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Abstract We consider convection in a horizontally uniform fluid-saturated porous layer which

is heated from below and which is split into a number of identical sublayers by impermeable and

infinitesimally thin horizontal partitions. Rees and Genç (2011) determined the onset criterion by

means of a detailed analytical and numerical study of the corresponding dispersion relation and

showed that this layered system behaves like the single-sublayer constant-heat-flux Darcy-Bénard

problem when the number of sublayers becomes large. The aim of the present work is to use a

weakly nonlinear analysis to determine whether the layered system also shares the property of

the single-sublayer constant-heat-flux Darcy-Bénard problem by having square cells, as opposed

to rolls, as the preferred planform for convection.

Keywords Porous media · Layered medium · Convection · Weakly nonlinear theory

· Pattern selection



NOMENCLATURE

A,B,C roll amplitudes

c1, c2, c3, c4 constants in amplitude equations

c.c. complex conjugate

C heat capacity

f, g functions in weakly nonlinear theory

ḡ gravity

h height of sublayer

K permeability

N number of sublayers

p pressure

P disturbance pressure

Ra Darcy-Rayleigh number

t time

T dimensional temperature

u, v horizontal velocities

w vertical velocity

x, y horizontal coordinates

z vertical coordinate

Greek symbols

α disturbance wavenumber

β expansion coefficient

γ equal to d/δ

∆T reference temperature drop

ǫ small quantity

θ temperature

Θ disturbance temperature

κ thermal diffusivity

µ dynamic viscosity

ρ density

τ slow time scale

φ relative orientation of two rolls

Ω coupling coefficient

Subscripts and superscripts

c critical conditions

f fluid

pm porous medium

ref reference value

1, 2, 3, · · · context-dependent meanings

ˆ dimensional quantity
′ derivative with respect to z

1 Introduction

It is well-known that the classical Darcy-Bénard layer admits thermoconvective instabilities once

the Darcy-Rayleigh number exceeds 4π2; see Rees (2000, 2001), Tyvand (2002) and Nield and

Bejan (2012). The corresponding wavenumber is π. In this case the two bounding surfaces

are held at uniform but different temperatures with the lower surface being hotter. At slightly

postcritical Darcy-Rayleigh numbers the preferred convective planform may be shown to consist

of two-dimensional rolls by means of a weakly nonlinear analysis.

On the other hand, if the layer is heated from below by means of a constant heat flux and

cooled from above in the same way, then the critical Darcy-Rayleigh number reduces to 12 and

the critical wavenumber to zero. In this case the preferred slightly postcritical planform takes the

form of square cells which are composed of two roll systems which are orientated at right angles

to one another. This result may be inferred from the numerical studies of Riahi (1983) and Rees

and Mojtabi (2011), although it is generally not widely known.

Rees and Genç (2011) considered a variant on the Darcy-Bénard problem where the layer was

split into identical sublayers which are separated by infinitesimally thin impermeable interfaces.

Thus the sublayers are decoupled in terms of the fluid flow, but heat may be transferred by

conduction between the sublayers. The outer surfaces of the layer are again held at fixed but



different temperatures. Rees and Genç (2011) presented a detailed analysis of the onset problem

by using dispersion relations. They found that, for a system consisting of N sublayers, the

neutral curves bunch into very obvious families each containing N curves. In addition, the critical

Rayleigh number and wavenumber decrease as N increases. More precisely they determined that

these critical values have the following asymptotic forms,

Rac ∼ 12 + 23.268397N−2 , kc ∼ 1.1055993πN−1/2 , (1)

where the numerical values which arise in (1) are given precisely by,

24
( 2

21

)1/2
π2 ≃ 23.268397,

(21

2

)1/4
π1/2 ≃ 1.0155993π. (2)

Therefore the critical values for the layer clearly approach those of the constant heat flux Darcy-

Bénard layer even though the overall layer is heated by means of constant temperature boundary

conditions. Given this, it is quite natural then to ask whether the stable planform for weakly

postcritical convection changes from rolls to square cells as N increases since the latter planform

arises for the constant heat flux single layer, and this is the aim of the present paper.

