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ABSTRACT:

This paper presents an inverse modelling appraargbarameter estimation of a model dedicated to
the description of moisture mass transfer in polgugoscopic building materials. The hygric
behaviour of unfired clay-based masonry samplepésifically studied here and the Moisture Buffer
Value (MBV) protocol is proposed as a data souramfwhich it is possible to estimate several
parameters at once. Those include materials piepemd experimental parameters. For this purpose,
the mass of two clay samples with different comi@ss is continuously monitored during several
consecutive humidity cycles in isothermal condiioimdependently of these dynamic experimental
tests, their moisture storage and transport pasexsate measured with standard steady-state methods

A simple moisture transfer model developed in COM3Aultiphysics is used to predict the moisture
uptake/release behaviour during the MBV tests. Sétef model parameters values that minimizes the
difference between simulated and experimental tefthen automatically estimated using an inverse
modelling algorithm based on Bayesian techniquesniaterials properties, the optimized parameters
values are compared to values that were experithentaasured in steady state. And because a
precise understanding of parameters is needegéssithe confidence in the inverse modelling
results, a sensitivity analysis of the model i® @sovided.

Keywor ds: Moisture Buffer Value, Clay, HAM Modelling, Paratee estimation, MCMC, DREAM



1. INTRODUCTION

Clay has been used as a construction material siacehas started building. In 2012 UNESCO released
an inventory of Earth construction heritage sitdslIf shows the immense legacy of earth constoucti

and earth architecture around the world. These déenonstrate how durable this material can be. In
modern times earth has to compete with materials aa concrete and due to its natural variab#iyth

is often considered as a primitive material notditmodern construction. However, earth based nrgso
and renders have many qualities that are becomarg and more important in the context of global
climate change and the challenge to reduce canmss®mns. The choice of using earth as a constructi
material varies depending on the economical sdnadf a country. In developing countries earth is a
cheap material that can often be sourced clodgetbuilding site making it the first choice for ecmnical
reasons. In richer industrialised countries, eartthosen for its sustainable, highly hygroscopid a

aesthetic qualities [2].

Clay-based materials show high moisture storagaagpthrough surface adsorption and capillary
condensation effects in the hygroscopic domainhfienomena coupled with moisture transport inside
the porous structure are stated to offer a reguiatapacity of the indoor air humidity [3], improg
comfort for occupants [4-6]. One way to quantifistregulation behaviour is to evaluate the moisture
buffer capacity, i.e. the moisture exchange caparitier a dynamic exposure to ambient relative
humidity (RH) cycle. The relative humidity variati® can be caused either by temperature change of th

ambient air or through changing the amount of niogsin it.

The NORDTEST project [7] has been one of the fitempts to find a consensus for an experimental
protocol able to adequately characterize the beHgacity through the definition of a global paréene
called the Moisture Buffer Value (MBV). Beside tilieect humidity regulation that is evaluated by the
MBYV at material scale, the buffer performance oftmgcopic materials also causes latent heat effects

whose impact on energy balance is only partialbeased [8].

Along with the will to characterize porous hygropimoand capillary materials experimentally, the
modelling of their behaviour has progressed subisibnin the last decades [9-12]. Indeed, Heatad

Moisture (HAM) models which deal with detailed hgtitermal analysis of porous materials have



improved in accuracy through the development offmater power and a better knowledge of the involved
phenomena. ManfAM computer models and associated software haga developed for building
applications and some have been commercializedlf]3;The main difference between the models is in
the description of the moisture flows that can heereral levels of complexity, ranging from diffuisy
models using moisture content as driving potemtiaonductivity models using the actual thermodyitam
driving potential and separated liquid and vaptaws [15]. All these models rely on material and

boundary condition parameters, most of them béing tonsuming to obtain.

The computation of temperature and moisture corfiteldts in building materials, from the known
parameters and boundary conditions formdgr@ct HAM problenf16]. This approach is the most common
in Building Physics, where the aim is often to jicethe behaviour of material assemblies underoveri
climatic solicitations. The validity of such appob@s relies on the quality of characterizationtiier
hygrothermal properties of the material. In corttaglirect modelling process, there exist several
methods that allow parameter estimation from temdpee and moisture content field measurements,
which establishes a new kindiaverse HAM problemAmong inverse modelling methods, the Bayesian
approaches are becoming more and more populaviroamental models. In Bayesian optimization,
parameters are not unknowns with a single valuketermine, but stochastic variables whose disinbat
have to be specified. The distribution given befestmation is called 'a priori' and the distribuatigiven
after integration of the experimental data is chlé&eposteriori'. Historically, the emergence & Markov
Chain Monte Carlo (MCMC) simulations with the Rand@/alk Metropolis algorithm as first widely

used approach [17] have greatly simplified thenestion of posterior distribution of parameters. &wty,
Ter Braak [18] developed the Differential Evolutibfarkov Chain (DE-MC) method, able to run several
Markov chains in parallel with a so called 'gertetigorithm for the sampling process, improving the
parameter space exploration efficiency. The Difiéed Evolution Adaptive Metropolis (DREAM)
algorithm [19, 20] is an evolution of the DE-MC |alto automatically tune the scale and orientatibn

the proposed parameter distributions (i.e. selptida randomized subspace sampling) during the
evolution towards posterior distribution. A goodiesv about Bayesian approaches and inverse mogdellin

algorithms evolution can be found in [21].

