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Abstract

We consider a nonlinear discrete-time population model for the dynamics of

an age-structured species. This model has the form of a Lure feedback system

(well-known in control theory) and is a particular case of the system studied by

Townley et al. in [1]. The main objective is to show that, in this case, the range

of nonlinearities for which the existence of globally asymptotically stable non-

zero equilibrium can be guaranteed is considerably larger than in the main result

in [1]. We illustrate our results with several biologically meaningful examples.

Keywords: Age-structured species, Feedback systems, Global stability, Lure

systems, Population dynamics

1. Introduction

Leslie matrix models have been widely employed to understand the dynamics of

populations structured into age classes [2]. The model can be written as follows

xt+1 = P (xt)xt. (1)

Here xt ∈ R
n
+ is the class distribution vector (where R+ = [0,∞)) at discrete

time t ∈ N and

P (x) =























ρ+ φ1(x) φ2(x) φ3(x) · · · φn(x)

τ1(x) 0 0 · · · 0

0 τ2(x) 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 τn−1(x) 0























,
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with 0 < τi ≤ 1 and 0 ≤ φi. The subdiagonal elements, τi, capture the demo-

graphic transitions between age-categories, whilst in the elements in the first

row, φi, correspond to the newborns and ρ is the fraction of individuals in the

first age class who remain in this class after one time unit (for example, because

they do not mature in one time step).

In this paper, we consider the following system

xt+1 = Axt + bf(cTxt), (2)

where A is an asymptotically stable non-negative matrix in R
n×n, b, c ∈ R

n
+\{0}

and f : R+ → R+ is a continuous map with f(0) = 0 and f(y) > 0 for y ∈

R+ \ {0}. Systems of the form (2) are known in systems & control theory as

Lure systems, the stability properties of which have been studied in the context

of so-called absolute stability theory (mainly in a continuous-time setting), see,

for example [3, 4]. Introducing the linear controlled and observed system

xt+1 = Axt + but, yt = cTxt, (3)

the Lure system (2) can be thought of as the closed-loop system obtained by

applying nonlinear feedback of the form ut = f(yt) to the linear system (3).

We note that if A and b satisfy

A =























1− δ 0 0 · · · 0

a1 0 0 · · · 0

0 a2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 an−1 0























, b =























b1

0

0

0

0























,

where 0 < δ ≤ 1, and ai, b1 > 0,

(4)

then system (2) is a particular case of system (1) in which a constant proportion

of the individuals in each age-category, from 1 to n−1, at time-step t reaches the

next age class in the time-step t+ 1, i.e., the functions τi(x) = ai are constant;

moreover, ρ = 1−δ and φi(x) = b1f(c
Tx)/‖x‖1 for all i, where where ‖·‖1 is the

1-norm in R
n, that is, ‖x‖1 =

∑n
i=1 |xi|, where xi denotes the i-th component

of x.
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The global dynamics of (2) have been recently considered in [1], where it

is shown that (under certain conditions) system (2) satisfies a trichotomy of

stability, which is characterised by the relationship between the graph of f and

the line with slope

p :=
1

cT (I −A)−1b
.

We emphasize that the results in [1] are not restricted to the special case given

in (4). Nevertheless, in [1], those results are illustrated by a model for Chinook

Salmon (Oncorhynchus tshawytscha) which satisfies (4).

In [1], the following sector property for f is crucial for the proof of the

existence of a positive global attractor for system (2):

(C) There exists a unique y∗ > 0 so that f(y∗) = py∗ and

|f(y)− py∗| < p|y − y∗|, y ∈ R+ \ {0, y∗}. (5)

Actually, in [1], the stronger assumption that there exists m ∈ (0, p) such that

|f(y)− py∗| ≤ m|y − y∗|, y ∈ R+ \ {0, y∗} (6)

was imposed. Although not explicitly stated in [1], (6) guarantees global expo-

nential stability, whilst (5) is sufficient for global asymptotic stability.

