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Abstract We consider a branching Brownian motion in which binary fission takes place
only when particles are at the origin at a rate β > 0 on the local time scale. We obtain results
regarding the asymptotic behaviour of the number of particles above λt at time t , for λ > 0.
As a corollary, we establish the almost sure asymptotic speed of the rightmost particle. We
also prove a Strong Law of Large Numbers for this catalytic branching Brownian motion.

Keywords Catalytic branching · Brownian motion

1 Introduction

1.1 Model

In this article we study a branching Brownian motion in which binary fission takes place
at the origin at rate β > 0 on the local time scale. That is, if (Xt : t ≤ τ) is the path and
(Ls : s ≤ τ) is the local time at the origin of the initial Brownian particle up until the first
fission time τ , then the first birth occurs at the origin as soon as an independent exponen-

tial amount of local time has been accumulated with Lτ
d= Exp(β) and Xτ = 0. Once born,

particles move off independently from their birth position (at the origin), replicating the
behaviour of the parent, and so on. Heuristically, we have an inhomogeneous branching
Brownian motion with instantaneous branching rate β(x) := β δ0(x), since we can infor-
mally think of Brownian local time at the origin as Lt = ∫ t

0 δ0(Xs)ds, where δ0 is the unit
Dirac-mass at 0.
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Although BBM models have been very widely studied, the degenerate nature of such
catalytic branching at the origin means that the above BBM model needs some special treat-
ment. Related models with catalytic branching have been extensively studied in the context
of superprocesses; for example, see Dawson & Fleischmann [5], Fleischmann & Le Gall
[10] or Engländer & Turaev [8]. In the discrete setting, catalytic branching random walk
models have recently been considered by, for example, Carmona & Hu [4] and Döring &
Roberts [6].

1.2 Main Results

In this section, after first setting up some notation, we will state our main results for BBM
with catalytic branching at the origin (presenting them in the order that we will prove them).

We denote the set of particles present in the system at time t by Nt , labelling particles
according to the usual Ulam-Harris convention. That is, the initial particle is labelled ∅,
its two children are labelled 1 and 2, children of particle 1 are labelled 11 and 12, etc. If
u ∈ Nt then the position of particle u at time t is Xu

t and its historical path up to time t is
(Xu

s )0≤s≤t . Also, we denote the local time process of a particle u ∈ Nt by (Lu
s )0≤s≤t . The law

of the branching process started with a single initial particle at x is denoted by P x with the
corresponding expectation Ex .

Firstly, we shall calculate the expected population growth.

Proposition 1 (Expected total population growth) For t > 0,

E(|Nt |) = 2Φ(β
√

t)e
β2

2 t ∼ 2e
β2

2 t as t → ∞,

where |Nt | is the size of Nt and Φ(x) = P(N(0,1) ≤ x) = (2π)−1/2
∫ x

−∞ e−y2/2 dy is the
distribution function of a standard normal random variable.

Proposition 2 (Expected population growth rates) For λ > 0, let Nλt
t := {u ∈ Nt : Xu

t > λt}
be the set of particles that have an average velocity greater than λ at time t and let |Nλt

t | be
the size of Nλt

t . Then

E
(|Nλt

t |) = Φ
(
(β − λ)

√
t
)
e(

β2

2 −βλ)t .

In particular, as t → ∞,

1

t
logE

(|Nλt
t |) → �λ :=

{
1
2β2 − βλ if λ < β

− 1
2 λ2 if λ ≥ β

(1)

Note, the expected growth rate of particles with velocities greater than λ > 0, �λ, is
positive or negative according to whether λ is less than or greater than β/2, respectively.
That is, the expected speed of the rightmost particle is β/2. (Also note, by symmetry, similar
results hold throughout for particles with negative velocities.)

Next, we consider the almost sure asymptotic behaviour of the population.

Theorem 1 (Almost sure total population growth rate)

lim
t→∞

log |Nt |
t

= 1

2
β2 P -a.s.
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Theorem 2 (Almost sure population growth rates) Let λ > 0, then:

1. if λ >
β

2 then limt→∞ |Nλt
t | = 0 P -a.s.

2. if λ <
β

2 then limt→∞
log |Nλt

t |
t

= �λ = 1
2β2 − βλ P -a.s.

From Theorem 2, we immediately recover the speed of the rightmost particle,

Rt := sup
u∈Nt

Xu
t , t ≥ 0.

