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Insertion of ultra-thin polymeric interlayers (ILs) between the poly(3,4-ethylenedioxythiophene):

polystyrene sulphonate hole injection and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)

light emission layers of polymer light emitting diodes (PLEDs) can significantly increase their

efficiency. In this paper, we investigate experimentally a broad range of probable causes of this

enhancement with an eye to determining which IL parameters have the most significant effects. The

importance of hole injection and electron blocking was studied through varying the IL material (and

consequently its electronic energy levels) for both PLED and hole-only diode structures. The role of

IL conductivity was examined by introducing a varying level of charge-transfer doping through

blending the IL materials with a strong electron-accepting small molecule in concentrations from 1%

to 7% by weight. Depositing ILs with thicknesses below the exciton diffusion length of �15 nm

allowed the role of the IL as a physical barrier to exciton quenching to be probed. IL containing

PLEDs was also fabricated with Lumation Green Series 1300 (LG 1300) light emission layers. On

the other hand, the PLEDs were modeled using a 3D multi-particle Kinetic Monte Carlo simulation

coupled with an optical model describing how light is extracted from the PLED. The model

describes charge carrier transport and interactions between electrons, holes, singlets, and triplets,

with the current density, luminance, and recombination zone (RZ) locations calculated for each

PLED. The model shows F8BT PLEDs have a narrow charge RZ adjacent to the anode, while LG

1300 PLEDs have a wide charge RZ that is evenly distributed across the light emitting layer.

Varying the light emitting layer from F8BT to Lumation Green Series 1300, we therefore

experimentally examine the dependence of the IL function, specifically in regard to anode-side

exciton quenching, on the location of the RZ. We found an exponential dependence of F8BT PLED

luminance on the difference, d, in the highest occupied to lowest unoccupied molecular orbital

energy gap between the light emitting polymer and a semiconducting polymeric IL, with d
consequently the most important parameter determining efficiency. Understanding the exponential

effect that wider energy gap IL materials have on exciton quenching may allow d to be used to better

guide PLED structure design. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879455]

I. INTRODUCTION

Light-emitting, vacuum-deposited organic small-

molecule LEDs are increasingly being used in commercial

displays for mobile phones and televisions. Polymer light

emitting diodes (PLEDs) have not yet achieved a corre-

sponding commercialization but impressive demonstrators

have been shown and there is a view that their ability to be

manufactured using printing methods offers significant cost

advantages. In that regard it is worth noting that for lighting

applications there is already a consensus that small molecule

organic light emitting diodes (OLEDs) will need to be solu-

tion processed in order to reach a reasonable price point.

Simpler device architectures are also needed to fabricate

large area, high efficiency devices. Recent work in hybrid

organic-inorganic LEDs (HYLEDs) has realized high lumi-

nous efficiencies in an inverted structure with a metal oxide

cathode layer.1–4 Yet the highest luminous efficiencies in

such devices are only achieved by replacing the standard

�100 nm thickness light emitting polymer (LEP) layer with

a micrometer thick LEP layer, resulting in high operating

voltages and consequently low power efficiencies. The inclu-

sion of a 10–15 nm interlayer (IL) of poly(9,9-dioctylfluor-

ene-co-N-(4-butylphenyl)-diphenylamine) (TFB) between

the poly(3,4-ethylenedioxythiophene):polystyrene sulpho-

nate (PEDOT:PSS) hole injection layer and poly(9,9-dioctyl-

fluorene-alt-benzothiadiazole) (F8BT) emission layer

significantly enhances performance,5 also for inverted struc-

tures.6 The dominant mechanism of the efficiency increase

has not yet been clearly identified although it has been care-

fully studied for related PLEDs with poly(9,9-dioctylfluor-

ene-alt-bithiophene) (F8T2) light emission layers.7

In simple thin-film PLEDs, a transparent indium tin ox-

ide (ITO) anode typically injects holes into the light-

emission layer via a PEDOT:PSS conducting polymer layer,

while electrons are injected via a low work function metal

cathode. The PEDOT:PSS layer increases the ITO anode

a)Author to whom correspondence should be addressed. Electronic mail:

ji-seon.kim@imperial.ac.uk.
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work function from �4.6–4.8 eV to �5.1–5.2 eV, thereby

assisting hole injection.8 In this structure, the IL is applied

on top of the PEDOT:PSS where it forms a physical barrier

that improves device performance, probably by both prevent-

ing the acidic PEDOT:PSS from degrading the active layer

and also by limiting exciton quenching through moving the

recombination zone (RZ) away from the ITO anode.5,7,9 The

IL could also improve hole injection, hinder electrons from

reaching the anode, and promote a better charge balance

within the LEP layer.7 Previous work in the literature has

focused on studying the role of the IL as an electron blocking

and/or hole injecting layer10–12 and in promoting charge bal-

ance within the emission layer.10,13 The IL effect on pinning

of the light emission layer’s Fermi level to that of the

PEDOT:PSS hole injection layer14 has also been consid-

ered.7 IL conductivity, a parameter that should also have an

effect on efficiency, has not been adequately investigated in

the literature10 although the contributing effect of mobility

has.7 There are clearly many parameters to take into account,

but no study has investigated them all. This study focuses

specifically on investigating the relative effect that the major

IL parameters have on the performance of thin-film F8BT

PLEDs.

F8BT emission layer PLEDs were fabricated with three

different semi-conducting polymer IL materials, two

arylamine-fluorene copolymers (TFB and poly(9,9-dioctyl

fluorene-co-bis(N,N0-(4,butylphenyl))bis(N,N0-phenyl-1,4-

phenylene)diamine) (PFB)) and one bithiophene-fluorene co-

polymer (poly(9,9-dioctlyfluorene-co-bithiophene) (F8T2)).