Defining fp : R+ → R+ by

fp(y) = f(y)/p, y ∈ R+,

we remark that the sector condition (C) implies that y∗ is a global attractor for

the scalar difference equation

zt+1 = fp(zt), (7)

where by global we mean that for all positive y, the orbit fn(y) of y converges

to y∗ as n → ∞. Condition (C) is satisfied, for example, by the Beverton-Holt

map (f(y) = λy/(K + y), λ,K > 0) and the Ricker map (f(y) = y exp(−λy),

λ > 0), whenever |f ′(y∗)| < p, i.e. when the fixed point y∗ of the map fp is

3



locally asymptotically stable: the proof for the Beverton-Holt map is straight-

forward and the reader can find the Ricker map case discussed in [1]. However,

as Figure 1 illustrates, for other important maps, the condition |f ′(y∗)| < p

is not sufficient for (C) to hold. For example, this happens in the case of the

generalized Beverton-Holt map [5],

f(y) =
λy

1 + (y/K)β
, K > 0, λ > 0, β > 0,

or the Hassel map [6],

f(y) =
λy

(1 + y/K)β
, K > 0, λ > 0, β > 0.

Generalized Beverton-Holt (also called Maynard-Smith) and Hassel maps have

been extensively employed in ecological modelling. Moreover, the corresponding

dynamics are well known. Interestingly, these maps have the very desirable

property, as have many others density dependences, that the corresponding

global dynamics can be characterised by the local dynamics [7], i.e. local stability

guarantees global stability. This naturally raises the question of whether or not

condition (C) can be relaxed.

In this paper, we show that the sector condition (C) is not necessary to es-

tablish the existence of a positive global attractor for system (2) when A and

b are given by (4). We prove that, in this case, it is sufficient that the scalar

difference equation (7) has a positive global attractor y∗. This will allow us

to use well-known sufficient conditions for global stability for maps to formu-

late easily verifiable conditions for the existence of a positive global attractor

for system (2) with A and b as in (4). We illustrate this idea with two differ-

ent conditions which involve Schwarzian derivatives and envelopments by linear

fractional functions.

Our approach is different from that in [1] which is essentially based on argu-

ments of small-gain type. Indeed, small-gain and absolute stability arguments

do not apply to the nonlinearities considered in this paper. Instead, we exploit

that, in our particular case, system (2) can be reduced to a n-th order scalar

difference equation with dynamics dominated by those of a first-order difference
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equation (see [8, 9] and references therein).

2. Preliminaries

We start with some definitions. For a continuous map F : Rn
+ → R

n
+, consider

the difference equation

xt+1 = F (xt), t ≥ 0, (8)

with initial condition x0 ∈ R
n
+. We say that a non-zero equilibrium x∗ ∈ R

n
+ of

the equation (8) is a global attractor if, for every x0 ∈ R
n
+ \ {0},

lim
k→∞

F k(x0) = x∗,

where, as usual, F k denotes the k-fold composition of F with itself.

Similarly, for a continuous map G : Rn
+ → R+, consider the n-th order dif-

ference equation

yt+1 = G(yt, yt−1 . . . , yt−n+1), t ≥ 0, (9)

with initial conditions y0, . . . , y1−n ∈ R+. We say that y∗ ∈ R+ is an equilibrium

of the equation (9) if y∗ = G(y∗, . . . , y∗), and we say that such a non-zero

equilibrium is a global attractor if

lim
k→∞

yk = y∗,

for every solution {yk}k≥1−n of equation (9) with initial conditions such that

(y0, . . . , y1−n) ∈ R
n
+ \ {0}.

For both equations (8) and (9), we say that a non-zero equilibrium is a global

stable attractor if it is a global attractor and it is stable.

Whilst we are mainly interested in studying the case in which A and b

are of the form (4), in this section we deal with system (2) under more general

conditions. We do this because we think that Lemma 3 is of independent interest

and will be useful in future work. We consider the following conditions for A, b

and c in system (2):

(A1) A is a non-negative n× n-matrix with spectral radius r(A) < 1;

5



(A2) b, c ∈ R
n
+ \ {0};

(A3) A + bcT is primitive, i.e. there exists k ∈ N such that all entries of

(A+ bcT )k are positive.

The following result is contained in lemmata 3.1 and 3.2 in [1].

Lemma 1. Assume that (A1)-(A3) hold. Then, p ∈ (0,∞). Moreover, r(A +
pbcT ) = 1.

We note that in the particular case of A and b satisfying (4) condition (A1)

trivially holds. Moreover, in this case (A3) is not necessary to guarantee that

p−1 = cT (I − A)−1b > 0 (and hence 0 < p < ∞). Indeed, the first column of

(I − A)−1 is given by

( 1

δ

a1
δ

a1a2
δ

· · ·

∏n−1
j=1 aj

δ

)T
.