Corollary 1 (Rightmost particle speed)

lim
t→∞

Rt

t
= β

2
P -a.s.

We can also say something about the rare events of |Nλt
t | being positive when we typi-

cally do not find particles with speeds λ >
β

2 .

Lemma 1 (Unusually fast particles) For λ >
β

2 ,

lim
t→∞

logP (|Nλt
t | ≥ 1)

t
= �λ,

with �λ as defined in (1).

Finally, our main theorem gives a strong law of large numbers for the catalytic BBM:

Theorem 3 (SLLN) Let f : R → R be some continuous compactly-supported function.
Then

lim
t→∞ e− β2

2 t
∑

u∈Nt

f
(
Xu

t

) = M∞
∫

R

f (x)βe−β|x| dx P -a.s.,

where M∞ is the almost sure limit of the P -uniformly integrable additive martingale

Mt =
∑

u∈Nt

exp

{

−β|Xu
t | −

1

2
β2t

}

.

(Note: the martingale (Mt)t≥0 will be discussed in detail in Sect. 3.)

In principle, our results and methods could be generalised to models with multiple cata-
lysts, although explicit calculations will require joint density of local times at the catalytic
points. The finer fluctuations of the rightmost particle about the linear speed are also of in-
terest, but will require more subtle analysis. We hope to pursue these problems in a future
article.

The rest of this article is arranged as follows. In Sect. 2 we recall some basic facts re-
garding the local times. We also introduce a Radon-Nikodym derivative that puts a drift
towards the origin onto a Brownian motion. This will be useful in the subsequent analysis
of the model. In Sect. 3, we recall some standard techniques for branching processes in-
cluding spines and additive martingales. Section 4 is devoted to the proofs of Propositions 1
and 2. We will prove Theorem 1 in Sect. 5, making use of the additive martingale (Mt)t≥0

mentioned above. Section 6 contains the proofs of Theorem 2, Corollary 1 and Lemma 1.
Finally, in Sect. 7 we give the proof of Theorem 3, this being largely based on extending the
results found in Engländer, Harris & Kyprianou [9].
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2 Single-Particle Results

Basic information about local times and the excursion theory can be found in many text-
books on Brownian motion (for example, see [14]). Also a good introduction is given in the
paper of C. Rogers [16]. Let us recall a few basic facts.

Suppose (Xt )t≥0 is a standard Brownian motion on some probability space under proba-
bility measure P. Let (Lt )t≥0 be its local time at 0. Then (Lt )t≥0 satisfies

Lt = lim
ε→0

1

2ε

∫ t

0
1{Xs∈(−ε,ε)}ds

for every t ≥ 0. The next famous result is Tanaka’s formula:

|Xt | =
∫ t

0
sgn(Xs)dXs + Lt,

where

sgn(x) =
{

1 if x > 0
−1 if x ≤ 0.

In a non-rigorous way this can be thought of as Itô’s formula applied to f (x) = |x|, where
f ′(x) = sgn(x), f ′′(x) = 2δ0(x) (where δ0 is the Dirac delta function). Then one can think
of Lt as

∫ t

0 δ0(Xs)ds.
Another useful result is the following theorem due to Lévy.

Theorem 4 (Lévy) Let (St )t≥0 be the running supremum of X. That is, St = sup0≤s≤t Xs .
Then

(St , St − Xt)t≥0
d= (Lt , |Xt |)t≥0.

From Theorem 4 and the Reflection Principle it follows that ∀t ≥ 0

Lt
d= St

d= |Xt | d= |N(0, t)|,

where N(0, t) is a normal random variable with mean 0 and variance t . The joint density of
Xt and Lt is known as well (see for example [13]):

P(Xt ∈ dx,Lt ∈ dy) = |x| + y√
2πt3

exp

{

− (|x| + y)2

2t

}

dx dy, x ∈R, y > 0. (2)

From Theorem 4 it also follows that (Zt )t≥0 := (|Xt | − Lt)t≥0 = (
∫ t

0 sgn(Xs)dXs)t≥0 is a
standard Brownian motion under P, hence for any γ ∈R

exp

{

γ (|Xt | − Lt) − 1

2
γ 2t

}

= exp

{

γZt − 1

2
γ 2t

}

, t ≥ 0

is a martingale. And more generally, for γ (·) a smooth path we have the Girsanov martingale

Wt = exp

{∫ t

0
γ (s)dZs − 1

2

∫ t

0
γ 2(s)ds

}
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Tanaka= exp

{∫ t

0
γ (s) sgn(Xs)dXs − 1

2

∫ t

0
γ 2(s)ds

}

. (3)

Used as the Radon-Nikodym derivative it puts the instantaneous drift sgn(Xt )γ (t) on the
process (Xt )t≥0. Let us restrict ourselves to the case γ (·) ≡ −γ < 0 so that W puts the con-
stant drift γ towards the origin on (Xt )t≥0. The following is a special case of Girsanov’s the-
orem and can be found in [3] (see “Brownian motion with alternating drift” in Appendix 1,
pp. 128–129).