2 Problem Formulation and Basic State

We are investigating the effect of the presence of one type of layering on the identity of the weakly

postcritical convection planform. The origin of the coordinate system is located at the very bottom

of the layer with x̂ and ŷ being the horizontal coordinates and ẑ, the vertical coordinate. The

composite layer is of infinite extent in both horizontal directions. When there are N sublayers

present then the layer lies in the range 0 ≤ ẑ ≤ Nh where h is the height of each sublayer. The

interfaces then lie at ẑ = h, 2h, 3h, · · · (N − 1)h.

The full governing equations for the porous layer are

∂û

∂x̂
+

∂v̂

∂ŷ
+

∂ŵ

∂ẑ
= 0, (3)

û = −
K

µ

∂p̂

∂x̂
, v̂ = −

K

µ

∂p̂

∂ŷ
, ŵ = −

K

µ

∂p̂

∂ẑ
+

ρḡβK

µ
(T − Tref), (4)

(ρC)pm
∂T

∂t̂
+ ρCf

(

û
∂T

∂x̂
+ v̂

∂T

∂ŷ
+ ŵ

∂T

∂ẑ

)

= κ

(

∂2T

∂x̂2
+

∂2T

∂ŷ2
+

∂2T

∂ẑ2

)

, (5)

where all quantities are given in the Nomenclature. The boundary and interface conditions are,



ẑ = 0 : ŵ = 0, T = Tref ,

ẑ = nh : ŵ = 0, T and
∂T

∂ẑ
are continuous, n = 1, 2, · · · , N − 1,

ẑ = Nh : ŵ = 0, T = Tref −N ∆T.

(6)

These equations and boundary conditions may be made nondimensional by introducing the fol-

lowing scalings,

(x̂, ŷ, ẑ) = h(x, y, z), t̂ =
h2(ρC)pm

κ
t, p̂ =

κµ

(ρC)fK
p,

(û, v̂, ŵ) =
κ

h(ρC)f
(u, v, w), T = Tref +∆T θ, (7)

which are based on the height, h, and the temperature drop, ∆T , corresponding to one sublayer.

The nondimensional equations are now,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (8)

u = −
∂p

∂x
, v = −

∂p

∂y
, w = −

∂p

∂z
+Raθ, (9)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=

∂2θ

∂x2
+

∂2θ

∂y2
+

∂2θ

∂z2
, (10)

where the Darcy-Rayleigh number is defined to be,

Ra =
ρ(ρC)f ḡβhK∆T

µκ
. (11)

The boundary and interface conditions now become

z = 0 : w = 0, θ = 0,

z = n : w = 0, θ and
∂θ

∂z
are continuous, n = 1, 2, · · ·N − 1,

z = N : w = 0, θ = −N.

(12)

Given that we seek to determine whether three-dimensional modes are realizable, we adopt a pres-

sure/temperature formulation of the governing equations. On eliminating the velocities between

Eqs. (8) and (9) we obtain the following momentum equation,



∇2p = Ra
∂θ

∂z
, (13)

while the heat transport equation becomes,

∂θ

∂t
= ∇2θ +

∂p

∂x

∂θ

∂x
+

∂p

∂y

∂θ

∂y
+

(

∂p

∂z
−Raθ

)

∂θ

∂z
. (14)

The basic state, whose stability characteristics we seek, is given by

θ = −z,
∂p

∂z
= −Raz, (15)

and this applies to all sublayers. The boundary and interface conditions are as before, except that

w = 0 is replaced by
∂p

∂z
= Raθ.

3 Weakly Nonlinear Stability Analysis

It proves convenient to subtract out the basic state given above from the governing equations.