Therefore, denoting the components of c by c1,. . . , cn,

p−1 = cT (I −A)−1b =
b1
δ



c1 +

n
∑

j=2

(

cj

j−1
∏

k=1

ak
)



 , (10)

which is positive even when A + bcT is not primitive (for example, if δ = 1,

cn > 0 and ci = 0 for i 6= n).

Whilst, in the particular case (4), (A3) is not necessary to guarantee that

p−1 > 0, (A3) is nevertheless a crucial assumption and we therefore provide a

necessary and sufficient condition for (A3) to be satisfied.

Lemma 2. Assume that A and b are as in (4) and c = (c1, . . . , cn)
T ∈ R

n
+.

Define C := {i : ci > 0} ⊂ N.
The matrix A + bcT is primitive if, and only if, cn > 0 and one of the

following conditions holds: (i) 0 < δ < 1 or (ii) gcdC = 1.

Proof. It is well-known that a non-negative matrix is primitive if, and only if, its
di-graph is strongly connected and the lengths of its cycles are relatively prime,
see [10]. The claim follows from a straightforward application of this result.

The next result gives a sufficient condition for every solution of system (2)

with non-trivial initial condition to be bounded away from zero.
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Lemma 3. Assume that (A1)-(A3) hold and that there exists a positive y∗ such
that

(fp(y)− y)(y − y∗) < 0, y ∈ R+ \ {0, y∗}. (11)

If a solution of system (2) with x0 ∈ R
n
+ \{0} is bounded, then it is also bounded

away from zero.

Proof. Let {xt}t≥0 be a bounded solution of system (2) with x0 ∈ R
n
+ \{0}. We

are going to show that inft≥0 ‖xt‖1 > 0.
Clearly, the sequence of real numbers {cTxt}t≥0 is also bounded. We define

µ := sup
t≥0

{cTxt} ≥ 0,

y∗∗ := max{y∗, µ} ≥ y∗ > 0 and

η := min
y∈[y∗,y∗∗]

f(y) > 0.

The primitivity assumption (A3) guarantees that A + pbcT is also primitive
because the di-graph of A+ qbcT is the same as that of A+ bcT for all positive
q. Therefore, Lemma 1 and the Perron-Frobenius theorem guarantee that 1 is
an eigenvalue of A+ pbcT with an associated positive left eigenvector vT .

If cTxt ∈ [y∗, y∗∗], then we have

vTxt+1 ≥ vTAxt + vT bη ≥ vT bη > 0.

If cTxt ∈ [0, y∗), then, by condition (11), f(cTxt) ≥ pcTxt, and, as a conse-
quence, we obtain

vTxt+1 ≥ vT (A+ pbcT )xt = vTxt > 0.

Thus, induction on t shows that

vTxt ≥ min{vTx0, v
T bη} > 0, t ≥ 0.

Finally, since vTxt ≤ ‖v‖∞‖xt‖, setting

M :=
min{vTx0, v

T bη}

‖v‖∞
> 0,

we conclude that ‖xt‖ ≥M > 0 for all t ≥ 0, proving the claim.

The next lemma (the second part of which is a corollary of a result in [8]) gives

sufficient conditions for the dynamics of a n-th order difference equation to be

dominated by the dynamics of a first order difference equation.
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Lemma 4. Let G : Rn
+ → R+ be continuous and assume that there exists a

continuous map d : R+ → R+ such that, for each (u1, . . . , un)
T ∈ R

n
+ with

G(u1, . . . , un) ≥ max{u1, . . . , un}, there exists z in the convex hull of {u1, . . . , un}
satisfying d(z) ≥ G(u1, . . . , un). Furthermore, assume that y∗ > 0 is a global
stable attractor of the first-order difference equation yt+1 = d(yt). Then the
following statements hold.

(i) Every solution of the nth-order difference equation (9) is bounded.

(ii) Under the additional assumptions that

• for each (u1, . . . , un)
T ∈ R

n
+ with G(u1, . . . , un) ≤ min{u1, . . . , un}, there

exists z in the convex hull of {u1, . . . , un} satisfying d(z) ≤ G(u1, . . . , un),

• every non-zero solution (yt)t≥0 of the nth-order difference equation (9)
satisfies

lim inf
t→∞

yt > 0, (12)

y∗ is a global stable attractor of (9).