Their different energy levels (listed alongside their chemical

structures in Table I) allow the role of electron blocking and

hole injection barriers to be studied. The strong electron

acceptor tetrafluoro-tetracyanoquinodimethane (F4TCNQ)

was blended with the IL materials in varying concentrations

to p-dope them in order to examine the role of IL conducti-

vity on PLED performance. To investigate whether ILs

with thicknesses below the exciton diffusion length

(�15 nm)5,24,25 can prevent luminance quenching by the an-

ode, we spin-coated <5 nm thick layers by using concentra-

tions of <1 mg/ml of the IL materials. F8BT has a relatively

deep lowest unoccupied molecular orbital (LUMO) and a

reasonably high electron mobility,21,26 which combined with

a relatively deep highest occupied molecular orbital

(HOMO) may lead to preferential electron injection and

transport and consequently an electron-hole RZ lying adja-

cent to the anode. Another green emitting active layer,

Lumation Green Series 1300 (LG1300, also known as Green

K)1,27,28 was used to study the effect of RZ location on the

role of the IL. LG1300 has relatively balanced electron and

hole mobilities and should therefore have a broad, centrally

located RZ.29,30 3D multi-particle Kinetic Monte Carlo

(KMC) simulations that include the transport of and

TABLE I Material chemical structures and their electronic energy levels.

Material Chemical structure Ea
a,b (eV) Ip

b,c (eV) Eg
d (eV)

TFB 2.3 (Ref. 15) 5.3 (Ref. 16) 3.0

PFB 2.3 (Ref. 17) 5.1 (Ref. 16) 2.8

F8T2 3.2 (Ref. 18) 5.5 (Refs. 18 and 19) 2.3

F4TCNQ 5.24 (Ref. 20) … …

F8BT 3.3 (Refs. 21 and 22) 5.9 (Refs. 21 and 22) 2.6

LG 1300e 2.9 (Ref. 23) 5.4 (Refs. 12 and 23) 2.5

aEa is the electron affinity.
bEa and Ip values are accurate to 60.1 eV and taken from the literature on the basis of being measured by the same method for comparability.15,16,18–22

cIp is the ionization potential.
dEg is the energy gap, Ip–Ea.
eLG 1300 is a complex copolymer containing fluorene moieties, arylamine moieties for hole injection, and BT moieties for good electron injection properties.

The BT moieties are also responsible for the polymer’s green electroluminescence emission. LG 1300 was supplied by the Sumitomo Chemical Company.

204508-2 Bailey et al. J. Appl. Phys. 115, 204508 (2014)
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interactions between electrons, holes, singlets, and triplets,

coupled with an optical model describing how light is

extracted from the PLED, have been used to calculate the

current density, luminance, and the location of the RZ in

both LG 1300 and F8BT PLEDs with and without ILs. KMC

modeling offers many benefits over other simulation techni-

ques. The simulation parameters used within KMC are

linked to molecular properties unlike the conventional drift

diffusion models concerned with average properties across a

layer of the device. In addition to this, the KMC model ex-

plicitly calculates the coulombic interactions between elec-

trons and holes, making exciton formation, transport, and

recombination possible to model, something which is typi-

cally lacking in the approach of finding steady state solutions

to the 3D Pauli master equation.

Here, we demonstrate the importance of preventing

exciton quenching at the anode and cathode sides of the light

emitting layer. Small changes in the energy gap differences

of the LEP and adjacent organic layers can have a large

effect on the luminance, especially when the RZ lies adjacent

to the interface. Based on the results of our study, we pro-

pose that ILs with wider energy gaps could lead to the design

of more power efficient PLEDs while retaining a thin-film

device structure.

II. EXPERIMENTAL METHODS

PLED structures, as detailed in Fig. 1, were fabricated

by first spin-coating a 35 nm layer of PEDOT:PSS (Baytron

P VP AI4083) onto ITO-coated glass substrates and then

thermally annealing this layer at 135 �C for 30 min. For those

devices without an IL, a 60 nm layer of F8BT (or 70 nm layer

of LG 1300) was then spin-coated on top of the PEDOT:PSS

from a toluene (or chlorobenzene) solution. These devices

were then completed by thermally depositing 20 nm of Ca

capped by 140 nm of Al. Each pixel, as defined by the spatial

overlap of the anode and cathode, had an area of 4.5 mm2.

The IL devices were fabricated in the same way, except that

a 10–15 nm TFB (or PFB) or 2–5 nm F8T2 layer was depos-

ited on top of the PEDOT:PSS from toluene solution and

thermally annealed at 180 �C for 60 min prior to spin-coating

F8BT (or LG 1300).5 The annealing step helps to prevent the

IL material being washed away or intermixing with the emis-

sion layer material when the latter is deposited on top from

organic solvent solution.5 These IL thicknesses represent the

thickest insoluble layers of each material that could be

formed via thermal annealing. Thinner ILs were created by

spin-coating from more dilute solutions. Doped ILs were

spin-coated from toluene solutions of the IL material blended

with 1%, 3%, or 7% F4TCNQ by weight. For hole-only

diode structures, the Ca/Al top contact was replaced with

Au, which has a high work-function. Current-voltage (J-V)

characterization of the PLEDs and hole-only devices was

carried out in a nitrogen atmosphere test chamber using a

computer-interfaced Keithley 2400 SourceMeter. PLED

luminance was measured with a Minolta LS100 luminance

meter and electroluminescence (EL) spectra with an Ocean

Optics USB 2000 CCD spectrophotometer.