Therefore we obtain the following pair of perturbation equations,

∇2P = Ra
∂Θ

∂z
, (16)

∂Θ

∂t
+

∂P

∂z
−RaΘ = ∇2Θ+

∂P

∂x

∂Θ

∂x
+

∂P

∂y

∂Θ

∂y
+

(

∂P

∂z
−RaΘ

)

∂Θ

∂z
, (17)

where we have set pz = Pz −Raz and θ = Θ− z, and where P and Θ are the disturbances. The

boundary conditions for Θ and Pz at both z = 0 and z = N are now homogeneous.

The weakly nonlinear expansion takes the following form,

(

P

Θ

)

= ǫ

(

P1

Θ1

)

+ ǫ2

(

P2

Θ2

)

+ ǫ3

(

P3

Θ3

)

+ · · · , (18)

where the small quantity, ǫ, is defined according to,

Ra = Ra0 + ǫ2Ra2 + · · · . (19)

In the above, Ra0 is the critical Darcy-Rayleigh number which has been minimised over α, and

slightly supercritical conditions are equivalent to positive O(1) values of Ra2. At successive orders

of expansion we obtain the following systems in turn.

At O(ǫ):



∇2P1 −Ra0
∂Θ1

∂z
= 0, (20)

∇2Θ1 +Ra0 Θ1 −
∂P1

∂z
= 0. (21)

At O(ǫ2):

∇2P2 −Ra0
∂Θ2

∂z
= 0, (22)

∇2Θ2 +Ra0 Θ2 −
∂P2

∂z
= Ra0Θ1

∂Θ1

∂z
−∇P1.∇Θ1. (23)

At O(ǫ3):

∇2P3 −Ra0
∂Θ3

∂z
= Ra2

∂Θ1

∂z
, (24)

∇2Θ3+Ra0 Θ3−
∂P3

∂z
= Ra0

(

Θ1
∂Θ2

∂z
+Θ2

∂Θ1

∂z

)

−∇P1.∇Θ2−∇P2.∇Θ1+
∂Θ1

∂τ
−Ra2Θ1. (25)

In the above, τ = ǫ2t, represents a slow timescale which reflects the fact that disturbances of

the form of the neutral mode vary extremely slowly while in the vicinity of the critical Rayleigh

number.

At O(ǫ) the solution is taken to be proportional to the eigensolution corresponding to linear theory

at the point in neutral curve where Ra takes its minimum value, Ra0. As our interest is in the

competition between roll solutions and square planforms, we adopt the following solutions at O(ǫ):

(

P1

Θ1

)

=

(

f1(z)

g1(z)

)

[

Aeiαx +Ae−iαx
]

+

(

f1(z)

g1(z)

)

[

Beiα(x cosφ−y sinφ) +Be−iα(x cosφ−y sinφ)
]

, (26)

where the modal amplitudes, A and B, are functions only of the slow time scale, τ . The value φ is

the angle between the rolls, but generally our results will use φ = 90◦. The paper by Rees and Genç

(2011) provides a very detailed account of the solutions of these equations, although their analysis

used dispersion relations and the equations were formulated in terms of the streamfunction rather

than the pressure. The equations for f1 and g1 are,

f ′′

1 − α2f1 = Ra0 g
′

1, (27)

g′′1 − α2f1 +Ra0 g1 − f ′

1 = 0, (28)



while the boundary and interface conditions are,

z = 0 : f ′

1,(1) = 0, g1,(1) = 0, g′1,(1) = 1,

z = n : f ′

1,(n) = Ra0 g1,(n), f ′

1,(n+1) = Ra0 g1,(n+1),

n = 1, 2, · · ·N − 1,

g1,(n) = g1,(n+1), g′1,(n) = g′1,(n+1),

z = N : f ′

1,(N) = 0, g1,(N) = 0.