Proposition 3 Let Q be the probability measure defined as

dQ

dP

∣
∣
∣
F̂t

= exp

{

−γ (|Xt | − Lt) − 1

2
γ 2t

}

, t ≥ 0,

where (F̂t )t≥0 is the natural filtration of (Xt )t≥0. Then under Q, (Xt )t≥0 has the transition
density with respect to Lebesgue measure given by

pt(x, y) = 1√
2πt

exp

(

γ (|x| − |y|) − γ 2

2
t − (x − y)2

2t

)

+ γ e−2γ |y|Φ
(

γ t − |x| − |y|√
t

)

so that

Q
x(Xt ∈ A) =

∫

A

pt (x, y)dy. (4)

It also has the stationary probability measure

π(dy) = γ e−2γ |y|dy. (5)

3 Spines and Additive Martingales

3.1 Spine Setup

In this section we give a brief overview of some main spine tools. For more details of the
spine setup to be introduced, the reader is referred to Hardy and Harris [11] where all the
proofs and further references can be found.

For two particles u and v we shall write u < v if u is an ancestor of v. We shall also write
|u| for the number of ancestors of a particle u.

We let (Ft )t≥0 denote the natural filtration of our branching process as described in the
introduction. We define F∞ := σ(

⋃
t≥0 Ft ) as usual.

Let us now extend our model by identifying an infinite line of descent which we refer
to as the spine and which is chosen uniformly from all the possible lines of descent. It is
defined in the following way. The initial particle of the branching process begins the spine.
When it splits into two new particles, one of them is chosen with probability 1

2 to continue
the spine. This goes on in the obvious way: whenever the particle currently in the spine
splits, one of its children is chosen uniformly at random to continue the spine.

The spine is denoted by ξ = {∅, ξ1, ξ2, . . .}, where ∅ is the initial particle (both in the
spine and in the entire branching process) and ξn is the particle in the (n + 1)st generation
of the spine. Furthermore, at time t ≥ 0 we define:
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• nodet (ξ ) := u ∈ Nt ∩ ξ (such u is necessarily unique). That is, nodet (ξ ) is the particle in
the spine alive at time t .

• nt := |nodet (ξ )|. Thus nt is the number of fissions that have occured along the spine by
time t .

• ξt := Xu
t for u ∈ Nt ∩ ξ . So (ξt )t≥0 is the path of the spine.

The next important step is to define a number of filtrations of our sample space, which
contain different information about the process (for more details see [11]).

Definition 1 (Filtrations)

• Ft was defined earlier. It is the filtration which knows everything about the particles’
motion and their genealogy, but it knows nothing about the spine.

• We also define F̃t := σ(Ft ,nodet (ξ )). Thus F̃ has all the information about the branching
process and all the information about the spine. This will be the largest filtration.

• Gt := σ (ξs : 0 ≤ s ≤ t). This filtration has information about the path of the spine process,
but it does not contain any information about the labelling (genealogy and birth times)
along the spine.

• G̃t := σ (Gt , (nodes(ξ) : 0 ≤ s ≤ t)). This filtration knows everything about the spine
including which particles make up the spine, but it doesn’t know what is happening off
the spine.

Note that Gt ⊂ G̃t ⊂ F̃t and Ft ⊂ F̃t . We shall use these filtrations to take various condi-
tional expectations.

We let P̃ be the probability measure under which the branching process is defined to-
gether with the spine. Hence P = P̃ |F∞ . We shall write Ẽ for the expectation with respect
to P̃ .

Under P̃ the entire branching process (with the spine) can be described in the following
way.

• The initial particle (the spine) moves like a Brownian motion.
• At instantaneous rate βδ0(·) it splits into two new particles.
• One of these particles (chosen uniformly at random) continues the spine. That is, it con-

tinues moving as a Brownian motion and branching at rate βδ0(·).
• The other particle initiates a new independent P -branching processes from the position

of the split.

It is not hard to see that under P̃ the spine’s path (ξt )t≥0 is itself a Brownian motion. We
denote by (L̃t )t≥0 its local time at 0.

