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Investigating Amorphous Order in Stable Glasses by Random Pinning
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We investigate stable glassy states that are found when glass-forming liquids are biased to lower than
average dynamical activity. By pinning the positions of randomly chosen particles, we show that many-
body correlations in these states are relatively strong and long ranged compared to equilibrium reference
states. The presence of strong many-body correlations in these apparently disordered systems supports the
idea that stable glassy states exhibit a kind of “amorphous order,” which helps to explain their stability.
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Glassy materials are stable and appear to be solid, but
their molecular structures closely resemble those of liquids
[1,2]. Reconciling these two observations is a central
challenge if the properties of these important materials
are to be understood. To this end, a useful concept is
amorphous order, which means that while the structure of a
glass appears highly disordered, there may, nevertheless, be
strong correlations between particles, extending over sig-
nificant length scales [3–5], and leading to glassy behavior
[3,6,7]. These correlations can be revealed through a
system’s response to pinning multiple particles in place,
with the others left free to relax [8–12]. Alternatively,
instead of searching for some kind of order in the
configurations of a glassy system, one may take a dynamic
approach [13,14], focussing on the trajectories by which
these systems evolve in time. By concentrating on trajec-
tories with lower than average dynamic activity, recent
studies have revealed nonequilibrium phase transitions
[15–18] and unusually stable glassy states [19]. Here,
we use random pinning measurements [10–12] to show
that while these stable states were found by analyzing their
dynamical properties, they also exhibit strong amorphous
order. We argue that these results offer a point of contact
[20,21] between the dynamicawsml approach based on
low-activity trajectories [15,16] and structural approaches
based on amorphous order [3–7].
We consider the well-studied glass-forming liquid of

Kob and Andersen [22]. This system exhibits a nonequili-
brium “inactive phase” [16], which is extremely stable [19]
and is found by biasing dynamical trajectories to low
activity. The stable glassy states that we consider were
taken from this inactive phase [23], for a system of
N ¼ 150 particles [24]. The unit of length in this system
is the diameter σ of the larger particles (type A), the system
size is L ¼ 5σ, and all results shown are for temperature
T ¼ 0.6 (in units of the AA-interaction energy), for which
the equilibrium state is a weakly supercooled fluid. The
system evolves by overdamped (Monte Carlo) dynamics
[28], which gives results for structural relaxation in
quantitative agreement with molecular dynamics [16,28].

Time is measured in units of Δt ¼ σ2=D0, where D0 is the
diffusion constant of a free particle.
To analyze amorphous order in inactive states, we use a

random pinning procedure [10,11]. For a given reference
configuration, we fix the position of each particle with
probability c, arriving at a “template”: a set of approx-
imately cN pinned particles. The remaining (unpinned)
particles then move as normal in the presence of the frozen
template. If the reference configuration is highly ordered,
one expects a strong influence of the template on the
resulting system. For example, in a perfectly crystalline
sample, a template containing just three particles is suffi-
cient to determine the lattice orientation and, hence, the
positions of all other particles. More generally, if a template
containing a small fraction of particles has a strong
influence on the liquid structure, this indicates that the
correlations among particle positions are strong, and hence
that the system is ordered, even if this order is not apparent
from two-point density correlations.
To analyze the influence of the template, we require a

measure of similarity between configurations. To account
for configurations where particle indices are permuted but
the structure remains similar, we divide the system into a
cubic grid of cells of size l ¼ ðL=10Þ ¼ 0.5σ [10]. Let ni
be the number of mobile (unpinned) particles of type A in
cell i. Then, if configurations C and C0 have cell occupan-
cies fnig and fni0g, their overlap is

QðC; C0Þ ¼ 1

M

X

i

nini0 − hnii2
hn2i i − hnii2

: ð1Þ

If C and C0 are identical then hQi ¼ 1 while, for indepen-
dent random configurations, hQi ¼ 0. While Q depends
only on type-A particles, our results are very similar if the
overlap is modified to include all particles [24].
For pinning from equilibrium states [10–12,29–36], a