UV-visible absorption and photoluminescence (PL)

spectroscopy measurements of the PEDOT:PSS/IL compo-

nent of the device stack were performed on samples depos-

ited on quartz substrates. For ultraviolet photoelectron

spectroscopy (UPS) measurements, the same structure was

used, but with glass/ITO as the substrate instead of quartz.

The effect of annealing was studied for both doped and un-

doped IL samples by measuring their PL behavior before

and after the annealing step. The measurements were carried

out for samples held within an integrating sphere using scat-

tered laser light to excite them. PL studies were carried out

using a Jobin-Yvon Fluoromax spectrofluorometer.

Excitation wavelengths were selected to lie close to the re-

spective absorption maxima, namely, 380 nm for TFB and

PFB, and 360 nm for F8T2. The samples were placed inside

an integrating sphere, again offset from direct illumination

by the excitation beam. The doped and undoped IL series

were annealed prior to UPS measurements. They were

excited with a He I, 21.2 eV beam, with an Au electrode as

reference. Raman measurements were carried out on films

drop-cast or spin-coated onto quartz substrates, using 633 nm

laser excitation.

III. SIMULATION METHODS

The results of simulations performed using a combined

multi-particle 3D KMC and optical model were compared to

the experimental PLED data. The electronic and optical

processes were calculated within the simulation for voxels

placed on a regularly spaced user designed 3D Cartesian lat-

tice of lattice constant a¼ 1.0 nm, a typical value used in

Monte Carlo simulations31–33 and a good approximation to

the physical volume of a monomer unit. Each voxel repre-

sented a hopping site available to electrons, holes, singlets,

or triplets with certain parameters describing separately how

each of these species interacts with the material the voxel is

representing (F8BT, PFB, TFB, or F8T2). Periodic boundary

conditions were always applied in the y and z dimensions,

with electrodes at x¼ 0 and x¼LX, where LX denoted the

thickness of the device. The electrodes were assumed paral-

lel to the (y,z) plane. Bipolar charge injection and extraction

through electrodes were governed by the conventional

Miller-Abrahams rate equation,21–24 and charge transport

through the bulk of the device was governed by a Marcus-

theory-derived hopping process between voxels,31,34 where

the energy of each site was randomly selected from a

Gaussian distribution of width r, centered on the HOMO

FIG. 1. Schematic PLED device structure used for our experiments. F8BT

and LG 1300 were used for the light emitting polymer layer. TFB, PFB, and

F8T2 were used as IL materials. In addition, some devices were fabricated

without ILs. Hole-only device structures used Au as top contact instead of

Ca/Al.

204508-3 Bailey et al. J. Appl. Phys. 115, 204508 (2014)
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and LUMO level of each polymer material.35 The Marcus

hopping rate was proportional to a material dependent mobil-

ity fitting parameter, liso, which represented the high temper-

ature limit of carrier mobility within the material. Charges

within the device electrically interacted with each other and

their induced image charges, and charges of opposite polarity

could combine to form either singlets or triplets. Diffusion of

singlets was described using the F€orster energy-transfer

rate,36 which was considered a good representation of singlet

diffusion in our coarse grained model, which did not distin-

guish between intra- and inter-chain hopping processes.

RE ¼
1

ss
� rF

dj

� �6

� e
� Ei�Ej

kBT

� �
; (1)

where RE is the exciton diffusion rate and ss is the singlet life-

time. The term Ei–Ej represents the change in the energy

between the initial site, i, and destination site, j; when the ini-

tial and destination sites are located on polymer chains of dif-

ferent materials the term is equivalent to the difference in

energy gaps of the two materials. The second term of the

equation describes the effect that the distance between donor

and acceptor sites affects the rate, with the sixth power term

originating from a point-to-point dipole-dipole interaction; rF

is the F€orster radius. F8BT has an experimentally determined

singlet diffusion length of approximately 15 nm,5,24,25 so a

value of 10.5 nm for the Forster radius was chosen, since this

gave a simulated singlet diffusion length of 15 nm. The dis-

tance between donor and acceptor is dj. This approximation

does not obviously hold for polymer chains in which the

excited state can be extended over distances comparable to or

larger than the chain-chain separation distance; weaker power

dependences would then apply.38 For simplicity, however,

we have assumed here that the point-to-point dipole-dipole

interaction description suffices to first approximation. Triplet

diffusion was governed by Dexter energy transfer which was

approximated by a Miller-Abrahams type hopping between

nearest neighbors.37

Singlets and triplets are assumed to be generated in a

1:3 ratio due to spin statistics, where interaction between sin-

glets and triplets are governed by the pathways described by

Zhang and Forrest.39 The recombination and dissociation of

singlets and triplets are modelled with respective rates de-

pendent on the material and include triplet-triplet annihila-

tion reactions that can cause a higher than 25% yield of

singlets, as modelled in Ref. 39.

The core of the model works as follows: if each event

(hole hop, singlet recombination, etc.), i, has an associated

rate, ki, then the time, ti, it takes for the event to occur is cal-

culated by

ti ¼ �ln Rið Þ=ki; (2)

where Ri is a uniformly distributed random number between

0 and 1. The simulation proceeds by calculating all available

events and then executing the event with the lowest time, ti,

associated with it. Once the fastest event has been executed

all possible events in the system are recalculated based on

the new state of the system, and the simulation clock changes

by tsimþ ti. An optical model exploiting the equivalence

between an oscillating dipole antenna in a non-absorbing

medium and the probability of a recombinative dipole transi-

tion in thin-film microcavities has been used to calculate the

outcoupling probability, Eout xð Þ, of a photon escaping the de-

vice once generated by the radiative recombination of a sin-

glet. Further details of the model can be found in the

literature.40 The optical model is also used to adjust the radi-

ative decay rate of singlet excitons due to the microcavity.