Proof. (i) Since y∗ > 0 is a global stable attractor of the difference equation
defined by d, we have

(d(y)− y)(y − y∗) < 0, y ∈ R+ \ {0, y∗}. (13)

Let (yt)t≥0 be a non-zero solution of (9) and define

M := max {M0, y1−n, . . . , y0} ,

whereM0 := max {d(x) : x ∈ [0, y∗]}. Assume that max{yt, yt−1, . . . , yt−n+1} ≤
M . The claim will follow by strong induction, provided we can show that
yt+1 ≤M . Seeking a contradiction, suppose that

yt+1 = G(yt, yt−1, . . . , yt−n+1) > M. (14)

By hypothesis, there exist numbers γt,0, . . . , γt,n−1 ∈ R+ with
∑n−1

k=0γt,k = 1

and such that z =
∑n−1

k=0 γt,kyt−k satisfies

yt+1 = G(yt, yt−1, . . . , yt−n+1) ≤ d(z).

By the definition of M and M0,

z ≤ y∗ ⇒ yt+1 ≤ d(z) ≤M0 ≤M,

and, moreover, by (13),

z > y∗ ⇒ yt+1 ≤ d(z) ≤ z =

n−1
∑

k=0

γt,kyt−k ≤M.

Combining this with (14), we arrive at the contradiction M < yt+1 ≤M .
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(ii) Set I := (0,∞), g := G|In and h := d|I . Statement (i), together with the
hypothesis (12), guarantees that the n-th order equation

yt+1 = g(yt, yt−1, . . . , yt−n+1) (15)

is persistent (in the sense of [8]). By hypothesis, y∗ > 0 is global stable attractor
of the difference equation zt+1 = h(zt) and therefore, an application of Propo-
sition 3.4 in [8] shows that y∗ is a global stable attractor of (15). Finally, let
(yt)t≥0 be a non-zero solution of (9). It remains to show that limt→∞ yt = y∗.
By (12), there exists k ≥ 0 such that yt > 0 for all t ≥ k and consequently, the
positive sequence (ỹt)t≥0 given by ỹt := yt+k+n−1 is a solution of (15). Thus,

lim
t→∞

yt = lim
t→∞

ỹt = y∗,

completing the proof.

3. Existence of a global stable attractor - main result

Our main result shows that, in the case under consideration, the sector condition

(C) can be weakened.

Theorem 1. Let A and b be of the form (4), c ∈ R
n
+ \ {0} and assume that

(A3) is satisfied. Let f : R+ → R+ be a continuous map such that f(0) = 0,
f(y) > 0 for y > 0 and the following condition holds.

(H) The difference equation zt+1 = fp(zt) has a global stable attractor y∗ > 0.

Then, x∗ = y∗p(I − A)−1b is a positive global stable attractor of (2). The

components x∗i of x∗ are given by x∗1 = y∗pb1/δ and x∗i = y∗pb1
∏i−1

j=1 aj/δ for
i = 2, . . . , n.

Proof. Let x0 ∈ R
n
+ \ {0} and let (xt)t≥0 be the corresponding solution of (2).

We denote the i-th component of xt by xt,i. First, we note that the system (2)
can be reduced to the following n-th order scalar difference equation for xt,1:

xt+1,1 = (1− δ)xt,1 + b1f
(

c1xt,1 + c2a1xt−1,1 + · · ·

+[cn

n−1
∏

k=1

ak]xt−(n−1),1

)

, t ≥ 0
(16)

with initial conditions,

x0,1 = x0,1, x−1,1 =
x0,2
a1

, . . . , x−(n−1),1 =
x0,n

∏n−1
k=1 ak

,

belonging to R+ and not all zero.
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With the aim of using Lemma 4, we define the continuous mapsG : Rn
+ → R

n
+

and d : R+ → R+ by

G(u1, . . . , un) = (1− δ)u1 + b1f
(

c1u1 + c2a1u2 + · · · + [cn

n−1
∏

k=1

ak]un
)

and

d(y) =
b1
δ
f
( δ

b1p
y
)

=
b1p

δ
fp
( δ

b1p
y
)

,

respectively.
By (H), b1py

∗/δ is a global stable attractor for the first order equation yt+1 =
d(yt). Furthermore, we have

G(u1, . . . , un) = (1− δ)u1 + δ
b1
δ
f
( δ

b1p
(γ1u1 + · · ·+ γnun)

)

= (1− δ)u1 + δd(γ1u1 + · · ·+ γnun)

with

γ1 =
b1pc1
δ

and γi =
b1pci

∏i−1
k=1 ak
δ

, i = 2, . . . , n.