reference configuration C0 is drawn from an equilibrium
distribution. We pin each particle in C0 with probability c
(pinning a fixed number of particles [10,12,35] has similar
effects [24]). Then, a second configuration C is generated,
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which includes the pinned particles from C0, while the
remaining particles are equilibrated in the presence of this
template. Repeating this procedure many times, we build
up a distribution peqðQjcÞ for the overlap Q ¼ QðC0; CÞ.
Note that this is a static (thermodynamic) procedure, in that
peqðQjcÞ depends only on the system’s Boltzmann dis-
tribution [24].
To study inactive states, we draw reference configura-

tions C0 from trajectories of the model that are biased to
lower than average dynamical activity [24]. Starting from
inactive reference configurations, we repeat the pinning
procedure, which results in a different distribution of the
overlap, denoted by pinðQjcÞ. The inactive state is coupled
to a thermostat at T ¼ 0.6, so we compare the inactive state
with an equilibrium state at that temperature. Differences in
amorphous order between inactive and equilibrium states
are reflected in differences between peqðQjcÞ and pinðQjcÞ.
To estimate these distributions, we conducted dynamical

simulations. For a given reference configuration C0 and a
given template, dynamical trajectories starting from C0
were used to calculate time-dependent overlaps QðC0; CtÞ,
where Ct is the configuration of the system at time t. This
procedure is repeated for many different templates and
different reference configurations. Figure 1(a) shows the
time-dependent average overlap CðtÞ ¼ hQðC0; CtÞi, for
both equilibrium and inactive reference configurations.
The dynamical relaxation from inactive states is much
slower than equilibrium relaxation, even in the absence of
pinning [19]. Also, as c is increased, the dynamical
relaxation slows down, for both equilibrium and inactive
reference states [10,36].
Figures 1(b) and 1(c) indicate that the slow decay of CðtÞ

is associated with large fluctuations of QðC0; CtÞ. For long
times, the time-dependent distribution p0

inðQjt; cÞ of this
overlap has a characteristic bimodal shape. In contrast, the
distribution p0

eqðQjt; cÞ, obtained under the same condi-
tions, lacks the second peak at high Q. The differences
between these distributions are entirely due to the to the
structural differences between the reference states (inactive
or equilibrium) from which the pinned particles were
selected. Further, the dynamics used here ensure [24] that
limt→∞p0

inðQjt; cÞ ¼ pinðQjcÞ, so differences between the
long-time limits of p0

inðQjt; cÞ and p0
eqðQjt; cÞ reflect

differences between peqðQjcÞ and pinðQjcÞ. However,
Fig. 1 shows that p0

inðQjt; cÞ has not reached its large-t
limit, so we may not assume that the “dynamical” dis-
tribution p0

inðQjt; cÞ reflects the form of the “static”
distribution of interest, pinðQjcÞ. In particular, the large-
Q peak in p0

inðQjt; cÞ might disappear on increasing t, as
the system relaxes further.
We, therefore, conducted simulations in which a tem-

plate was fixed as before, after which the temperature was
increased to T ¼ 5.0 and dynamics run for t ≈ 1000Δt.
This temperature is high enough that the mobile particles
quickly decorrelate from their initial configuration. These

“randomized” states were then used as initial conditions for
dynamical simulations (see also [8,37]). We again mea-
sured the distribution of the overlap between the reference
C0 and the resulting time-dependent configurations Ct. Let
the distribution of this overlap be pR

inðQjt; cÞ and
let CRðtÞ ¼ hQðC0; CtÞi.
Results are shown in Figs. 1(d) and 1(e): the average

overlap CRðtÞ starts near zero (as expected for a random-
ized initial condition) and slowly increases, due to the
influence of the template. For large times, there is a
significant fraction of trajectories in which the system
spontaneously evolves into a state with largeQ. That is, the
frozen template (containing just 9% of the particles)
influences these trajectories so strongly that they return
to the same metastable state as the original reference
configuration. As before, pR

inðQjt; cÞ → pinðQjcÞ as
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FIG. 1. (a) CðtÞ, calculated from equilibrium and inactive
reference configurations. From left to right c ¼ 0.00; 0.05;
0.07; 0.09. (b) For an inactive reference state and c ¼ 0.09,
the average overlap CðtÞ (black) and plots of QðC0; CtÞ for
representative trajectories (gray). (c) Distributions p0

inacðQjt; cÞ at
the times indicated and c ¼ 0.09, compared with p0

eqðQjt; cÞ for
an equilibrium reference state, under the same conditions. (d),(e)
Data analogous to (b),(c), but using initial configurations in
which the positions of unpinned particles were randomized.
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t → ∞, but this limit is not saturated. However, while
pR
inðQjt; cÞ and p0