The goal of this paper is to illustrate the usa MCMC sampler to estimate the parameters of a HAM



model in an inverse modelling problem. For thispmse, we propose to study the applicability of the
MBYV protocol as the source of experimental datagtimate hygric properties of porous construction
materials. Specifically, the mass variation ofeliént clay-based samples is measured experimentally
during a MBV test. In parallel, their moisture stge and transport properties are measured in sttatty
conditions. The DREAM algorithm is then coupledatsimplified moisture transfer model which
simulates the moisture exchange of samples. Tremgders sampling process consists in automatically
tuning the HAM model in order to match experimemtalss variation by testing various combinations of
parameters values and evaluating the resulting hestigency. Eventually, the inverse modelling
approach can propose a 'best parameters set' wimamizes the difference between the simulated and
the measured moisture uptake/release of sample paoameters are estimated in this paper; two are
directly related to the material and two otherkdith to experimental conditions. For the first catggthe
best estimated parameters resulting from the ievexadelling approach can be compared to their

corresponding value measured in steady-state.

The questions arising from this study are: (1) hloevdifferent model parameters interact duringhis/
cycle, with possible correlations; (2) is it reli@albo use this single dynamic experiment to retrisgveral
parameters at once with the inverse modelling neet{8) do the dynamic conditions of the MBV test

offer a more 'realistic' configuration for matenmbperties assessment?

2. THE MOISTURE BUFFER VALUE

The need for a standardized parameter to charaetire moisture buffering capacity of materialstted
the definition of the Moisture Buffer Value (MBVudng the NORDTEST project [4] together with the
proposal of a dynamic experimental protocol forenats classification. The practical MBV is defirasl
“the amount of water that is transported in or aita material per open surface area, during a aert
period of time, when it is subjected to variatiamselative humidity of the surrounding aif7].
Concretely, the samples are subjected to cycligatanges in relative humidity (RH) at a constant
temperature 023 °C and are weighted regularly. The cycle is compdsenhoisture uptake during 8

hours at high RH followed by moisture release lérb@t low RH and is repeated until constant mass



variation between 2 consecutive cycles is reachied.practical MBVin kg/(m? - %RH) is then given

by Eq.1.

Am
MBVpractical = A-ARH @

whereAm is the mass variation during the 8 hours absangiltase or the 16 hours desorption phase in
one complete cyclej (m?) is the total exchange surface aRH is the difference between the high and
low relative humidity of the cycle. This experimahtalue is a direct measurement of the amount of
moisture transported to and from the material ierdiven exposure cycle. In the original prototug,

cycle is fixed to a 75/33%RH scheme.

A theoretical value of the MBV, callddBV,,.,;, can be computed analytically using semi-infisibdid
theory and Fourier series without transfer resistaat exchange surface. There is always a disagréem
between measured and analytically calculated dtigetdynamic nature of the experimental protodw, t
film resistance on specimen exchange surface avidtams from the typical step transitions . Howeige
has been shown in McGregor et al. [22] that a ggréement can be found between measured and
calculated MBV when reducing the film resistancéhi@ dynamic test and improving the precision ef th

steady state measured properties.
3. MATERIALSAND METHODS
3.1 Samples

Two different soils were used for the experimemabsurement. Thér soil is a natural soil extracted
from the Wealden clay group in the UK. The natsl had high clay content, so 50% by weight oéfin
builders sand was added. The final particle sig&idution consisted of 18% of clay, 24% of sild&58%
of sand. ThéMt is a manufactured soil; it was prepared with 10% commercial bentonite, 15% of

kaolin clay, 20% of silt and 55% of sand.

The tested sample blocs have all three a cylinidsttape and a nominal height of 3cm, which is dtate
sufficient given the theoretical moisture penetratilepth during the MBV experiment. Lateral andkbac
faces are sealed from water exchange with aluminép®a providing one-dimensional conditiomable 1

gives the general physical properties of the sasnplguding their volume, true exchange surface are



and dry density.

Table 1 Properties of the tested samples

Volume of sample Exchange surface area Dry density
cm3 m? kg/m3
Gr8 21.92 0.0078 2010
Mt9 24.06 0.008 1860

The vapour resistance factors of the two samplee determined by the wet cup method described dy th
ISO 12572 Standard. Samples are sealed on thé sopup containing potassium nitrate solution. Thp
is placed in a chamber at 50%HR and 23°C, givipically 94+0.60%HR in the air layer above the salt

solution. The processed results give a valye ©f8.8 forGr8 sample and 8.3 favit9 sample.