Luminance, L, and current density, J, measurements can be

compared with our combined electrical and optical simula-

tions. The current density is the flow of charge per unit area

that has passed through the electrodes, and the luminance is

calculated as41

L ¼ 1

p

� �
h�km

ðx

0

Eout xð ÞS xð Þdx; (3)

where km is the maximum spectral efficiency defined by the

International Commission on Illumination and is equal to

683 lm W�1. The simulation assumes a monochromatic

emitting green PLED of wavelength k¼ 560 nm. S xð Þ, calcu-

lated directly from the KMC model, is the singlet recombina-

tion profile and is given as the positional likelihood that

photons will be generated within the device per unit area.

IV. RESULTS

A. Varying the interlayer material

Fig. 2 shows current density-voltage (J-V (a)),

luminance-voltage (L-V (a)), cd A�1 (c) and lm W�1 (d) effi-

ciency, and EL spectra (e) for the F8BT PLEDs with and

without ILs. The J-V data for hole-only (ITO/PEDOT:

PSS/IL/F8BT/Au) devices with the same IL series are also

shown in (b). The EL spectra for the PLEDs with ILs have a

reduced full-width-at-half-maximum (FWHM) linewidth rel-

ative to the IL-free device, with a loss of intensity from the

long wavelength side of the peak. As this change is observed

with all ILs, we propose that these changes in EL emission

are caused by a difference in the packing of the F8BT poly-

mer chains42 that occurs when F8BT is spincoated onto a

hydrophobic surface, compared to the hydrophilic surface of

the PEDOT:PSS layer. In the literature, a strong PL emission

peak at �625 nm is found in PFB:F8BT blends due to exci-

plex states at the PFB:F8BT heterojunction.43–45 No clear

exciplex features are visible at low energies although there is

a slight increase in deep-red emission from the PLED with a

PFB IL, which indicates that some exciplex emission may be

present in that device.

Below turn-on, the J-V curves are symmetric at low bias

voltages (below 1.5–2.0 V) which indicate that there is a

small number of shunt paths between the anode and cathode

causing short circuit currents.27,46 PLEDs with F8T2 ILs dis-

play currents in this regime that are an order of magnitude

higher than in the other PLEDs, implying increased shorting.

The current threshold (where conduction through the semi-

conductor becomes more important than the short circuit cur-

rents) varies with the IL material used (1.50 V for PFB,

204508-4 Bailey et al. J. Appl. Phys. 115, 204508 (2014)
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1.74 V for TFB, 1.96 V for F8T2, and 2.11 V without an IL

with an error of 60.15 V). These values were obtained from

the intersection of straight line extrapolations of the J-V
curves around the current turn-on. The trend in the threshold

values corresponds clearly with the increasing energy injec-

tion barriers between the IL materials (or PEDOT:PSS when

no IL was used) and F8BT (see Table I).

The high current density regime above 100 mA cm�2 in

Fig. 2(a) is relatively unaffected by changing the IL material,

in contrast to the luminance, which varies by around two

orders of magnitude in the same voltage range. Compared to

the IL-free PLED, inclusion of a F8T2 IL causes a drop in

luminance, while use of a PFB IL raises it, with the highest

luminance for a TFB IL. The maximum power efficiencies of

the devices correlate with their maximum luminance values.

TFB IL devices achieved 4.33 lm W�1 at 3.2 V, whilst PFB

devices reached 0.43 lm W�1 at 2.8 V. F8T2 IL devices mean-

while showed a maximum efficiency of 0.04 lm W�1 at 7.2 V,

lower than the devices without an IL which gave 0.31 lm W�1

at 4.8 V. The F8T2 IL device performance also lags that of

F8T2 PLEDs in which a 60 nm F8T2 film was used as the

emission layer, sandwiched between 50 nm of PEDOT:PSS

(Clevios P AI4083) and a 20 nm Ba/100 nm Al bilayer cath-

ode.18 In this latter case, a maximum 2 lm W�1 efficiency was

achieved, falling to 1.2 lm W�1 at 1000 cd m�2.

Both TFB and PFB display a relatively large

(1.0 6 0.1 eV) electron blocking LUMO offset relative to

F8BT, yet PFB IL devices perform considerably worse than

TFB IL ones. This suggests that electron blocking might not

be the primary cause of efficiency increases. F8T2 IL PLEDs

have only a negligible barrier for electron blocking such that

TFB has previously been used as an IL when F8T2 is used as

emission layer.7

If reduction of the hole-injection barrier were the crucial

factor, we would expect PFB IL devices to be the most effi-

cient but they are not. Furthermore, the lowered luminance

of F8T2 IL devices—where the hole-injection barrier is

reduced relative to IL-free devices—also implies that hole-

injection barriers alone are not the dominant factor in achiev-

ing the highest efficiencies in the F8BT PLED system stud-

ied here.