Also, conditional on the path of the spine, (nt )t≥0 is a time-inhomogeneous Poisson pro-
cess (or a Cox process) with instantaneous jump rate βδ0(ξt ). That is, conditional on Gt ,
k splits take place along the spine by time t with probability

P̃ (nt = k|Gt ) = (βL̃t )
k

k! e−βL̃t .

The next result (for example, see [11]) is very useful in computing expectations of various
quantities.
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Theorem 5 (Many-to-one theorem) Let f (t) ∈ mGt . In other words, f (t) is Gt -measurable.
Suppose it has the representation

f (t) =
∑

u∈Nt

fu(t)1{nodet (ξ)=u},

where fu(t) ∈ mFt , then

E

(∑

u∈Nt

fu(t)

)

= Ẽ
(
f (t)eβL̃t

)
.

3.2 Martingales

Since (ξt )t≥0 is a standard Brownian motion we can define the following P̃ -martingale with
respect to the filtration (Gt )t≥0 using Proposition 3:

M̃
β
t := e−β|ξt |+βL̃t− 1

2 β2t , t ≥ 0. (6)

We also define the corresponding probability measure Q̃β as

dQ̃β

dP̃

∣
∣
∣
Gt

= M̃
β
t , t ≥ 0. (7)

Then under Q̃β , (ξt )t≥0 has drift β towards the origin and from Proposition 3 we know its
exact transition density as well as its stationary distribution.

Let us also define the martingale

M̃t := 2nt e−βL̃t M̃
β
t , t ≥ 0,

which is the product of two P̃ -martingales. When they are used as the Radon-Nikodym
derivatives to define a new probability measure, the first martingale has the effect of doubling
the branching rate along the spine, while the second has the effect of putting the drift β

towards the origin onto the spine. That is, if we define a probability measure Q̃ as

dQ̃

dP̃

∣
∣
∣
F̃t

= M̃t , t ≥ 0 (8)

then under Q̃ the branching process has the following description:

• The initial particle (the spine) moves like a Brownian motion with drift β towards the
origin.

• When it is at position x it splits into two new particles at instantaneous rate 2βδ0(x).
• One of these particles (chosen uniformly at random) continues the spine. I.e. it contin-

ues moving as a Brownian Motion with drift β towards the origin and branching at rate
2βδ0(x).

• The other particle initiates an unbiased branching process (as under P ) from the position
of the split.

Note that although (8) only defines Q̃ on events in
⋃

t≥0 F̃t , Carathéodory’s extension theo-

rem tells that Q̃ has a unique extension on F̃∞ := σ(
⋃

t≥0 F̃t ) and thus (8) implicitly defines
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Q̃ on F̃∞. We then define Q := Q̃|F∞ so that

dQ

dP

∣
∣
∣
Ft

= Mt :=
∑

u∈Nt

exp

{(

−β|Xu
t | + βLu

t − 1

2
β2t

)

− βLu
t

}

=
∑

u∈Nt

exp

{

−β|Xu
t | −

1

2
β2t

}

, t ≥ 0. (9)

(Mt)t≥0 will be referred to as the additive martingale. (Note, this is only a martingale when
β is branching rate, otherwise additional local time terms would appear cf. Proposition 3.)

3.3 Convergence Properties of (Mt)t≥0

The following theorem is a standard result for additive martingales in the study of branching
processes.

Theorem 6 (Mt)t≥0 is P -uniformly integrable and M∞ > 0 P -almost surely.

Proof Recall the following measure-theoretic result, which gives Lebesgue’s decomposition
of Q into absolutely-continuous and singular parts. It can for example be found in the book
of R. Durrett [7] (Sect. 4.3).

Lemma 2 For events A ∈ F∞

Q(A) =
∫

A

lim sup
t→∞

Mt dP + Q
(
A ∩

{
lim sup

t→∞
Mt = ∞

})
.

Also a standard zero-one law, which can be found, for example, in [12] (see Lemma 3
and the proof of Theorem 2 that follows it) tells that P (M∞ > 0) ∈ {0,1}. Thus to prove
Theorem 6 it is sufficient to show that

lim sup
t→∞

Mt < ∞ Q-a.s. (10)

Let us consider the spine decomposition of Mt , another useful technique which can be found
in [11]:

EQ̃(Mt |G̃∞) = exp

{

−β|ξt | − 1

2
β2t

}

+
∑

u<nodet (ξ)

exp

{

−β|ξSu | −
1

2
β2Su

}

,

where {Su : u ∈ ξ} is the set of fission times along the spine. We refer to the first term as
spine(t) and the second term as sum(t).