The moisture storage curves were determined byraic Vapour Sorption (DVS) system. The DVS
equipment precisely records the mass of a samplp @ 4g in varying RH conditions. The sorption
isotherms were precisely recorded up to 95%RH witll days. Above 95%RH the samples need much
longer to reach Equilibrium Moisture Content (EMEE) therefore the equilibrium was not expectedesto b
reached at these levels but this is not consideteditation for this study as 95%RH is above thé R

level from all tests. Once the adsorption curve sueament is finished, the DVS apparatus initiates t
reverse cycle to obtain the experimental pointhiefdesorption curve. All equilibrium moisture osmit

values are expressed as variablgeg - kg™1). Fig. 1 shows the DVS curves for the two tested materials.
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Fig.1 Moisture storage curves

It can be observed that absorption curves only giaise steeply from around 80% due to the irgees



capillary condensation effects. As a consequehceassumed that hysteresis phenomena are négligib
during the MBV experiments performed later and atbigorption curves will be considered. Indeed, the
chosen relative humidity cycle imposed on sam@dsghrs at 50% and 8hrs at 85%. A relative humidity
superior to 80% is thus not expected to be fourrthdwa prolonged period in the material. . For each
material, a continuous moisture storage functiép) is then fitted on absorption experimental points b
minimizing the sum of least squared errors. Thetl${28] model was selected for its easy handling an

the good description in the range of humidity ¢daed:

u(p) =G + G In(1 - ¢) 2)

whereC; andC; are empirical parameterfBable 2 shows the optimized values for both materials.ajam
advantage of using Smith function is an expressfahe moisture capacity = Z—:; dependant only on one
constant parameter:

Cy 3)
p—1

$(p) =

This is particularly interesting in the inverse raithg approach that we introduce in this papei asll

limit the number of parameters needed to charaet¢hie behaviour of the sample during the MBV
experiment. Moreover, the dataTiable 2 shows thaMt9 material has a greater moisture capacity in
comparison t@r8 and is thus expected to show a greater practi&Y lsls its vapour resistance factor is
also smallerFig. 2 shows the fitted Smith functions and experimeptahts on the 50-90% range for both

samples as well as obtained moisture capacitiegiturs.

Table 2: Smith model empirical parametersfitted on the 50-90% RH range for absor ption curves

Parameters Gr8 Abs Mt9 Abs
Ci 0.0036 0.0029
C, -0.0083 -0.0124
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Fig.2 Fitting the Smith model on experimental data (left) and moisture capacities calculated from

Smith model (right)
3.2MBYV Test platform

The MBV was recorded in a climatic chamber (TASeohg a stability of +/- 0.3 to 1.0°C and +/- 38

of RH. As previously said, the test chamber wadesptoduce cycles of 85%RH during 8 hours and
50%RH during 16 hours with a constant temperatfi@32C. The values used where consistently used at
the University of Bath and are better representataf the climate in the UK than the values usedHe
NORDTEST protocol. The weight of the samples wemngtiouously logged with a reading every minute

on a scale (Ohaus) with a precision of 0.01g. Tadesand the sample were covered with a wind sheeld
maintain an air velocity as close as possible 1nfs which was recommended by the NORDTEST and is
typical of the interior air velocity in a buildinghe samples were conditioned at 19°C and 55%Rdthin
environmental controlled room. The tests run fdeast 7 consecutive cycles so the behaviour over a
longer period can be observed. Relative humiditytemperature sensors (Tinytag) recoded the interna

conditions above the specimens for contfod. 3 shows the complete experimental set-up.
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Fig.3 Experimental set-up

Fig. 4 presents the measurathbient relative humidity and temperature in thancher during a typical
24hrs cycle. The relative humidity transitions elese to perfect steps with times of 12min for kavhigh

RH transitions and 14min for high to low RH. Theatol sensors put in the chamber indicate a mean
measurement of 85.9%RH during adsorption phasé@tdoRH during desorption phase. The measured
dynamic humidity cycle is used as input for bougdaonditions during the modelling phase instead of
ideal step transitions with chamber set points.dgéaming the temperature, a mean value of 23.21°€C wa
measured during the whole cycle and this constalinewvas used to determine vapour saturation pessu

when needed.
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3.3. Description of the moisture transfer model
3.3.1 Moisture balance equation

Modelling the hygric behaviour of the clay-baseohpkes during the MBV determination experiment is
considered as a tool for parameter estimation tiiv@n inverse modelling approach. The moisture
transfer model was developed in COMSOL Multiphysind is interoperable with the parameter sampling

algorithm that is encoded in Matlab and presentdtie next section.
The following hypotheses were taken for the mathealedescription of mass transfer:

(1) The soil sample is non-deformable and isotrof@rthe fluid phases do not chemically react it
solid matrix; (3) The dry air pressure is cons{@at air advection) and the total gas pressure gnisliare
considered negligible; (4) no liquid transport émsidered and vapour pressure is the only driving
potential for moisture movement; (5) there is aldbermodynamic equilibrium between the different
phases; (6) there is no thermal diffusion (Soritot¥; (7) no hysteresis phenomena is presentgaierd

before.

The dependent variable chosen for this problerdgélative humidityp and which was solved in 1D.
Since the experiment was conducted under isothesomalitions, the heat balance equation was not
considered here, even if some latent effects teasurface of the material might happen. For a madte
having an ideal MBV similar to the clay samplesgidared here, Dubois et al. [24] showed that, duain
MBYV test with 33/75%RH cycles, the amplitude of fErature variation at sample surface was very low
(less than 3°C). In consequence, it can be assteredhat temperature does not have a significant

impact on the moisture exchange behaviour.

The mass conservation equation was formulatedneititive humidityp as main dependent variable:

0p  8yDsqr 029 (5)
Po'f((l))'%:a_sat'_

7 0x?

where¢ (kg - kg™1) is the isothermal moisture capacity consideredtzon for the given RH interval and
Psar (Pa) is vapour saturation pressure considered condtairtg the simulation and calculated from

mean temperature in the chamber during the Eégt4). The vapour permeability of the sample is



expressed here in terms of vapour resistance fﬂct:og—” (—) whered, (kg-Pa~'-m™1-s71)is the
vapour permeability of dry air.