The hole-only devices were fabricated with Au contacts

to block electrons from being injected. At high bias voltages,

such a contact may not provide sufficient electron blocking,

so only the data up to 6 V are shown. For comparison, the

ideal trap-free current density as calculated using the space

charge limited current (SCLC) equation47 for an F8BT

PLED without an IL is illustrated with a dashed line in

Fig. 2(b). A hole mobility of 8� 10�7 cm2 V�1 s�1 was used

in the calculation, which had been determined through

hole-only device measurements on the same batch of F8BT

polymer as used in this experiment.48 The SCLC equation

thus provides the maximum possible current density that

would be achievable in our devices if they were trap-free and

FIG. 2. (a) J-V and L-V curves for F8BT PLEDs with and without ILs; (b) J-V curves for hole-only ITO/PEDOT:PSS/IL/F8BT/Au devices and the estimated

SCLC density of an F8BT PLED without an IL (see text for details). Efficiencies derived from the curves in (a) are presented in (c) lm W�1 and (d) cd A�1.

The PLED EL spectra are shown in (e).
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had perfect, i.e., ohmic, charge injection. The J-V character-

istics of the hole-only devices in Fig. 2(b) show that the hole

currents observed in all our devices fall short of the ideal sit-

uation: lower overall current densities imply that hole traps

reduce hole transport, while the various regimes visible in

the shape of the curve indicate a field dependent hole

mobility.

Fig. 2(b) further shows that for significant (i.e.,

>10�2 mA cm�2) hole-injection to occur from the

ITO/PEDOT:PSS/IL stack into F8BT, higher voltages are

required than when the IL is absent. This is in contrast to the

trend in the threshold voltages in the bipolar devices and

indicates that electron build-up at the interface plays a

non-trivial role in PLED hole-injection. The current densities

achieved above turn-on are lower by more than an order of

magnitude in devices using TFB and PFB ILs. However, as

the hole currents in a F8BT PLED make up a small percent-

age of the overall current density, due to the electron mobil-

ity of F8BT being substantially higher than the hole

mobility,21,22 this observation is not in contradiction to the

results from the bipolar devices, which did not show signifi-

cant variations in J between the various IL devices.

Interestingly, the results indicate that the triarylamine con-

taining ILs decrease the hole-only diode stack’s hole trans-

porting abilities, compared to the dithophene containing IL,

although the triarylamine ILs both have lower hole injection

barriers to PEDOT:PSS. The hole mobilities for TFB,49,50

PFB,49 F8T2,26 and F8BT51 recorded in the literature vary

significantly not only between the materials but also for the

same materials; they are, however, generally within the same

order of magnitude (�10�3 cm2 V�1 s�1). The larger hole

currents in the F8T2 IL hole-only devices do not translate

into higher efficiencies in the PLEDs.

To summarize, we have shown that in our IL devices

electron blocking does not play a dominant role in achieving

the highest device efficiencies. Luminance changes do not

correlate with the hole injection barriers in bipolar devices or

with the current densities of hole-only devices. Hole injec-

tion and electron blocking effects therefore seem not to play

a major role in the function of the ILs.

B. Doping the interlayer

Previous research has shown that F4TCNQ is a good

p-dopant of organic semiconductors52 and enhancement of

the conductivity of both TFB and PFB via F4TCNQ dop-

ing.20 Fig. 3 shows 633 nm excited Raman spectra for F8T2,

F4TCNQ, and a drop-cast film deposited from a solution of

F8T2 blended with 15% w/w F4TCNQ. A vibrational peak

appears at 1370 cm�1 in the Raman spectrum of the

F4TCNQ doped F8T2 film that is not present in either of the

other two spectra. This peak originates from the charged

F4TCNQ� dopant molecule adopting a non-planar conforma-

tion.53 In addition, the strong background fluorescence (ris-

ing from left to right in the F8T2 Raman spectrum)

associated with the F8T2 PL peak18 is absent in the doped

film. This is consistent with the formation of

exciton-quenching charged polaron/bipolaron states within

the HOMO-LUMO energy gap54 and therefore confirms that

F8T2 is oxidatively doped with F4TCNQ.

Figs. 4(a)–4(c) show the L-V, J-V, and power efficiency

vs. voltage curves of F8BT PLEDs with TFB, PFB, and

F8T2 ILs, respectively. F8T2 IL PLEDs with doped ILs had

higher leakage and reverse bias currents than the reference

IL-free PLED, which can be explained by increases in con-

duction via shunt paths. In contrast, the leakage currents for

devices with doped PFB and TFB ILs are of the same order

of magnitude as that of the reference IL-free device. The

absence of an increase in the reverse bias currents in TFB

and PFB IL PLEDs indicates clearly that no doping of the

adjacent F8BT layer is occurring. The current and lumi-

nance turn-on voltages are unaffected by doping as far as

can be determined (within �0.5 V). After current density

turn-on neither the luminance nor the current density curves

are significantly affected by the addition of more dopant.

The PLEDs containing ILs with 7% F4TCNQ dopant

achieved maximum power efficiencies of 2.02 lm W�1 at

4.4 V for TFB, 0.43 lm W�1 at 3.8 V for PFB, and 0.05 lm

W�1 at 4.0 V for F8T2. In all cases, only minor differences

in current density are recorded after J turn-on for doped and

undoped ILs. Luminance values are also minimally

affected.

The EL spectrum of IL-free F8BT PLEDs (Fig. 4(d),

dashed line) displays a strong peak centered on 545 nm with

a broad shoulder at around 575 nm. The EL spectra for

PLEDs with 7% F4TCNQ doped TFB and F8T2 ILs have the

same spectral characteristics as each other—with a slight

increase in shoulder/red-edge emission relative to the IL-free

device. The 7% F4TCNQ doped PFB IL device is somewhat

different, with a significant increase in long wavelength EL

emission. In contrast to the situation for the undoped-IL

PLEDs (c.f., Fig. 2(e)), doped-IL devices have a higher pro-

portion of the long wavelength (575 nm) shoulder EL. We

propose the changes may be due to the dopant molecules

changing the IL surface, leading to a different packing of the

F8BT polymer chains, which may cause changes in EL emis-

sion42 or due to exciplex emission from F8BT:F4TCNQ.