(29)

In the above, the second subscript on f and g refers to the sublayer index. An extra normalising

boundary condition (g′1,(1) = 1) has also been introduced at z = 0 in order to force nonzero

solutions. This extra boundary condition means that the system has one boundary/interface

condition too many, and therefore the unknown value of Ra may be found by including the extra

equation,

Ra′ = 0. (30)

These equations were solved for the present context using a fourth order Runge Kutta scheme

coupled with a shooting method. However, a multiple shooting approach was taken where solutions

in all sublayers were computed simultaneously and the interface conditions applied as part of that

methodology. Thus the above system becomes one of order 4N + 1 when there are N sublayers.

The shooting method then has to determine 4N − 3 unknown initial conditions.

The process of minimisation with respect to the wavenumber increases the system to one of

order 8N + 2. The very detailed nature of this computation meant that stringent tests for both

accuracy of coding and numerical accuracy needed to be undertaken. It was found that the results

of Rees and Genç (2011) could be reproduced to any number of decimal places upon decreasing the

steplength sufficiently. Therefore we are satisfied that the encoding has been undertaken correctly,

particularly since the present formulation uses pressure while that of Rees and Genç (2011) uses

the streamfunction to determine a dispersion relation.

Modal interactions of the first order solutions mean that the following substitutions need to be

made in order to solve the second order equations:

(

P2

Θ2

)

=

(

f2(z)

g2(z)

)

[

A2e2iαx + c.c. +B2e2iα(x cosφ−y sinφ) + c.c.
]

+

(

f0(z)

g0(z)

)

[

AA+BB
]

+

(

f3(z)

g3(z)

)

[

ABeiα(x(1−cos φ)+y sinφ) + c.c.
]

+

(

f4(z)

g4(z)

)

[

ABeiα(x(1+cos φ)−y sinφ) + c.c.
]

.

(31)



The fj and gj functions (j = 0, 2, 3, 4) satisfy the equations,

f ′′

2 − 4α2f2 −Ra0 g
′

2 = 0,

g′′2 + (Ra0 − 4α2)g2 − f ′

2 = Ra0 g1g
′

1 − f ′

1g
′

1 + α2f1g1,

(32)

f ′′

0 −Ra0 g
′

0 = 0,

g′′0 +Ra0 g0 − f ′

0 = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 − α2f1g1

]

,

(33)

f ′′

3 − α2(2− 2 cos φ)f3 −Ra0 g
′

3 = 0,

g′′3 +
[

Ra0 − α2(2− 2 cosφ)
]

g3 − f ′

3 = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 − α2f1g1 cosφ
]

,

(34)

f ′′

4 − α2(2 + 2 cos φ)f4 −Ra0 g
′

4 = 0,

g′′4 +
[

Ra0 − α2(2 + 2 cosφ)
]

g4 − f ′

4 = 2
[

Ra0 g1g
′

1 − f ′

1g
′

1 + α2f1g1 cosφ
]

.

(35)

All of these equations satisfy the conditions f ′

j = Ra0 gj and gj = 0 at both z = 0 and z = N ,

and satisfy f ′

j = Ra0 gj and continuity of both temperature and temperature gradient at each

interface. These latter equations effectively increase the order of the overall system to (24N +2).

At third order in ǫ a large number of modal interactions arise, but for the purposes of the weakly

nonlinear analysis we are interested only in those which yield a term which is proportional to eiαx.

That part of the O(ǫ3) solution which is proportional to eiαx may be found by first using the

substitution,

(

P3

Θ3

)

=

(

f5(z)

g5(z)

)

eiαx + further terms. (36)

The equations for f5 and g5 are,

f ′′

5 − α2f5 −Ra0 g
′

5 = ARa2 g
′

1, (37)

g′′5 +
[

Ra0 − α2
]

g5 − f ′

5

= (Aτ −Ra2A)g1

+Ra0

[

A2A
(

g1(g
′

0 + g′2) + g′1(g0 + g2)
)

+ABB
(

g1(g
′

0 + g′3 + g′4) + g′1(g0 + g3 + g4)
)]

−

[

A2A
(

f ′

1(g
′

0 + g′2) + g′1(f
′

0 + f ′

2)
)

+ABB
(

f ′

1(g
′

0 + g′3 + g′4) + g′1(f
′

0 + f ′

3 + f ′

4g)
)]

−α2
[

2A2A
(

f1g2 + f2g1

)

+ABB
(

(1− cosφ)(f1g3 + f3g + 1) + (1 + cosφ)(f1g4 + f4g1)
]

.