Invoking (10), we see that 0 ≤ γi ≤ 1 and
∑n

i=1 γi = 1. Furthermore, if
G(u1, . . . , un) ≥ max{u1, . . . , un}, then

G(u1, . . . , un) ≤ (1 − δ)G(u1, . . . , un) + δd(γ1u1 + · · ·+ γnun),

which implies G(u1, . . . , un) ≤ d(z) with z in the convex hull of {u1, . . . , un}.
Similarly, if G(u1, . . . , un) ≤ min{u1, . . . , un}, then

G(u1, . . . , un) ≥ (1 − δ)G(u1, . . . , un) + δd(γ1u1 + · · ·+ γnun),

which implies G(u1, . . . , un) ≥ d(z) with z in the convex hull of {u1, . . . , un}.
We claim that it is sufficient to show that

lim inf
t→∞

xt,1 > 0. (17)

Indeed, if (17) holds, then statement (ii) of Lemma 4 guarantees that b1py
∗/δ

is a global stable attractor for the n-th order difference equation (16) to which
we have reduced system (2). It then follows that xt,1 → b1py

∗/δ as t → ∞,
and, moreover, using the special structure of A and b, we conclude that, for
i = 2, . . . , n, xt,i → y∗pb1

∏i−1
j=1 aj/δ as t→ ∞.

We proceed to establish (17). Noting that, by statement (i) of Lemma 4,
(xt,1)t≥0 is bounded, it follows from the structure of A and b that the sequence
(xt)t≥0 is also bounded. Furthermore, condition (H) guarantees that (11) holds
and thus there exists κ > 0 such that f(cTxt) ≥ κcTxt for every t ≥ 0. Conse-
quently,

xt+1 = Axt + bf(cTxt) ≥ (A+ κbcT )xt, t ≥ 0.

10



Now, by (A3), there exists an integer k such that the matrix (A + κbcT )k is
positive. Denoting by ei the i-th element of the canonical basis of Rn, we have,
for every i = 1, . . . , n,

xt,i = eTi xt ≥ eTi (A+ κbcT )kxt−k, t ≥ k.

Denoting the minimum of the positive n components of the row eTi (A+ κbcT )k

by εi > 0, it follows that

xt,i ≥ εi‖xt−k‖1, t ≥ k.

Invoking Lemma 3 yields that inft≥k xt,i > 0, and (17) follows, completing the
proof.

As has been mentioned in the Introduction, stability results for systems of

the form (2) with f satisfying a sector condition, are known in systems & control

theory as absolute stability results. Not surprisingly, whilst absolute stability

criteria guarantee stability for all nonlinearities in the given sector, they can be

conservative in the sense that there may exist nonlinearities (or indeed, large

classes of nonlinearities) which do not satisfy the relevant sector condition, but

for which system (2) is nevertheless (globally asymptotically) stable. This is

illustrated by Theorem 1 which shows that, for systems of the form (2) with

A and b given by (4), the equilibrium x∗ is a stable global attractor for any

nonlinearity f satisfying (H), an assumption considerably less restrictive than

the sector condition (C).

4. Consequences of the main result

Theorem 1 shows that (2) (with A and b given by (4)) has a global stable

attractor, provided the one-dimensional difference equation zt+1 = fp(zt) has

a global stable attractor. Results on the existence of global attractors in one-

dimensional dynamics go back, at least, to the paper [11] by Coppel, where it

is proved that the absence of orbits of period two is necessary and sufficient

for the existence of a positive global attractor. Coppel’s result is not easily

applicable, but there are other results which are. Some of these will now be

used to formulate conditions which are easier to verify and which are sufficient

for hypothesis (H) to hold.
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Many density dependencies considered in ecology are ultimately decreasing,

thereby taking into account the intra-species competition in the presence of

limited resources. It has been proved that if f is a density dependence, then

usually local stability implies global stability [12]. The first such result was

proved by Singer [13]. It is based on properties of functions with negative

Schwarzian derivative. Combining [13] (see also [14, 15]) with Theorem 1, leads

to the following corollary.