FIG. 3. Raman spectra of (from bottom to top) a drop-cast blend film of

F8T2 with 15% w/w F4TCNQ, and neat F4TCNQ and F8T2 films. The PL

background evident in the latter is quenched for the 15% doped F8T2

sample.
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Fig. 5 shows J-V data from hole-only devices with 7%

F4TCNQ doped ILs and for a reference device without an IL.

The voltages at which the hole-only devices turn-on did not

change appreciably upon doping the ILs, consequently the

data for the undoped ILs is not shown. Doping slightly

decreases current density in hole-only diodes with F8T2 ILs.

When a doped PFB IL is used the current density below 4 V

is lower compared to device with an undoped PFB IL by

around an order of magnitude; above 4 V, the current density

approximately matches that of the undoped PFB IL device.

With a TFB IL the current density in the hole-only diode

structure is reduced consistently by around an order of mag-

nitude. The decrease in the hole-only diode current when

adding dopant to the TFB IL is significant; however, the

decreases in current are larger compared to differences

between a TFB IL and an IL-free hole-only devices—in the

latter case the efficiency is significantly increased, while it is

slightly decreased in the former case. This implies that the

current densities of the hole-only devices are a poor predictor

of PLED efficiencies.

Additionally, UPS measurements were carried out on

ITO/PEDOT:PSS/IL samples with and without addition of

1%, 3%, and 7% F4TCNQ dopant. The ionization potential

(Ip) of F8T2 was measured as 5.5 6 0.1 eV, which is in good

agreement with the literature value of 5.5 eV listed in Table I,

thus confirming that the electronic states of the F8T2 IL film

are being probed. The doped ILs show smaller Ip values that

should decrease the hole injection barrier from PEDOT:PSS

coated ITO electrodes (workfunction¼ 5.2 6 0.1 eV). The Ip

values of the TFB and PFB ILs are within 0.5 eV and 1.0 eV of

commonly cited literature values. Doping the PFB and F8T2

ILs decreases their Ip values while this effect is only visible for

the lowest dopant concentration in TFB, with higher dopant

concentrations returning Ip to its undoped value. In all three

cases, the 1% dopant concentration has the biggest effect on Ip,

with higher dopant concentrations showing a lesser, if any,

effect—this implies only small concentrations of the dopant

are required for doping saturation to be achieved.

To summarize, both PLED current density and luminance

vary minimally with IL doping level. There was similarly no

FIG. 5. Current density vs voltage data for Au-cathode, hole-only devices

with 7% F4TCNQ doped ILs and for a reference device without an IL. The

estimated SCLC density of an F8BT PLED without an IL is indicated with a

dashed line (see text for details).

FIG. 4. J-V and L-V data for F8BT PLEDs with 1%–7% by weight F4TCNQ doped (a) TFB, (b) PFB, and (c) F8T2 ILs. IL-free reference devices were also

fabricated for each IL series and the corresponding data are shown in each panel. EL spectra recorded at 5 V for the 7% F4TCNQ doped-IL and IL-free devices

are shown in (d).
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clear correlation between PLED efficiencies and current den-

sities in corresponding hole-only diode structures. In addition,

decreased Ip values were deduced from the UPS spectra.

C. Varying the emissive layer material

Fig. 6 shows the KMC model predicted electron (solid

line) and hole (dashed line) profiles for F8BT and LG 1300

devices with and without ILs. The electron and hole profiles

are calculated by taking snapshots of particle locations once the

model has reached a steady state. Also shown is the recombina-

tion zone of singlets, S(x), (shaded area), is calculated in a simi-

lar manner as Staudigel et al.41 by recording the locations of all

singlet recombination events. The anode is located at x¼ 0 nm.

These data suggest that for LG 1300 PLEDs the RZ is more

evenly distributed across the active layer of the device, while

that for F8BT PLEDs the RZ is localized on the anode side.

This is reasonable on the basis that the conjugated back-

bone of LG 1300 contains fractions of arylamine, benzothia-

diazole (BT), and fluorene moieties within a chain

architecture that allows for balanced electron and hole mobi-

lities.55 Trivially, for both F8BT and LG 1300 PLEDs, the

RZ is moved away from the anode by the thickness of the

added IL but in LG 1300 PLEDs there is also a significant

increase in recombination near the cathode and a sharper

peaking in the recombination at the anode side of the device.

While this relocation of the RZ away from the anode is the

main change when inserting the IL, the hole current density

profile within the active layer is also significantly affected by

the IL. In both F8BT and LG 1300 PLEDs without an IL, the

electron densities peak near the cathode side and drop

towards zero near the anode side of the devices. In both types

of PLEDs, the TFB IL causes the maximum of the electron

density to shift from the cathode to the anode side of the

devices, with a smaller, but still significant peak in electron-

densities remaining near the cathode, which indicates elec-

tron-blocking at the anode-side.

The J-V and L-V curves of LG 1300 PLEDs with and

without ILs and their corresponding efficiencies in cd A�1

and in lm W�1 are shown in Figs. 7(a)–7(c), respectively.