(38)



Finally, the solvability condition may be written in the form,

∫ N

0

[

Ra0 g1R1 − f1R2

]

dz = 0. (39)

Here R1 and R2 are the respective inhomogeneous terms in the above equations for f5 and g5.

With the addition of these solvability conditions a layer consisting of N sublayers is represented

by 36N + 5 first order equations where 36N − 9 initial conditions are unknown and have to be

sought as part of the shooting method. We generally claim at least seven significant figures for the

accuracy of our computations for Ω. For large values of N , computational time as well convergence

difficulties meant that fewer grid points needed to be used. But in these situations computations

with 20 and 40 grid points per sublayer were improved using Richardson’s extrapolation formula.

Application of the solvability equations yields an amplitude equation of the form,

c1
∂A

∂τ
= c2Ra2A−A

(

c3AA+ c4BB
)

, (40)

and, by symmetry since there is rotational invariance, the corresponding equation for B is,

c1
∂B

∂τ
= c2Ra2B −B

(

c3BB + c4AA
)

, (41)

where, for a chosen value of N , c1, c2 and c3 are constants while c4 depends on φ. The values of

c1, c2, c3 and c4 are found always to take positive values, and therefore convective onset is always

supercritical. In all the cases we tried, c4 takes its smallest value when the rolls are perpendicular

to one another. The detailed analysis of Rees and Riley (1990) (and many other papers) shows

that the identity of the postcritical pattern depends on the minimum value of the ratio,

Ω(φ) = c4/c3. (42)

For the classical Darcy-Bénard problem, Rees and Riley (1989a) showed that,

Ω =
70 + 28 cos2 φ− 2 cos4 φ

49− 2 cos2 φ+ cos4 φ
, (43)

which varies between the maximum of 2 when φ = 0 and the minimum of 10/7 when φ = ±90◦.

However, values of Ω need to be computed for more complicated configurations, such as the present

one.

When minφΩ(φ) > 1, then rolls are stable and square cells are unstable to perturbations of

the form of one of the constituent rolls. In such situations rolls also transport more heat than do

square cells (Rees 2001). The situation is reversed in all respects when minφΩ < 1 and square

cells then form the stable pattern.



4 Results and Discussion

4.1 Rolls or square cells?

The numerical results are given in Table 1, below.

N Rac αc/π Ω(90◦)

1 39.478418 1.000000 1.428571

2 27.097628 0.740457 1.625436

3 21.369126 0.595992 1.153075

4 18.728700 0.513106 1.142761

5 17.236333 0.457578 1.136984

6 16.281754 0.416990 1.133008

7 15.619973 0.385630 1.130011

8 15.134656 0.360448 1.127636

9 14.763720 0.339645 1.125695

10 14.471082 0.322080 1.124073

12 14.038961 0.293844 1.121506

16 13.510302 0.254305 1.118036

20 13.199202 0.227374 1.115792

32 12.741069 0.179664 1.112160

40 12.590616 0.160671 1.110871

64 12.367041 0.126993 1.108856

80 12.293076 0.113578 1.108162

100 12.234105 0.101582 1.107598

Table 1: The variation with N of the critical values of Ra and α

and the value of the corresponding coupling coefficient, Ω(90◦).

