when the node connectivity is
not very high because sensor nodes consume less energy for performing the up-
dating phase or network deployment comparing with other ones. It means that
the sensor nodes may transmit less number of messages to discover and syn-
chronize their local vicinity comparing with TPSN and PCTS which establish
the hierarchical synchronization infrastructure like tree or cluster. On the other
hand, the energy efficiency of HRTS is decreased when the connectivity degrees
between the nodes is increased. In this case, the nodes should consume more
energy to collect the neighbourhood information during their updating phase.
Moreover, the intermediate nodes might transmit a set of unnecessary synchro-
nization messages to synchronize the particular nodes through different paths
which are established during the updating phase. Although the nodes are able
to select the least latency (low cost) path to transmit the synchronization mes-
sages and discard the unnecessary messages, the overhead of performing local
processing tasks and receiving unnecessary transmissions might increase their
energy consumption significantly.

Apart from these issues, HRTS can be considered energy efficient because it
has the potential to synchronize just the unsynchronized nodes in the network
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and without consuming energy to re-perform the synchronization algorithm on
all the network’s nodes. Due to frequent topology changes in WSN, it is highly
required that the time synchronization protocol would be able to synchronize just
the changed group of nodes instead of re-synchronizing the whole of network.
TPSN and PCTS protocols may need more energy to update the synchroniza-
tion infrastructure when the network topology changes. For example, if we add
a number of nodes into the network, both the protocols should perform either
level discovery or clustering algorithm again to establish the synchronization
platform. So, they consume energy to synchronize even the nodes that already
have synchronized. On the other hand, HRTS has the ability to synchronize
just the subset of nodes which are included in the RI field of updating message
rather than involving all nodes. In this case, the network consumes less energy
to synchronize the nodes because just the new ones and the sensor nodes on the
path (between the sink and the target nodes) consume energy to calculate time
parameters, collect the neighbourhood information and transmit the synchro-
nization messages respectively.

5 Conclusion and Future work

Our time synchronization protocol proposes an accurate and efficient approach
to synchronize the local time of wireless sensor nodes on demand. This proto-
col synchronizes sensor nodes accurately by utilizing different time parameters
that might are measured during the message transmission procedures. As the
protocol has the ability to reactively involve just a part of network’s sensor
nodes, it has the potential to decrease the communicational and computational
overheads and consequently save overall network energy. Table 2 summarises
a qualitative assessment of time synchronization protocols, suggesting our ap-
proach has the potential to deliver better performance, efficiency and accuracy
especially when the network is not very dense. Apart from scalability and fault
tolerance, the comparison shows that our approach offers a good fit with WSN
due to decreasing skew errors by incorporating more timing parameters over
optimal communication links. However, synchronization error propagation is a
drawback of HRTS. The number of unsynchronized nodes might be increased
hierarchically in the network when the nodes either calculate or receive any false
synchronization information (like set-up time errors or wrong information about
the synchronization vicinity) during their set-up and updating phases. In this
case, the nodes may propagate the synchronization error throughout the network
as the receiver nodes calculates their time based on the receiving synchronization
messages.

In addition to the points that we mentioned, HRTS can be beneficial in
routing, network coverage and clustering as below:
– Routing: ITable and STable provide a set of useful information about the

sensor nodes neighbourhood that would be influential on routing approaches.
In this case, each node has the ability to find its shortest path (less end-to-
end delay) with other nodes in either its single or multi-hop neighbourhood.
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Table 2. The concluded comparison between our and current time synchronisation
protocols

Parameters RBS TPSN PCTS STLP HRTS

Scalability Low Low Medium High Very High

Fault Tolerance Low Low High Low High

Considering Skew No No No No Yes
errors

Multi-hop synchronization No Yes No Yes Yes

Synchronization’s traffic synchronizing nodes all nodes cluster cluster synchronizing nodes
members members in the synchronization

session

Energy- efficiency Low Low High Medium High

Accuracy Low Medium Medium High High

– Network coverage: HRTS might be able to control the network coverage
by utilizing the information of ITable that shows the connectivity degree
between nodes. In this case, we can find the disconnected node, if its first
column of ITable is empty. Moreover, we can monitor the density of nodes in
the network to control energy consumption by checking the first and third
column of ITables.

– Clustering: HRTS might be used to find the cluster head nodes as it is able
to introduce the nodes which have more stable connectivities. ITable and
STable shows the number, quality and availability of these connections.

References

1. M. Cardei and J. Wu, “Energy-efficient coverage problems in wireless ad-hoc sensor
networks,” Computer Communications, vol. 29, no. 4, pp. 413–420, 2006.

2. M. sharifi, S. P. Ardakani, and S. S. Kashi, “Skew: An efficient self key establish-
ment protocol for wireless sensor networks,” International Symposium on Collab-
orative Technologies and Systems (CTS 2009), Baltimore, Maryland, USA, May
18-22, pp. 250 – 257, 2009.

3. K. SOHRABY, D. MINOLI, and T. ZNATI, Wireless Sensor Network, Technology,
Protocols, and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

4. F. G. Khan, M. Corrado, B. Montrucchio, and A. Saeed, “Gossip-based supervision
for wireless autonomic networks and services,” 6th International Conference on
Emerging Technologies (ICET), Islamabad, Pakistan, October 18-19, pp. 376–81,
2010.

5. D. D. Hwang, B.-C. C. Lai, and I. Verbauwhede, “Energy-memory-security trade-
offs in distributed sensor networks,” Third International conference on Ad-Hoc,
Mobile, and Wireless Networks (ADHOC-NOW), Vancouver, Canada, July 22-24,,
pp. 70–81, 2004.

6. P. Ranganathan and K. Nygard, “Time synchronization in wireless sensor net-
works: A survey,” International Journal Of UbiComp (IJU), vol. 1 (2), pp. 92–102,
2010.



16 Pourroostaei Ardakani et al.

7. B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization for
wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3, no. 3, pp. 281–323,
2005.

8. O. Simeone and U. Spagnolini, “Distributed time synchronization in wireless sensor
networks with coupled discrete-time oscillators,” EURASIP Journal on Wireless
Communications and Networking, Springer, vol. 2007(1), p. 57054, 2007.

9. S. M. Lasassmeh and J. M. Conrad, “Time synchronization in wireless sensor
networks: A survey,” IEEE SoutheastCon 2010, pp. 242 – 245, 2010.

10. S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sen-
sor networks,” in In Proceedings of the 1st international conference on Embedded
networked sensor systems. ACM Press, 2003, pp. 138–149.
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