The introduction of ILs in this system somewhat reduces the

above turn-on current density (Fig. 7(a), left ordinate) for all

ILs. As the IL is applied to the anode-side of the PLEDs

(c.f., Fig. 6) it is likely that this effect is predominantly the

consequence of a reduction in hole current density. More

widely varying luminance values are observed (Fig. 7(a),

right ordinate), however. The addition of the PFB and F8T2

ILs causes reductions in the luminance (most significantly

with the PFB IL). A TFB IL causes a reduction in luminance

at low voltages, but a slight increase in luminance at voltages

over 5 V. This suggests that the ILs must also cause changes

in exciton quenching and/or in the balance of electron and

hole densities within the active layer. Efficiency increases

are seen above 3.5 V when using a TFB IL and above 6.1 V

when using a F8T2 IL (Figs. 7(b) and 7(c)). Fig. 7(d) shows

the EL spectra of the LG 1300 PLEDs with and without ILs.

In each case, the main EL peak arises at �541 nm with a

more or less prominent shoulder at longer wavelengths.

According to56

Ex ¼ IPD � EAA � C; (4)

where Ex is the energy of an exciplex state, IPD the donor

ionization potential, EAA the acceptor electron affinity,

FIG. 6. Device simulations at 5.2 V bias of the hole (dashed) and electron (solid) densities scaled to unity, and the singlet recombination zones, S(x) (shaded),

for a LG 1300 PLED (a) without an IL (cathode located at 80 nm from the anode) and (b) with a TFB IL (cathode located at 95 nm from the anode). Data are

also shown for a F8BT PLED (c) without an IL (cathode located at 60 nm from the anode) and (d) with a TFB IL (cathode located at 75 nm from the anode).
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and C the Coulomb stabilization energy associated with the

charge-transfer interaction, the LG 1300:PFB exciplex emis-

sion would be expected to appear around 600 6 30 nm

(Table I gives a PFB HOMO to LG 1300 LUMO gap of

2.2 eV and C is assumed to be 0.15 6 0.10 eV).56 A peak at-

tributable to such emission is centred at 620 nm when the

spectrum of the IL-free device is subtracted from the PFB IL

device.

Figs. 8(a) and 8(b) show the luminance values of the

F8BT and LG 1300 PLEDs, respectively, plotted against d,

the energy gap difference (in eV) between the emission and

IL materials. The error in d was estimated in each case from

the associated uncertainties in the gap energies. Though no

clear correlation between the luminance and d is observed in

the LG 1300 IL PLED series, the results from the F8BT

PLEDs showed an exponential dependence of the luminance

on d, fitted according to

LðdÞ ¼ L0 � ed=b; (5)

where L(d) is the luminance at a specified electric field as a

function of d and L(d¼ 0)¼L0 represents the luminance of

an IL-free PLED. The parameter b represents the energy

required for L to increase by one factor of e. Exponential

curves were fitted to the luminance values at various electric

field strengths between 3.3� 105 and 8.0� 105 V cm�1

yielding an average value b¼ 0.15 6 0.02. The field

strengths roughly cover the entire voltage range from 2.0 V

to 7.0 V and an exponential dependence on the luminance

was observed within this range. This exponential dependence

of the luminance on d provides evidence that in F8BT

devices—in which the majority of excitons will be within a

diffusion length of the IL—exciton quenching processes at

that interface are of primary importance for PLED perform-

ance.5 It should be expected that L(d) will saturate at large

enough values of d, when the overwhelming majority of

excitons are blocked from entering the IL. At type II hetero-

junctions, a low energy exciplex state can be formed in

which the exciton is delocalized across two molecules of dif-

fering materials. This exciplex state can then be used to split

the exciton into holes and electrons in solar cells. Since

F8BT has a lower HOMO level than the IL materials used in

this study, the electron-hole pair would have its electron

FIG. 7. (a) J-V and L-V, (b) luminous efficiency, and (c) luminous power ef-

ficiency curves, and (d) EL spectra of TFB, PFB, and F8T2 IL PLEDs with

a LG 1300 active layer.

FIG. 8. Luminance recorded at 3.3� 105 V cm�1 (corresponding to voltages

near the efficiency maximum of the PLEDs (ca. 2.5 V)) for (a) F8BT and (b)

LG 1300 PLEDs without an IL and with TFB, PFB, and F8T2 ILs, plotted as

a function of d, the difference in energy between the energy gaps of the IL

and emission layer materials. The without interlayer device data are placed

at d¼ 0 for convenience.
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located on an F8BT molecule and its hole located on a mole-

cule of the IL material. Therefore, dissociation is energeti-

cally unfavorable, since the electrons would have to move

towards the cathode and holes towards the anode. This is

also the case when TFB and PFB ILs are used with LG 1300

LEP layers. LG 1300 and F8T2, however, form a type II het-

erojunction in which exciton dissociation is energetically

favorable— these devices nonetheless outperform PFB IL

devices, which implies that exciton dissociation at the inter-

face is not a primary factor in determining the efficiency in

the set of PLEDs.

Fig. 9(a) shows good fits to the luminance for the F8BT

PLEDs (with and without ILs) have been achieved with the

3D KMC simulation. In these simulations, the singlet diffu-

sion length was assumed to be 15 nm, and therefore any sin-

glets that entered the IL were considered to be immediately

quenched; this is justified by noting that the emission profile

for each PLED device showed no emission from their re-

spective ILs. The transport of excitons across the interface

between F8BT and the IL is dependent on the energy gap

offset d which is accounted for in the Ei � Ej term in

Eq. (1). The Ei � Ej terms can be thought of as a Boltzman

penalty for hops that are unfavorable in energy and acts to

restrict the diffusion of excitons into an IL with a wider

energy gap or to restrict the diffusion of excitons in the IL

back into the active layer, if the active layer has a larger gap.