Recall that under Q̃, (ξt )t≥0 is a Brownian Motion with drift β towards the origin and
(|ξt | − L̃t )t≥0 is a Brownian motion with drift −β . Thus t−1ξt → 0 and t−1L̃t → β Q̃-a.s.
Also spine(t) ≤ 1 and since ξSu = 0

sum(t) =
∑

u<nodet (ξ)

e−β|ξSu |− 1
2 β2Su =

∑

u<nodet (ξ)

e− 1
2 β2Su ≤

∞∑

n=1

e− 1
2 β2Sn , (11)
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where Sn is the nth birth on the spine. The birth process along the spine (nt )t≥0 condi-
tional on the path of the spine is a time-inhomogeneous Poisson process (or a Cox pro-
cess) with cumulative jump rate 2βL̃t . Hence, Q̃-almost surely, nt ∼ 2βL̃t ∼ 2β2t , and so
Sn ∼ (2β2)−1n.

Thus there exists some Q̃-a.s. finite random variable C > 0 such that Sn ≥ Cn for all n.
Substituting this into (11) we get

sum(t) ≤
∞∑

n=1

e− 1
2 β2Cn.

Therefore sum(t) is bounded by some Q̃-a.s. finite random variable. We deduce that

lim sup
t→∞

EQ̃(Mt |G̃∞) = lim sup
t→∞

(
spine(t) + sum(t)

)
< ∞ Q̃-a.s.

So by Fatou’s lemma, Q̃-almost surely,

EQ̃
(

lim inf
t→∞ Mt |G̃∞

)
≤ lim inf

t→∞ EQ̃(Mt |G̃∞) ≤ lim sup
t→∞

EQ̃(Mt |G̃∞) < ∞.

Then lim inft→∞ Mt < ∞ Q̃-a.s. and hence also Q-a.s. Since 1/Mt is a positive Q-super-
martingale, it must converge Q-a.s., hence

lim sup
t→∞

Mt = lim inf
t→∞ Mt < ∞ Q-a.s.

completing the proof of the theorem. �

The next theorem is essential in the proof of the Strong Law of Large Numbers in the last
section.

Theorem 7 For p ∈ (1,2], (Mt)t≥0 is Lp-convergent.

Proof We use similar proof as found in [11]. As in [11], it is sufficient to show that E(M
p
t )

is bounded in t . We shall actually prove a stronger statement that Ex(M
p
t ) ≤ C for all x ∈R

and t ≥ 0, where C is a universal constant not depending on x or t . Below we adopt common
convention of using Qx to represent both probability and expectation under probability law
Qx in order to lighten the notation.

Ex
(
M

p
t

) = Ex
(
M

p−1
t Mt

) = e−β|x|Qx
(
M

p−1
t

) ≤ Q̃x
(
M

p−1
t

)

= Q̃x
(
Q̃x

(
M

p−1
t |G̃∞

)) ≤ Q̃x
((

Q̃x(Mt |G̃∞)
)p−1)

by Jensen’s inequality. Since for a, b ≥ 0 and q ∈ (0,1], (a + b)q ≤ aq + bq , we see that

(
Q̃x(Mt |G̃∞)

)p−1 = (
spine(t) + sum(t)

)p−1

≤ e− β2

2 (p−1)t−β(p−1)|ξt | +
∑

u<nodet (ξ)

e− β2

2 (p−1)Su−β(p−1)|ξSu |
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And hence

Ex
(
M

p
t

) ≤ Q̃x
(
e− β2

2 (p−1)t−β(p−1)|ξt |) + Q̃x

( ∑

u<nodet (ξ)

e− β2

2 (p−1)Su−β(p−1)|ξSu |
)

(12)

The first expectation is bounded by 1. The second one, since ξSu = 0, satisfies

Q̃x

( ∑

u<nodet (ξ)

e− β2

2 (p−1)Su−β(p−1)|ξSu |
)

= Q̃x

( ∑

u<nodet (ξ)

e− β2

2 (p−1)Su

)

= Q̃x

(∫ t

0
e− β2

2 (p−1)s2β dL̃s

)

,

where the second equality follows from the fact that the birth process along the spine un-
der Q̃x is Poisson with instantaneous rate 2βδ0(·). Integrating by parts and using Fubini’s
theorem, we find

Q̃x

(∫ t

0
e− β2

2 (p−1)s2β dL̃s

)

= 2βe− β2

2 (p−1)t Q̃x(L̃t ) +
∫ t

0
β3(p − 1)e− β2

2 (p−1)sQ̃x(L̃s)ds.