Corollary 1. Assume A and b are as in (4), c ∈ R
n
+ \ {0} and (A3) holds. Let

f ∈ C3(R+,R+) be such that f(0) = 0, f(y) > 0 for all y > 0 and

(S) f has a unique critical point c ∈ (0,∞) with f ′(y) > 0, y ∈ (0, c), f ′(y) <
0, y ∈ (c,∞); f is concave in (0, c); and its Schwarzian derivative Sf
satisfies

Sf(y) :=
f ′′′(y)

f ′(y)
−

3

2

(

f ′′(y)

f ′(y)

)2

< 0, y ∈ R+ \ {0, c}.

If fp has a positive fixed point y∗ with |f ′
p(y

∗)| < 1, then system (2) has a
positive global stable attractor.

As we will see soon, Corollary 1 is a useful tool in the stability analysis of

systems of the form (2) with A and b given by (4). Evidently, condition (S)

is difficult to compare with the sector condition (C). The next result, which

follows from Theorem 1 combined with the enveloping technique developed by

Cull [7, Corollary 5], provides a generalization of (C).

Corollary 2. Assume A and b are as in (4), c ∈ R
n
+ \ {0} and (A3) holds. Let

f : R+ → R+ be a continuous map satisfying the following condition.

(E) There exists y∗ > 0 such that fp satisfies condition (11) and

(fp(y)− ψη(y))(y − y∗) > 0, y ∈ R+ \ {0, y∗}, (18)

where ψη is the linear fractional function

ψη(y) =
y∗(y∗ − ηy)

ηy∗ − (2η − 1)y
, with η ∈ [0, 1/2]. (19)

Then, system (2) has a positive global stable attractor.

We say that fp is enveloped by the linear fractional function (19) if condition

(18) holds. With the particular choice of η = 1
2 , condition (E) is equivalent to

condition (C).
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Example 1. We illustrate our results by analyzing a population model for

Chinook Salmon (Oncorhynchus tshawytscha) [16]. Consider system (2) with

A, b and c as in (4) and n = 5. Following Example 4.1 in [1], we adopt the

parameter values of A and b as

δ = 1, a1 = 0.0131, a2 = 0.8, a3 = 0.7896, a4 = 0.6728, b1 = 1

and c = rc0 with

cT0 = (0, 0, 0.3262, 5.0157, 39.6647), r ∈ (0,∞). (20)

We have p = p0/r, with p0 := 1/(cT0 (I − A)−1b) ≈ 3.7628, where 3.7628 is

sightly smaller than p0.

We consider two cases: generalized Beverton-Holt function and Hassel map.

Case (i). Let f be the generalized Beverton-Holt function given by

f(y) =
8y/5

1 + 3y5/5
. (21)

In the introduction, we have graphically seen that f does not satisfy the sector

condition (C) for p = 1, and numerically we have observed that f does not

satisfy this condition for p < 1.1162. Thus, the results in [1] do not apply

if p < 1.1162. However, the generalized Beverton-Holt function (21) satisfies

condition (S) (see [17]). Moreover, the fixed points of fp are 0 and

y∗ = 5

√

5p− 8

3p
.

Additionally, f ′
p(y

∗) = (25p − 32)/8. Thus, if p = p0/r ∈ (24/25, 8/5), then

|f ′
p(y

∗)| < 1, and Corollary 1 guarantees the existence of a positive global stable

attractor.

Note that p = p0/r ∈ (24/25, 8/5) is guaranteed if 2.3519 < r < 3.9195.

Figure 2 illustrates that the result is quite sharp. There, we have plotted the

asymptotic population size as a function of the parameter r. We observe that the

population goes to extinction for r < 2.3519, at which point a positive attractor

appears in a saddle-node bifurcation and it is present for 2.3519 < r < 3.9195.

As r increases beyond 3.9195, the attractor seems to persist for a while (see

13



detail graph in the middle of the figure). The population size is always positive,

but as r increases further, the range of fluctuations also increases. The panels

at the bottom of Figure 2 show the evolution of the population size in the first

300 generations to illustrate the three described behaviours.

Case (ii). Let f be the Hassel map given by

f(y) =
125y

(1 + 24y)3/2
. (22)

Again, we have seen in the introduction that f does not satisfy the sector

bounded condition (C) for p = 1. Indeed, it can be seen numerically that

condition (C) fails outside the range 1.1999 < p < 125. On the other hand, its

Schwarzian derivative,

Sf(y) =
31104y2 − 10368y− 1296

82944y4 − 6912y3 − 432y2 + 24y + 1
,

is not negative as its graph illustrates, see Figure 3.