inacðQjt; cÞ are converging to the same
limit, they do so from opposite directions: the original
simulations start in the reference state C0 and evolve away
from it, while the randomized simulations start far from C0
and evolve back towards it. Thus, a natural conjecture is
that these two distributions give (approximate) upper and
lower bounds on the distribution pinðQjcÞ.
Figure 2 collates the relevant distributions. Inactive

reference configurations lead to bimodal distributions,
while the distributions obtained from equilibrium reference
configurations are unimodal, for pinning fractions up to
c ¼ 0.11. In the Supplemental Material (SM) [24], we
show that the structures of high-Q and low-Q states are
very similar (at the two-particle level), ruling out a simple
structural origin for the bimodality in Figs. 2(a) and 2(b).
The probability associated with the large-Q peak in
pinðQjt; cÞ rises in a strongly nonlinear fashion, indicating
the central role of many-body correlations [38].
To show how these numerical results are related to

amorphous order, we build on previous work on fluctua-
tions of the overlap [39–41], writing

pðQjcÞ ¼ e−NβVðQ;cÞ; ð2Þ

where VðQ; cÞ is an effective potential, as used in mean-
field theories of the glass transition [39], generalized to
include the effects of pinning. Within mean-field theories
and below the onset temperature (To ≈ 1 for this model),
one expects two peaks in pðQjcÞ, as Q is varied, and,
hence, two minima in VðQ; cÞ. These correspond to C and

C0 being in the same metastable state (high Q), or in
different states (low Q). As c is increased, one expects the
low-Q peak to be reduced, because cases where C is in a
different state from C0 are not typically consistent with the
frozen template. Within random first-order transition theory
[7], one additionally expects a phase transition at some
critical concentration c [11,42], so that the high-Q peak of
pðQjcÞ dominates the distribution for c > c�, while the
low-Q peak dominates for c < c�.
If such phase transitions occur in randomly pinned

systems, the distribution PðQjcÞ remains bimodal as the
system size N → ∞. Numerically, this can be established
by finite-size scaling analysis [12], but the long time scales
associated with inactive states mean that this is beyond the
scope of this study. Nevertheless, the bimodal distributions
PðQjcÞ and the associated nonconvex VðQ; cÞ shown here
imply the existence of strong many-body correlations in
these systems. As we now explain, Fig. 2 indicates that the
inactive state in this model has a structural correlation
length ξ that is comparable with the system size L ¼ 5σ.
To show this, we follow [40] in considering spatial

fluctuations of the overlap. For the equilibrium reference
state considered here, it is expected that spatial fluctuations
prevent any phase transition [11,36]. Hence, within the
framework of the renormalization group, one does not
expect long-ranged order, but one does expect strong
spatial fluctuations of the order parameter Q, with an
associated correlation length ξ. The expected situation [40]
is sketched in Fig. 3—it occurs (for example) in plaquette
spin models [33], which have glassy dynamics and growing
amorphous order at low temperatures [43,44]. Consider
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FIG. 2. (a)–(c) Distributions of QðC0; CtÞ. (a) c ¼ 0.07 for an
inactive reference; (b) c ¼ 0.09, inactive reference; (c) equilib-
rium reference, for c ¼ 0.11 (results for lower c are similarly
unimodal). In (b), t ¼ t2 as indicated in Fig. 1(b); for (a) and (c),
the times are 3t2=4 and t2=4, respectively. (d) Probabilities
corresponding to the high-Q peak in the distributions pðQjt; cÞ.

FIG. 3 (color online). (a)–(c) Sketches of the local overlap qðrÞ
within a large system (L ≫ ξ), as hQi increases. One expects [40]
a domain structure of high-q and low-q patches, with an
associated length scale ξ. (d)–(f) Sketches of distributions
lnpðQÞ ¼ −NβVðQÞ for small systems (L≲ ξ), under the same
conditions as (a)–(c). For small systems, then, the domain
structure leads to two peaks in pðQÞ, with typical realizations
of the system containing only one domain, as indicated in (e).
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two configurations C and C0 that share a template: shaded
regions in Figs. 3(a)—3(c) indicate parts of the system
where the overlap between C and C0 is large. Specifically,
we define a local overlap qðr; C; C0Þ so that QðC; C0Þ ∝R
drqðr; C; C0Þ. The length scale ξ characterizes the two-