Since (L̃t )t≥0 is only increasing on the zero-set of (ξt )t≥0, we see that Q̃x(L̃t ) ≤ Q̃(L̃t ),
where under Q̃ the spine process starts from 0. Note also that ∀t ≥ 0

Q̃(L̃t ) = βt + Q̃(|ξt |). (13)

This follows from the fact that ((L̃t −|ξt |−βt)eβL̃t −β|ξt |− β2

2 t )t≥0 is a P̃ martingale (namely,
the derivative of P̃ -martingale (M̃

γ
t )t≥0 w.r.t. γ evaluated at γ = β). Hence

Q̃(L̃t ) = Ẽ
(
L̃te

βL̃t −β|ξt |− β2

2 t
)

= βt + Ẽ
(|ξt |eβL̃t −β|ξt |− β2

2 t
)

= βt + Q̃(|ξt |).

EQ̃|ξt | is bounded in t since from (5) we get Q̃(|ξt |) → ∫ ∞
−∞ |x|π(dx) = ∫ ∞

−∞ |x|βe−2β|x| dx <

∞ as t → ∞ and it is not hard to check using Proposition 3 that Q̃(|ξt |) is continuous in t .
Thus for some positive constant C ′ and for all t ≥ 0

Q̃x(L̃t ) ≤ Q̃(L̃t ) ≤ βt + C ′,

which tells us that

2βe− β2

2 (p−1)t Q̃x(L̃t ) +
∫ t

0
β3(p − 1)e− β2

2 (p−1)sQ̃x(L̃s)ds

is bounded uniformly in t and x. Hence the second term on the RHS of (12) is bounded by
some uniform constant and this completes the proof of Theorem 7. �
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4 Expected Population Growth

4.1 Asymptotic Expected Growth of |Nt |

We prove Proposition 1 using the Many-to-One Theorem.

Proof of Proposition 1 From Theorem 5 we have

E(|Nt |) = E

(∑

u∈Nt

1

)

= Ẽ
(
eβL̃t

)
.

Using the fact that L̃t
d= |N(0, t)| it is then easy to check that

Ẽ
(
eβL̃t

) =
∫ ∞

−∞
eβ|x| 1√

2πt
e− x2

2t dx

= 2e
β2

2 t

∫ ∞

0

1√
2πt

e− 1
2t

(x−βt)2
dx = 2Φ(β

√
t)e

β2

2 t ,

where Φ(x) = P(N(0,1) ≤ x). This completes the proof of Proposition 1.
Alternatively, we could find a good estimate of Ẽ(eβL̃t ) using the change of measure

from (7), which is instructive for our purposes:

Ẽ
(
eβL̃t

) = Ẽ
(
eβL̃t −β|ξt |− 1

2 β2teβ|ξt |+ 1
2 β2t

) = Ẽ
(
M̃

β
t eβ|ξt |+ 1

2 β2t
) = EQ̃β

(
eβ|ξt |)e

1
2 β2t .

Then, using the stationary measure, from (5) we have

EQ̃β
(
eβ|ξt |) →

∫ ∞

−∞
eβ|x|π(dx) =

∫ ∞

−∞
eβ|x|βe−2β|x| dx = 2.

Thus

E(|Nt |) ∼ 2e
β2

2 t . �

4.2 Asymptotic Expected Behaviour of Nλt
t

Let us now prove that E(|Nλt
t |) = Φ((β − λ)

√
t)e(

β2

2 −βλ)t and consequently

lim
t→∞

1

t
logE(|Nλt

t |) = �λ,

where Nλt
t = {u ∈ Nt : Xu

t > λt} and

�λ =
{

1
2β2 − βλ if λ < β

− 1
2λ2 if λ ≥ β.

Proof of Proposition 2 Following the same steps as in the proof of Proposition 1 above we
get

E
(|Nλt

t |) = E

(∑

u∈Nt

1{Xu
t >λt}

)

= Ẽ
(
eβL̃t 1{ξt >λt}

)
.
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We can evaluate the latter expectation using (2):

Ẽ
(
eβL̃t 1{ξt >λt}

) =
∫ ∞

0

∫ ∞

λt

eβy x + y√
2πt3

e− (x+y)2

2t dx dy

=
∫ ∞

0
eβy 1√

2πt
e− 1

2t
(λt+y)2

dy

=
∫ ∞

0

1√
2πt

e− 1
2t

(y−(β−λ)t)2
dye(

β2

2 −βλ)t

= Φ
(
(β − λ)

√
t
)
e(

β2

2 −βλ)t .