3.3.2 Boundary conditions

P=p=_ ©=¢s & ¢

N

il |

ﬁ='| ¢=¢0 for t=0 |

1o

- 1

Y *
x=0 Sample x=L

Boundary layer
Zs

Fig.5 1D representation of sample bloc with boundary layer

Referring toFig. 5, we can write the following boundary and initiainclitions for moisture transport:

_ Dsat ((Poo - (ps)

(gv)'f—z—s x=0 (6)
(gy)-Xx=0 x=1L 7)
@(x,to) = @0 0<x<L (8)

whereg,, (kg - m™2 - s) is the moisture flux density,, ande, are the ambient relative humidity and the
relative humidity at the exchange surface respelstiZ, (Pa - kg~ - m~2 - s~1) the surface resistance,
to (s) the initial time andp, the initial relative humidity in the sample. Thgput datap,, for the ambient
air condition used as a boundary in the model wWexaneasured RH from the experimental cydteg. (

4).

The surface resistance characterizes the moigansfér resistance that exists on the materiahsardnd
slows down the moisture exchange. Its value is gdigdixed at5E7 Pa/(kg - m? - s) which is the
usually accepted value for environments with anianttair velocity aroun@.1 m/s [7]. It's similar to a

value ofZ,,, = 360 s/m when the surface flux density is written in terofigbsolute humidity:

(g,) % = (”‘”Z;”) 9)

To calculat&s, (t), the accumulated moisture in the sample at tintlee following integration is



performed on material surface:

t
Gy(t) = | gydt (10)
/

After that, experimental and simulated data islgasimpared through the relative weight variatiénhe

sample:

m(t) —my = G,(t) A

experimental model

(11)

wherem(t) (kg) is the measured weight of the sample at time,, (kg) is the measured initial weight

of the sample and (m?) is its exchange surface ardalfle 1).

3.4. Inver se modelling approach
3.4.1. Parameter sampling and optimization algorith

The recently developed DREAM algorithm [19] wasduseorder to estimate parameters of the moisture
transfer model based on the observed moisture efoed&ase data sets for both samples during the MBV
cycles. In the process, the COMSOL model was rumiwaously together with the parameter sampling
algorithm offered by DREAM until a convergence eribn was respected. It is an optimization proeeass
the parameters set is automatically optimized doice the error between simulated and observed mass

variation of samples.

First, initial values of parameters were randondpeyated in the prior parameter space which canfsist
each parameter of an uniform distribution limitgddhosen probable values. Here, because multiple
Markov chains run simultaneously for global paraanspace exploration, an initial set of parameters
values was assigned to each chain. Then, a saddiédihood function quantified the model output
closeness to experimental data for the initial pet@r combination in each chain, using a classizad of
squared residuals (SSR). Only the four last expeEntal cycles were used to perform this quantitative

comparison, although the starting point for theudation was located at the beginning of cycle nunibe

From initial values of parameters, the differengi@blution algorithm generates a new set of parerset

for each chain, called a child set, as a combinaifacurrent parameters stored in all chains, dale



parent set. All chains are thus updated conditiprad other chains. Based on the comparison ofitiegu
likelihood function score between parent and chddameters, children parameters are either accepted
rejected, in which case the parent parametersegik the concerned chain for the next iteratiep.s
The acceptance/reject criterion is based on thedgelis ratio [25]. The process is then repeated an
convergence criterion is respected, i.e. a GelmanirfRconvergence diagnostic value of 1.2 [26]. This
chain updating scheme, specific to DREAM, improgesatly the efficiency of the MCMC sampling

process compared to more traditional MCMC meth@%. [

The output of the algorithm ispmsterior distributiorfor each parameter, i.e. the probability distridit
function of its value after statistical convergeont¢he MCMC sampler or in other terms, the marfjina
uncertainty on parameter value given the experial@fitservations. When the convergence diagnostic is
achieved, the posterior distribution is stationAfferwards, the resulting possibility of analyzitige
uncertainty of parameters and models outputs igjosat advantage of the DREAM algorithm. An
extensive study including such discussion is fourl@1]. Fig. 6 illustrates the operation of the inverse
modelling algorithm. It should be noted that expental data quality plays a crucial role in pararmoet
optimization because measurements intervene batipats of the model and the likelihood functiom. |

consequence, a good confidence in the sensorsrigatiieat information is essential.
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Fig.6 Operation of the parameter sampling and optimization algorithm
3.4.2. Parameters estimates

On the basis of the posterior distribution of maalameters, one can determine parameter estiorates

in other words, 'best values' of parameters toag@xperimental data. This can be done eitheaking



the parameter combination offering the optimal oesie in terms of model performance or by computing

averaged values among chains which includes infilomabout the marginal distribution.

For the first technique, referring to Dubois, Edr§24], the Nash-Sutcliffe efficiency coefficientw used
as the objective function to optimize:

Yy — 9:(X,0))?

NSE =1 — —
?I=1(Yi - 1)?