In Fig. 9(b), luminance values from simulations of the F8BT

IL PLED series run at 8 V are plotted against d. We simu-

lated two cases: (i) all excitons that diffuse from F8BT into

the IL or to the anode are considered non-radiative (solid

line, filled symbols) and (ii) the IL does not quench excitons

(dashed line, open symbols). The lower value of d, the more

significant the change in luminance between (i) and (ii). It is

clear that when the energy gap offset favors exciton diffusion

into the interlayer (as is the case for F8T2) there is a signifi-

cant difference between the quenched and unquenched lumi-

nance. However, as the energy gap offset becomes

unfavorable to exciton diffusion, this difference between

quenched and unquenched luminance decreases.

We used our model to determine whether the difference

in the energy gap between the IL and F8BT alone was ac-

countable for the exponential dependence we observed. We

modelled PLEDs with ILs that had a difference in energy

gap of d¼�0.30 eV to F8BT (equivalent to using a F8T2

IL), d¼ 0.19 eV (equivalent to using a PFB IL), and

d¼ 0.40 eV (equivalent to using a TFB IL). Excitons at the

interface moved into the IL or stayed within the light emit-

ting layer according to the resulting probabilities based on

the energy gap difference. In our model, electron and hole

movements are determined by the LUMO and HOMO levels,

the resulting injection barriers, and the hopping constants.

These can be set independently from the energy gap differ-

ence. The results in Fig. 9(c) show the modelled luminance

values for set values of d, where the properties that deter-

mine electron and hole movement (electron and hole mobil-

ity as well as electron and hole injection barriers) have been

artificially set to those of F8T2, PFB, and TFB at each of the

three values of d we probed. The results demonstrate that

quenching effects due to the energy gap offset in the simula-

tion (shown in Fig. 9(b)) had a far larger effect on the lumi-

nance than varying the other parameters. For the case

d¼�0.3 eV, higher luminance values are recorded when

using the parameters for TFB and PFB compared to using

those for F8T2; the luminance values are none the less still

lower than for cases with higher d values with F8T2

parameters.

To conclude this section, an exponential dependence of

the luminance seen in the experimental results of the F8BT

devices is reproduced by the 3D KCM simulation, and varia-

tion of the simulation parameters demonstrated that the most

important factor is exciton quenching. This is likely due to

the RZ being located close to the anode interface, since an

exponential dependence of the luminance on d is observed in

this system, but not in the LG 1300 PLED IL series for

which the RZ spreads across the device.

D. Varying the interlayer thickness

The J-V curves in Fig. 10 show no noteworthy change in

current density between the thick (�5 nm for F8T2 and

�10–15 nm for TFB and PFB) and the thin (�2 nm for F8T2

and �5 nm for TFB and PFB) ILs. For TFB, however, a drop

in luminance is visible when the <5 nm IL is used rather

than the <15 nm TFB IL. Assuming that the exciton diffu-

sion length in alternating fluorene-based copolymers is

�15nm,5,24,25 the drop in luminance with a TFB layer

FIG. 9. (a) Comparing the experimental (solid lines) and simulated (dashed lines) luminance of an F8BT light emitting layer PLED with various ILs. (b) How

the luminance is affected by quenching due to d for case (i) with quenching, case (ii) without quenching, and (c) depending on other IL parameters (see text for

details).
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<5 nm can be explained through the RZ being located closer

to the anode, thus increasing luminance quenching. The

overall trend in the device efficiencies with various IL mate-

rials is not altered by using thinner layers. While thinner

TFB ILs had lower luminance values than the thicker ones,

the drop in luminance was not as large as would be expected

if the primary function of the IL was to reduce exciton

quenching by PEDOT:PSS through physically removing the

RZ away from the anode, therefore other parameters, such as

a large energy gap are also important in blocking excitons at

the IL/light emitting polymer interface.

V. CONCLUSIONS

The aim of this work was to shed light on the origin of

the large increases in efficiency that are found when a TFB

IL is used at the anode-side of F8BT PLEDs. We investi-

gated a broad range of IL parameters to establish which of

them had the most significant effect. When we varied the IL

material we found minimal changes in current densities, but

large variations in the luminance. The changes in the lumi-

nance do not correlate with the hole injection barriers in the

PLED structure nor with the current densities in the hole-

only diode structure. Neither is a strong correlation between

the luminance values and the IL’s electron blocking barrier

found. PLEDs with ILs doped with 7% F4TCNQ by weight

did not display higher efficiencies nor did the corresponding

hole-only diode structures reveal a correlation between their

current densities and device efficiency. However, there was

evidence to suggest that exciton blocking plays a major role.

Reducing the thickness of the IL below the exciton diffusion

length was shown to reduce efficiencies by a small amount.

The most important role of the TFB IL in increasing

PLED efficiencies in F8BT devices was therefore found to

be exciton blocking via the differences in the energy gap

between the LEP and the IL. PLED luminance showed an

exponential correlation to the IL-LEP energy gap difference

both experimentally and in 3D KCM simulations. The im-

portance of exciton blocking is likely of particular impor-

tance in thin-film F8BT PLEDs because the singlet RZ is

adjacent to the anode in such devices. The implications of

this study are that ILs, hole injection layers and electron

injecting layers in organic LEDs with active layers <100 nm

should, as a first consideration, have very large energy gaps

in order to limit losses from exciton quenching. Electrode

quenching strongly affects the excitons created adjacent to

the charge injection layers. Some small molecule OLEDs

have active layer thicknesses in the region of 30 nm, which

could lead to large losses due to quenching. Sourcing materi-

als for hole and electron injection layers with larger energy

gaps than currently used is therefore expected to increase

PLED and OLED efficiencies.
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