point correlations of qðrÞ.
Figures 3(a)—3(c) illustrate the interpretation of the

length scale ξ, over a range of hQi. In Fig. 3(c), hQi is
relatively large (strong pinning), and most of the system has
high q, while small-q domains represent regions where the
system differs from the reference state. As pinning is
reduced, hQi decreases [Fig. 3(b)], and more of the system
is covered by small-q domains, with a characteristic length
scale ξ (the situation is similar to the paramagnetic state of
an Ising-like model). On further reducing hQi, [Fig. 3(a)]
the small-q regions predominate, leaving behind high-q
domains where configurations C and C0 are similar, perhaps
due to a particular property of the template in that area.
Note that while Figs. 3(a)—3(c) represent systems over a
range of c, they are all quite far from the limiting cases of
strong pinning (c → 1), where ξ is expected to be very
small, and weak pinning (c → 0), for which ξ is directly
related to the radial distribution function gðrÞ [33,36,38].
The key point [40] is that if the situation in

Figs. 3(a)—3(c) holds, bimodal distributions pðQÞ will
be found on considering finite systems of size L≲ ξ. The
relevant distributions are sketched in Figs. 3(d)—3(f), and
are similar to those in Figs. 2(a) and 2(b). Our results are,
therefore, consistent with the inactive state having a
correlation length ξ≳ L. The SM includes results for
four-point correlation functions, which reinforce this con-
clusion [45]. In plaquette models at low temperatures
[33,44], the spacing between localized “excitations”
[13,14] determines the length scale ξ. It has been proposed
that a similar length scale determines the dynamical
behavior of glasses formed by slow cooling [46].
Alternatively, the results of Fig. 2 are also consistent with
the presence of a pinning-induced phase transition
[11,12,42], in which case ξ would diverge. In the absence
of a finite-size scaling analysis, we cannot distinguish these
two scenarios, so we simply conclude that ξ≳ L for these
inactive states.
To reinforce the connection between large domains and

the results of Fig. 2, we recall the implications of a non-
convex effective potential VðQ; cÞ, which necessarily
accompanies anybimodal distributionpðQjcÞ. Thepotential
is nonconvex if, for someQ, ð∂2=∂Q2ÞVðQ; cÞ < 0. Hence,
there exist two values of the overlap Q1, Q2 such that
VðQ1Þ þ VðQ2Þ < 2VðQaveÞ, where Qave ¼ 1

2
ðQ1 þQ2Þ.

Therefore, pðQ1ÞpðQ2Þ > pðQaveÞ2. This means that sys-
tems which are globally high- or low-q are more likely than
systems where the domains are mixed, which implies that
domainsizesξarecomparablewiththesystemsizeL [40].We
emphasize that this argument holds for finite systems,
independently of the existence of any phase transition.

Finally, note that fluctuations of the overlap in these
systems come from several sources: the choice of the
reference configuration and of which particles to pin (the
fixed “template”), and the thermal fluctuations associated
with the configuration Ct. The effect of pinning differs
significantly between different templates: some are more
likely to contribute to the large-Q peaks in Fig. 2, while
others contribute more to the small-Q peak. In the picture of
Figs. 3(a)—3(c), this implies that the high- or low-q regions
of space are tied to specific locations in the system,
depending on the structure of the template. However, on
varying the choice of the frozen particles for a given
reference configuration, we do not find any strong propen-
sity for large Q or small Q. That is, the specific reference
configuration does not strongly influence the locations of
large-q or small-q domains.
We have shown that nonequilibrium states with low

dynamical activity [16] have strong amorphous order, of a
range ξ comparable with the system size L ¼ 5σ. This
order is much stronger than that found in equilibrium
systems at the same temperature, consistent with the
stability of the inactive states. The evidence for the large
length scale ξ is indirect, but Fig. 3 shows how bimodal
overlap distributions can be attributed to the existence of
large domains. More generally, these results show how
biased ensembles of trajectories [15,16] can be combined
with static concepts such as effective potentials [39] and
amorphous order [3–5], in order to understand stable glassy
materials.

We thank Juan Garrahan, David Chandler, Ludovic
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I003797/1.
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