(12)

wherey; is a element of th&¥ x 1 vector of model outputX, = (X;, X5, ..., X,-) is anN X r matrix of

input valuesp = (64, 6,, ..., 8,) is thed parameter vectoy; is a element of th¥ x 1 vector of
measurements ang is the mean of all experimental observations. ANSefficient of 1 means a perfect
fit of the model to experimental data. If the iratiar falls below zero that would imply that theides
variance is larger than data variance and thefebynean value of observed data would be a better
predictor that the model. The parameter set thaimizes the NSE is writteft,,,, and can stem from any

of the Markov chains.

When it is better to summarize information aboet plosterior distribution in the estimates, thedieihg

mean parameter set can be computed:

1 8 1k
Omean = mz ] Z ei,j (13)
j i

whereb, .., IS called posterior mean estimatas the number of last elements used in each chains
perform the averaging process &hd is a single parameter combination in one cliairhe number of

elements to use in each chain was fixed heke=&O0.
3.4.3 Parameters assumptions

For each observed mass variation data set corrdsppto one clay-based material, two types of
parameters are optimized. First, materials hygmperties linked to their porous structure, nantlagy
vapour resistance factor of the sampland the parametéy, for moisture storage function model. The
latter determines the moisture capacity funcéiop) on the interest relative humidity range as shawn i
Eq. 3. In addition to this first category, the surfaesistance factdf, and the initial relative humidity,

constitute boundary and initial conditions paramsetehose posterior distributions are also estimated



through the DREAM sampling process. Those two arpartal parameters are very difficult to measure

and the inverse modelling method potentially offansefficient way to determine them.

All four parameters to optimize constitute the veé& = (u, C,, Zs, ¢o). Table 3 summarizes their prior
distribution of probability, i.ea priori knowledge of parameters typical values. It coagi$tuniform
distributions in our case, also called noninformatiriors. The boundaries are defined from "realist
values" knowing previous studies on clay and expenital conditions though the range were kept wide
enough to analyze the efficiency of the parameterding convergence with a somewhat overdispersed

parameter space.

Here, one objective is to compare the estimat@sasfdC, with values measured experimentally in
steady-state conditions, for each clay-based samp&inverse modelling approach potentially offers
more realistic assessment of moisture transfempetexs as they are assessed from a dynamic experime
consisting of a realistic humidity cycle. Of coursach conclusions cannot be inferred if a sigaiftc

doubt persists concerning the uniqueness of theignlof the optimization process.

Table 3 Prior uniform distribution of parameters

Parameter Prior distribution Unit
U [4 - 25] /
C, [-0.05 - 0] /
Z [1E6 - 1ES8] Pa/(kg-m?-s)
Vo [0.50 - 0.65] /

6. RESULTSAND DISCUSSIONS
6.1 Experimental observations

The relative mass variations of both samples duhegVIBV characterization test, for the first seven
cycles, are shown dfig. 7. The last four cycles, used to perform the pararsaiptimization, are
indicated clearly on the figure. The differenceviEn the two materials in terms of moisture excbang
capacity is directly observable. According to theasured steady-state hygrothermal properties, we kn
thatMt9 material shows both higher vapour permeability smwisture capacity, resulting in a higher
theoretical MBV, which is confirmed heréig. 8 provides the analysis of these data sets in tefms

practical MBV (Eq. 1). Two values are provided for each cycle and eaaterial, one for the absorption



phase and one for the desorption phase. We rezr@lthat the cycle used is of type 50/85%RH, which
must be taken into account when comparing theseegakith other materials tested according to the
33/75%RH protocol. It should also be observed éffidr seven cycle repetitions a stable moisture
exchange scheme is still not achieved. Indeetaifwere the case, the absorption and desorption
practical MBV value would be almost identical. T$peed of convergence towards equilibrium cycle is
determined mainly by the initial humidity conditionthe sample. Cycles stability was not requirethis
work because the inverse modelling approach altowgork on any dynamic data set and no comparison

to ideal MBYV values was attended.
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6.2 Optimization of model parameters



6.2.1 Parametric sensitivity study

Before going further in the parameter estimatiorcpss, it is important to assess the impact of each
parameter on the output of the COMSOL model. Threegfa sensitivity analysis was performed on a
reference simulated case in which initial valueparfameters are fixed arbitrary but close to exgukct
values for clay sample3dble 4). The following is a purely theoretical analydiam the reference
scenario, one individual parameter was changediatesand the resulting mass variation scheme atludi
in comparison to the reference output. The parametealyzed correspond to those which were to be
optimized with the inverse modelling approach. #gut in the reference simulation and each parameter
sensitivity study, the boundary conditions of thedal consisted of 7 repetitions of the measured RH
cycle Fig. 4). Indeed, it is important to observe the impagbafameters modification over multiple
repetitions of the RH cycle. The key point is tedaonfidence in the uniqueness of parameter vatues
fit a particular cycle. If it is proven that thedimidual modification of two different parametenoguces a
similar effect on sample mass variation, the rigkts that a local minimum of the objective funatis
ignored, although it represents the 'true’ valupashmeters. Indeed, if several parameter combimsti
produce a similar effect, a small experimental bhiasie can determine the dominance of one or ther ot

in terms of SSR score in the DREAM algorithm.