Using the facts that Φ(x) → 1 as x → ∞ and Φ(x) ∼ 1
|x|√2π

e− x2
2 as x → −∞ it is then

easy to check that

lim
t→∞

1

t
logE

(|Nλt
t |) = �λ. (14)

This completes the proof of Proposition 2. Alternatively, it is possible to obtain (14) using
the change of measure (7) just like in the previous proposition:

E
(|Nλt

t |) = Ẽ
(
eβL̃t 1{ξt >λt}

)

= EQ̃β
(
eβ|ξt |1{ξt >λt}

)
e

1
2 β2t

= e
1
2 β2t

∫ ∞

λt

eβxpt (0, x)dx,

where pt(0, ·) is the transition density of ξ at time t under Q̃β as defined in Proposition 3.
Substituting pt(0, ·) into this equation and using the estimates of tails of a normal distribu-
tion we can get (14). �

Propositions 1 and 2 can also be proved via excursion theory (for example, see [16]).
The proofs that we presented here (using the change of measure) in particular suggest the
importance of the additive martingale (Mt)t≥0 in the study of the model. In the next section
we shall see one simple application of this martingale.

5 Almost Sure Asymptotic Growth of |Nt |
In this section we prove Theorem 1 which says that log |Nt | ∼ 1

2β2t P -almost surely.

Proof of Theorem 1 Let us first obtain the lower bound:

lim inf
t→∞

log |Nt |
t

≥ 1

2
β2 P -a.s. (15)

We observe that

Mt =
∑

u∈Nt

exp

{

−β|Xu
t | −

1

2
β2t

}

≤ |Nt |e− 1
2 β2t ,

hence logMt ≤ log |Nt | − 1
2β2t and so t−1 log |Nt | ≥ 1

2 β2 + t−1 logMt . Using the fact that
limt→∞ Mt > 0 P -a.s. from Theorem 6, we find that

lim inf
t→∞

log |Nt |
t

≥ 1

2
β2.
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Let us now establish the upper bound:

lim sup
t→∞

log |Nt |
t

≤ 1

2
β2 P -a.s. (16)

We first prove (16) on integer (or other lattice) times. Take ε ∈ (0,1). Then

P
(|Nt |e−( 1

2 β2+ε)t > ε
) ≤ E|Nt |e−( 1

2 β2+ε)t

ε
<

2

ε
e−εt

using the Markov inequality and Proposition 1. So

∞∑

n=1

P
(|Nn|e−( 1

2 β2+ε)n > ε
)
< ∞

⇒
∞∑

n=1

P

(
log |Nn|

n
>

1

2
β2 + ε

)

< ∞.

Thus by the Borel-Cantelli lemma

P

({
log |Nn|

n
>

1

2
β2 + ε

}

i.o.

)

= 0.

Hence

lim sup
n→∞

log |Nn|
n

≤ 1

2
β2 + ε

and taking the limit ε → 0 we get the desired result. To get the convergence over any real-
valued sequence we note that |Nt | is an increasing process and so

log |Nt |
t

≤ �t�
t

log |N�t�|
�t� .

Hence

lim sup
t→∞

log |Nt |
t

≤ lim sup
t→∞

log |N�t�|
�t� ≤ 1

2
β2.

Combining (16) and (15) now proves Theorem 1. �

6 Almost Sure Asymptotic Behaviour of |Nλt
t |

In this section we prove Theorem 2. Namely, that

log |Nλt
t |

t
→ �λ P -a.s. if λ <

β

2

and

|Nλt
t | → 0 P -a.s. if λ >

β

2
.

We break the proof into two parts. In Sect. 6.1 we prove the upper bound and in Sect. 6.2
the lower bound. Also in Sects. 6.3 and 6.4 we present the proofs of Lemma 1, saying that
limt→∞ t−1P (|Nλt

t | ≥ 1) = �λ if λ >
β

2 , and Corollary 1, saying that limt→∞ t−1Rt = β

2 ,
where Rt is the position of the rightmost particle at time t .
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6.1 Upper Bound

Lemma 3

lim sup
t→∞

log |Nλt
t |

t
≤ �λ P -a.s.