Table 1 show that there is a general trend for the coupling coefficient to decrease as N increases,

although the sole exception is when N = 1 rises to N = 2. This is followed by a sharp drop for

N = 3, which is the first case for which there is an internal sublayer, and thereafter the decrease is

quite sedate. The trend appears to favour a limit which is above 1.0. In the absence of a detailed

asymptotic theory for N → ∞ which, if possible for the present problem must be exceptionally

complicated, it is reasonable to use the powers of N which appear in Eq. (1) as a guide for a

polynomial to fit to the data in Table 1. If a quadratic in N−1/2 is chosen, then the data for

N = 64, 80 and 100 yield the following,

Ω(90◦) ∼ 1.1050 + 0.007062N−1/2 + 0.1923N−1, (44)

when N is large. This fit is shown as a dotted line, together with the data given in Table 1, as a

function of N−1 in Figure 1. Given the relatively small magnitude of the coefficient of N−1/2 in

Eq. (44), an alternative linear fit in N−1 which omits the N−1/2 term is



Ω(90◦) ∼ 1.1053 + 0.22560N−1, (45)

which was taken from the N = 80 and N = 100 data. This fit is also shown in Figure 1 but

as a dashed line. The very slight discrepancies between the constant terms in Eqs. (44) and

(45) should be resolved by solving for even larger values of N . However, the method of multiple

shooting is particularly time-consuming in these extreme situations. As an indication, when

N = 100, the system being solved consists of 3605 first order equations with 3591 unknown

initial conditions. The Newton-Raphson part of the shooting method algorithm then requires the

solution of a 3591 × 3591 matrix/vector system to find the corrections to the unknown initial

conditions. However, it is clear that the value Ω(90◦) in the large-N limit is close to 1.105, and

this value appears to be very likely to be correct to four significant figures. Therefore roll cells,

rather than convection with a square planform, will be preferred.

We note that the three-layer system which was considered by Riahi (1983), in which a central

porous layer was surrounded by conducting regions of infinite extent, does admit square cell

solutions in some cases. The analysis of Rees and Mojtabi (2011) also finds this for situations

where the bounding conducting layers are of finite thickness. Therefore it is quite possible that

if the present assumption of having infinitesimally thin interfaces is relaxed, (such as has been

considered in the recent detailed multilayer linear analysis by Patil and Rees (2014) and earlier

by Jang and Tsai (1988) and Postelnicu (1999)) then this could provide a means by which square

cells could be preferred in a multilayered system.

4.2 The coupling coefficient for general values of φ

As a final check on the conclusion that rolls are preferred over square cells, this subsection considers

briefly how Ω varies with φ. We have seen above that Ω achieves a maximum of 2 when φ = 0

and a minimum of 10/7 when φ = 90◦ for the single layer case. Figure 2 shows the corresponding

curves for N = 2, 3, 4, 5, 10, 20 and 40. In all cases Ω(0) = 2 and Ω decreases monotonically as

φ increases towards 90◦, at which point we recover the values given in Table 1, and they clearly

represent the minimum value for each N . Therefore it is concluded that there is no situation for

which Ω achieves a value which is less than 1, and hence rolls persist.

5 Conclusions

To summarise briefly, in this short paper we have provided a weakly nonlinear theory for con-

vection in a layered system consisting of identical porous sublayers with infinitesimally thin but

impermeable interfaces. The onset conditions found using the present pressure/temperature for-

mulation are identical to those obtained by Rees and Genç using a dispersion relation based on

a streamfunction/temperature formulation. Of prime interest is the value of the coupling coeffi-

cient, Ω, which is a function both of φ, the relative orientation of two rolls and N , the number of

sublayers. Ω takes its smallest value in all cases when the rolls are perpendicular, and although

Ω(90◦) decreases as N increases (for N > 2), it appears to approach the value 1.105. Being about

1 this means that roll cells will always be favoured immediately post onset.
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Figure 1: The variation of Ω(π/2) with N−1. Bullets denote the data from Table 1 which are

joined by the continuous line. The dotted line represents Eq. (44) while the dashed line represents

Eq. (45).
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Figure 2: Displaying the variation of Ω(φ) with φ for N = 2, 3, 4, 5, 10, 20 and 40.