Table 4 Parameters combination in the reference scenario

Po u C; Z A )
kg -m3 - — Pa/(kg-m?-s) m? —
2000 10 -0.01 5e7 0.08 0.55

For material parameters, i.e. vapour resistancficieat ¢ and Smith model parametéy, an
increase/decrease of +20/-20% of the parametee \abmpared to reference case) are considered
separatelyFig. 9 shows the effect of these various schemes on tlikelnesponse in terms of weight
variation of the sample. It can be observed thaeasing any of these two parameters will resudt in
decrease of individual weight cycle amplitude. Trheerse is true when decreasing their value. Inteufd
to this daily impact, the overall tendency to mtaards an equilibrium cycle is also modified.
Regarding this second effect, the Smith parametms to have a stronger impact. Given the model

assumptions, it can be recalled that the vapouosprart coefficient is considered constant whereas



moisture capacity changes with relative humidhyptgh the Smith modeEg. 2). In reality, the vapour
diffusion coefficient is also dependent on relativenidity. Moreover, liquid transport in smaller
capillaries might add a contribution to moistul@ngport during the high humidity phase. In additimn
the inverse calculation methodology, the goal &f faper is to test the ability of the chosen maihtecal

description to accurately represent the sampleviaina
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Fig.9 Sensitivity of moisture uptake/release dueto material hygric parameters; (t.) reference case
compared to +20 an -20% variation of vapour resistance factor and (b.) compared to +20 an -20%

variation of moisture storage parameter C,

Concerning the boundary and initial conditions paters, a modification of +50/-50% was imposed to
the surface resistangg and a +2.5/-2.5% scheme to initial relative hutyich the sample,. The

modification of the initial humidity in the samphad a limited impact because of its large effect on



resulting mass variation of the sample. Similaslyface resistance was modified with +50 and -50% o
its value in order to have a noticeable impact @dehoutputFig. 10 presents the simulated relative
weight variation of the reference sample with eafcthese parameters varied individually, similady
Fig. 9. The effect of surface resistance appears todteated to daily cycles. The major modification in
comparison to reference cycle occurs at the tianditom high to low humidity in the chamber. The
initial RH in the sample has a clear impact ontthasition towards equilibrium cycle. It can be lexped
easily: if the initial RH corresponds to the averad humidity during the entire day, the cycle wbhbk in
perfect equilibrium from the start. We note tha iimpact on daily cycle is difficult to assess isut

supposed to be negligible.
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Fig.10 Sensitivity of moisture uptake/release dueto boundary and initial conditions parameters; (t.)

reference case compared to +50 an -50% variation of surfaceresistance factor and (b.) compared to



+2.5an -2.5% variation of initial relative humidity in the sample

In order to get a more precise overview about modglut sensitivity on parameters modifications,

results of the study can be expressed in termerditivity residuals, defined as:
& = (9:(X, 6rer) = 9:(%,61) (14)

whereé,..; is the parameter set with reference valdeble 4) andé’ is identical to the reference set with
the modification of one paramet€ig. 11 shows the sensitivity residuals for all scenawiith increased
values of an individual parameter. Such an appra#olvs precise identification of the impact ondon
term equilibrium and daily cycles of each indivilparameter in a highly visual and easily compagabl

form. The specific impact of each parameter orrdisellting output is clear.
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Fig.11 Sengitivity residuals for parametersincrease scenarios

The initial relative humidityp, plays preferentially on long term evolution, withmoderate impact on
daily cycles whereas the exchange surface resestrmnys precisely the opposite behaviour. Material
parameters denote a more complex combination etsff Both impact daily cycles in a similar way but
theC, parameter seems able to modify long term evolutiamore noticeable manner. Also, the long
term impact of increasing this moisture storageerty appears to be very similar to an increaseitil
humidity in the sample. Given these observatiort®mbination of +20% op value and +1% o,

value is illustrated to check if the same effecaasncrease af, alone can be produced and results are



shown orFig. 12. It seems that producing exactly the same ressdaalot possible which gives

confidence for the subsequent optimization task.
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Fig.12 Sensitivity residualsfor materials parameters

With the results of the sensitivity analysis, wea edready draw some conclusions regarding the saver
modelling approach. First, the model assumptiond,ia particular the definition of moisture storaayel
transport functions, will determine the abilitytbe optimization algorithm to extricate a relevant
description of the material. In our case, the igido of a RH-dependent moisture capacity potegtiall
reduces the number of local minima in 8%R (6, _4) space. It can be assumed that the global best scor
in terms of SSR is far from the score of the clok®sal minima. To take a contradictory example, if
moisture capacity was considered constalign5, the DREAM tool would probably have difficulty in
converging towards a single best parameter combmadf course, the mass variation of a samplenduri

a MBV experiment does not provide enough infornratim determine both complex transport and storage
functions. This would probably require the defimitiof a new non-isothermal cycle in order to create

various vapour pressure and relative humidity gnatdi in the material.

A second short remark is specific to the use of MB¥les for parameter evaluation. It appears that t
optimization process should not be performed owerunique mass variation cycle because some

parameter effects only develop over the repetitioRH cycles.