Therefore, it is not possible to use Corollary 1 and the result in [1] guarantees

the existence of an attractor in a bounded interval of the parameter r only.

However, we will see that an application of Corollary 2 leads to a substantial

improvement of the result.

The fixed points of fp are 0 and

y∗ =
25− p2/3

25p2/3
.

For p < 125, the map fp satisfies condition (11) and is enveloped by the linear

fractional function ψ0(y) = (y∗)2/y. The latter follows from a change of vari-

ables y = zy∗, allowing us to apply the results for Model VI in [7]. Therefore,

Corollary 2 guarantees the existence of a positive global stable attractor for all

r ∈ (p0/125,∞) with p0/125 ≈ 0.0301.

Example 2. In this example we consider a recent result published in [18],

where it was analyzed how harvesting influences the dynamics of the following

stage-structure model with two age classes (juveniles and adults):

xt+1,1 = g((1 − h2)xt,2),

xt+1,2 = (1 − h1)s1xt,1 + (1− h2)s2xt,2,
(23)

14



where xt,1 and xt,2 denote the numbers of juveniles and adults at time step t,

respectively, h1, h2 ∈ [0, 1) and s1, s2 ∈ (0, 1] are the corresponding harvest and

survivorship rates, and g(y) = αye−βy is the Ricker map with α > 1, β > 0.

Changing variables, yt := (β/r)xt,2, where r := lnα > 0, (23) can be reduced

to the following second-order scalar difference equation

yt+1 = (1− h2)s2yt + (1− h1)s1(1− h2)yt−1e
r(1−(1−h2)yt−1). (24)

By using a result in [19], it is proved in [18] (see [18, Proposition 2.1]) that (24)

has a positive global attractor for

r ∈ (r0, r0 + 1], where r0 := ln
( 1− (1− h2)s2
(1− h1)(1− h2)s1

)

. (25)

We will use Corollary 1 to show that the existence of a positive global attractor

for (24) is guaranteed for a range of parameter values r larger than that given

in (25). To this end, we note that equation (24) can be rewritten as a system

of the form (2) with δ = 1 − (1 − h2)s2, a1 = 1, b1 = 1, c1 = 0, c2 = 1 − h2 in

(4), and f(y) := (1 − h1)s1ye
r(1−y). This function f satisfies condition (S), see

e.g. [14]. Moreover,

p =
1− (1− h2)s2

1− h2
.

Routine calculations show that fp has a unique positive fixed point y∗ = 1−r0/r

if, and only if, r > r0 and that this fixed point satisfies f ′(y∗) = p(1 + r0 − r).

Consequently, |f ′(y∗)| < p if, and only if, r ∈ (r0, r0 + 2), and thus, Corollary 1

guarantees that system (23) has a positive global attractor for r ∈ (r0, r0 + 2),

thereby increasing the range of parameter values r as compared to (25).
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Figure 1: The sector region, in the case p = 1, appears in light brown colour. Observe that
condition (C) is not satisfied: neither by the generalized Beverton-Holt map with K = 5

√

5/3,
λ = 8/5, β = 5 (solid red curve) nor by the Hassel map with K = 1/24, λ = 125, β = 3/2
(dashed blue curve). For the chosen parameters y∗ = 1 is the unique positive solution of the
equation f(y) = y and |f ′(1)| < 1 for both maps.
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Figure 2: Asymptotic population size as a function of the parameter in Example 1 (the top
panel). We have calculated 6020 generations to remove the initial transients and the plot shows
the sizes of the last 20 generations. The initial population size is chosen as a pseudo-random
vector for each of the 1000 different values of r considered. Simulations of the global dynamics
with increasing r (bottom panels): for r ∈ (0, 2.3518) the population goes towards extinction
(left); for r ∈ (2.3519, 3.9195) there is a positive stable equilibrium; and for r > 3.9195 the
equilibrium becomes unstable but solutions remain bounded. In each of the three cases we
have chosen the following five different initial conditions biased totally to each of the five stage
classes, x0 = ei for i = 1, . . . , 5.
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Figure 3: Schwarzian derivative of the Hassel map (22).
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