6.2.2 DREAM algorithm outputs



The DREAM algorithm was run with 8 Markov chainslantotal of 25000 model evaluations for each
material. The total number of runs was determingtihd preliminary studies in order to provide a
sufficient number of iterations after the MCMC sdenconvergence criterion to compute significant
posterior distributiongrig. 13 presents the marginal probability distributionshef four parameters for
the last 500 sampling iterations in each MarkovrthBhe results are presented in the form of historp

using data from all the chains.
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Fig.13 Marginal posterior probability distributionsof the u, C,, Z; and ¢, parameters constructed

using 4000 samples generated after conver gence of the DREAM algorithm

Each estimated parameter exhibits a narrow postgistribution with a highly noticeable dominant
mode. This is true for both tested materials. Tingettainty in parameters values given the experiaten
data seems to be really low. On the basis of postéistribution dataTable 5 provides a summary of
parameters estimates f6r8 materialandTable 6 for Mt9 material. The tables include parameters
estimates vectors defined in section 3.4.2, thficaant of variation (CV) associated to the mean
estimates and steady-state experimental valuegrafmgters for diffusion resistance factor and Smith

function parameter.



Table5 0, the vector of optimal parameters estimates, 8,y,¢q, the vector of mean parameters
estimates and associated coefficient of variation, and SSthe measured steady-state values of hygric

transfer parameters (Gr8 Material)

Parameter 0 mean CV (%) Oopt SSValue
u 9.88 0.28 9.90 8.8
C, -7.10E-3 0.31 -7.11E-3 -8.30E-3
Zy 2.55E7 1.00 2.56E7 /
®o 5.42E-1 0.03 5.42E-1 /

Table 6 8, the vector of optimal parameters estimates, 8 y,¢q, the vector of mean parameters

estimates and associated coefficient of variation, and SSthe measured steady-state values of hygric

transfer parameters (Mt9 Material)

Parameter 0 mean CV (%) 0opt SSValue
u 7.40 0.33 7.41 8.3
C, -8.95E-3 0.79 -8.99E-3 -1.24E-2
Zy 1.42E7 3.41 1.45E7 /
®o 5.33E-1 0.08 5.34E-1 /

Optimal and mean estimates are very close for pacimeter in both materials, as it could be expecte
given the narrow posterior distributions. The loargmeters uncertainty is also confirmed with ttot fa
that the coefficient of variation 1% for all parameters posterior distributions otifian the surface
resistance factdf, of theMt9 material. The latter shows a 3.4% CV but it shdaddeminded that the
sensitivity of model on this parameter is quite iovcomparison to other parameters. In consequence,
optimal estimates or mean estimates could be upadatently to represent the behaviour of clay

samples.

For both samples;igure 14 shows the COMSOL model output with all four optied parameters

compared to: (1) the experimental mass variatind,(2) the model output when using measured steady-



state values to describe the vapour permeabilidytia@ sorption isotherm of the clay and optimizathes
for surface resistance and initial relative hunyidit the sample. In consequence, the two modelutsitp
illustrated only differ in the values of hygric jperties forGr8 andMt9 samples. The optimal parameter
set results in &SE of 0.997 forGr8 material and &/SEof 0.996 forMt9 material reflecting a very high
efficiency of the model in the description of clegmples mass variation after the optimization peckn
contrast, the measured steady-state propertiel restNSEof 0.875 forGr8 material and 0.7513 fdvit9
material. The efficiency found f@r8 sample is very similar to the one found in a prasidirect MBV
modelling approach [24] and can already be consdlas a good modelling efficiency. Globally, the
optimization process can improve further the fgtto experimental data and potentially reduce the
uncertainty on material and experimental paramebengarticular, when dealing with complex
hygrothermal models, it can be used as a precamiddr reducing the experimental uncertainty lidke
material characterization. As improving the premisin experimental material characterizing can be

expensive and time-consuming, the inverse modeiéngniques offers an alternative to consider.
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Fig.14 Model output with optimized or steady-state parametersused to describe the hygric

propertiesof clay samples compared to experimental cycles

It is certainly interesting to analyze the paramget@lues obtained after the inverse modelling gsec
The exchange surface resistaégelepends on the boundary layer which in turn isdihto the airflow
configuration around the sample exchange surfé&&@alue was theoretically limited to the range 1E6
Pa/(kg-m?-s) (a very low resistance corresponding to hardlyeffgct of the boundary layer on
moisture transfer) to 1E8a/(kg - m? - s) (a very high resistance corresponding to a newégir flow)
before the parameter estimation phdsble 3). Those limit values were inspired by values foumfR7].
Avalue ofZ; =5E7Pa/(kg - m? - s) is often presented as a standard value in testivtes

corresponding to an averaged airflow velocity dffd.- s~ above the sample. However, this



experimental parameter is often poorly controllablelimate chamber experiments and it seems that
there is still no accurate way to determine itelrse modelling estimation can thus provide a smhuid
this issue although the quality of the estimatibawd be confirmed in complementary studies. Hire,
estimated values for surface resistance are abofetreference value but differ between the two
experimental tests. It is difficult to assess thgio of this difference although it can supposedatycaused
by airflow variations from one test to the othehjeth could result from small difference of sample
location in the chamber. Especially when one knthats the mass variation sensitivity on that paramet

is low around 1E?a/(kg - m? - s) according to [27].

Concerning the initial relative humidity, in the material, although its value is supposeetidentical
for both clay samples, the difference is so smalbuld be imputed to sample manipulation befoee th

test. The estimated values are close to expecteaded the sample conditioning before the test.

The most interesting part in results analysis isafrse to discuss the values estimated for thedyg
properties of the materials. Compared to valuessored in steady-state, the optimal estimate of wapo
resistance factqr is 12.5% higher fo66r8 material and 11% lower favit9 material. The difference
between the two clay materials is thus more prooedmunder the inverse modelling results. Whereas th
steady-statg parameter is assessed on the basis of a constantr@lative humidity of 72%RH (wet-cup
test), the estimated parameter represents inHactapour transport in the active depth of the nadte
averaged over various RH conditions met during2éhéours cycle. Resulting identical values fortine
methods would be particularly astonishing as thatycharacterize exactly the same behaviour. &ti,
confirmed thatGr8 material has a higher resistance to vapour trahdpor moisture storage parameter
C,, characterizing the moisture capacity evolutiothwelative humidity, the estimated value is
respectively 14% higher f@r8 material and 28% higher féft9 material compared to steady-state
measurement. It corresponds to less moisture st@agacity for both materialgq. 3). The higher
moisture storage capacity observed with the DVShotkforMt9 material compared tGr8 is confirmed
by the inverse modelling approach but less pronedn&gain, the dynamic nature of inverse modelling
estimation must be highlighted. The DVS providegildzrium sorption isotherms whereas the values
obtained from posterior distributions characteazgynamic behaviour where equilibrium values aite no

perfectly representative. Indeed, a lower moistagacity for both materials (compared to DVS re3ult



can mean a kind of 'latency' in moisture sorption.

7. CONCLUSION

An inverse modelling method based on Bayesian tqoks and MCMC simulations was tested for
parameter estimation for a moisture transfer magplied to the study of construction materials. The
MBYV protocol, dedicated originally to assess thastuwe exchange capacity of hygroscopic materials,
was proposed here as an experimental data sooroenfhich it is possible to infer information
concerning the moisture storage function and tip@watransport coefficient. But the approach can be
applied theoretically to all kind of HAM models aodse studies as long as the HAM model can be

combined numerically to a parameter optimizatiqyoathm.

Two different clay masonry materials were firstjsabed to repeated 50/85%HR cycles in a 16hrs/8hrs
scheme, similar to the NORDTEST protocol. The nainig of their weight during this test constitutes
the measurement data intended to be comparediveitbutput of a hygric model. Relevant material
properties involved in moisture uptake/release tielia were also measured precisely for both samples
This step included a wet-cup test for vapour pebiigadetermination and a DVS test to assess their

moisture storage at different RH levels.

The numerical model used to describe the moistarester in the clay samples during the MBV cycles
was developed in COMSOL and uses a simplified rhakce equation, without liquid transport. Four
parameters were chosen to be optimized in ordérdémperimental data. They form two categorie3: (1
The materials properties which include the vapesistance factor and a coefficient characterizimg t
evolution of moisture capacity with relative huntydin the porous structure; (2) Experimental parmse
composed of the surface resistance and initial dityriin the sample. A sensitivity analysis showlesltt
each parameter had a different impact on simula@@dture exchange giving confidence in the
optimization process. The latter was performed withrecently developed DREAM algorithm combined
with the hygric model in the Matlab environmenton@pared to other inverse modelling tools, DREAM
offers the advantages of Bayesian techniques andl®€ampling, i.e. the determination of parameters

posterior distribution with a possible evaluatidrite uncertainty of parameters values and modigubsi



given the experimental data.

This study showed that the MBV test provides avaah ground for the estimation of moisture transfer
properties, in the analysis of highly hygroscop#yebased material in dynamic conditions. This
experimental protocol provides important informatabout the material behaviour which can be ex@hct
with an inverse modelling approach. Inverse modelis still not very common in Building Physics but
can be very powerful provided the model accurateyesents the hygrothermal behaviour. The DREAM
MCMC sampler converged and provided very littlgpdised posterior distributions for all parameténs.
this basis, the computed estimates for vapour p@msand moisture storage parameters were compared
their values measured under steady-state conditBased on the sensitivity analysis of model oytput
there is good confidence in optimized values ofpwaters and in their representativeness under dgnam
moisture exchange conditions. There is no reasbelteve that steady-state parameters provideti@rbe
description of the material behaviour. The diffeesnbetween steady-state and estimated values lweuld
partly explained by the dynamic nature of the MBSttwhich causes complex interactions between
moisture storage and transport phenomena. Theagstinparameters through inverse modelling are
potentially more representative of the actual comaé met in a building where steady-state condio

almost never happen.

Despite these interesting results, the inverse tingdapproach requires some precautions as ingticat
throughout in the text. First, the experimentallasijon system should be highly reliable as theavbed
data uncertainty plays a major role in the optimi@maprocess and final parameter estimates. Moreave
precise understanding of the model parameterstaiddffect on model output is required and willphi®
determine the ideal number of measurement pointséan the MCMC sampler, in order to maximize
posterior distribution quality and minimize compigaal time. When appropriate, the model itself ttas
be modified through definition of new parametersdeffects on model output can be clearly
distinguished. Nevertheless, if these conditiomsraspected, the technique is very promising. Nooger
new test protocols could be created to highlightous behaviours of construction materials andioomet
the improvement of mathematical models. The inversdelling approach could also be applied to larger
scale studies where having experimental data forealded parameters can be tricky or at leastex tim

consuming task.
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