The upper bound can be proved in a similar way to the upper bound on |Nt | (recall (16)).
The main difference comes from the fact that (|Nλt

t |)t≥0 is not an increasing process and so
getting convergence along any real time sequence requires some extra work.

Proof Take ε > 0 and consider events

An =
{ ∑

u∈Nn+1

1{sups∈[n,n+1] Xu
s ≥ λn} > e(�λ+ε)n

}

.

If we can show that P (An) decays to 0 exponentially fast then by the Borel-Cantelli Lemma
we would have P (An i.o.) = 0 and that would be sufficient to get the result.

By the Markov inequality and the Many-to-one theorem (Theorem 5) we have

P (An) ≤ E

( ∑

u∈Nn+1

1{sups∈[n,n+1] Xu
s ≥ λn}

)

e−(�λ+ε)n

= Ẽ
(
eβL̃n+1 1{sups∈[n,n+1] ξs ≥ λn}

)
e−(�λ+ε)n

= Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}

)
e−(�λ+ε)n,

where ξ̄n := sups∈[n,n+1](ξs − ξn+1) is a sequence of i.i.d. random variables equal in distribu-

tion to sups∈[0,1] ξs and (ξt )t≥0 is a standard Brownian motion under P̃ .
To give an upper bound on the expectation we split it according to whether |ξn+1| is

greater or less than (λ − δ)(n + 1) for some small δ > 0 to be chosen later.

Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}

)
e−(�λ+ε)n

= Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| > (λ−δ)(n+1)}

)
e−(�λ+ε)n

+ Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)}

)
e−(�λ+ε)n. (17)

Then from Proposition 2 we have

1

n
log

(
Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| > (λ−δ)(n+1)}

)
e−(�λ+ε)n

)

≤ 1

n
log

(
Ẽ
(
eβL̃n+1 1{|ξn+1| > (λ−δ)(n+1)}

)
e−(�λ+ε)n

)

= 1

n
log

(
2Ẽ

(
eβL̃n+1 1{ξn+1 > (λ−δ)(n+1)}

)) − (�λ + ε)

→ �λ−δ − (�λ + ε).

Since �λ is continuous in λ, �λ−δ − (�λ + ε) < 0 for δ chosen small enough and hence
the first expectation in (17) decays exponentially fast. If we now let C = e

1
2 β2+(λ−δ) and



Branching Brownian Motion with Catalytic Branching at the Origin

K = 1
2β2 + β(λ − δ) − (�λ + ε) then the second expectation in (17) satisfies

Ẽ
(
eβL̃n+1 1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)}

)
e−(�λ+ε)n

= EQ̃β
(
eβ|ξn+1|+ 1

2 β2(n+1)1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)}
)
e−(�λ+ε)n

≤ CEQ̃β (1{ξn+1+ξ̄n ≥ λn}1{|ξn+1| ≤ (λ−δ)(n+1)})eKn

≤ CEQ̃β (1{ξ̄n ≥ δn+(δ−λ)})e
Kn

= CQ̃β

(
ξ̄1 ≥ δn + (δ − λ)

)
eKn.

However Q̃β(ξ̄1 ≥ δn + (δ − λ)) decays faster than exponentially in n. To see this observe
that for any θ arbitrarily large

Q̃β(ξ̄1 ≥ δn) ≤ EQ̃β
(
eθ ξ̄1

)
e−θδn,

where

EQ̃β
(
eθ ξ̄1

) = Ẽ
(
eθ ξ̄1 e−β|ξ1|+βL̃1− 1

2 β2) ≤ Ẽ
(
eθ ξ̄1+βL̃1

)

≤ (
e2θ ξ̄1

) 1
2
(
e2βL̃1

) 1
2 < ∞

using the Cauchy-Schwarz inequality and the fact that L̃1
d= ξ̄1

d= |N(0,1)| under P̃ . Thus
we have shown that the expectation in (17) and consequently P (An) decay exponentially
fast.

So by the Borel-Cantelli lemma P (An i.o.) = 0 and P (Ac
n ev.) = 1. That is,

∑

u∈Nn+1

1{sups∈[n,n+1] Xu
s ≥ λn} ≤ e(�λ+ε)n eventually.

So there exists a P -almost surely finite time Tε such that ∀n > Tε

∑

u∈Nn+1

1{sups∈[n,n+1] Xu
s ≥ λn} ≤ e(�λ+ε)n.

Then

|Nλt
t | ≤

∑

u∈N�t�+1

1{sups∈[�t�, �t�+1] Xu
s ≥ λ�t�}

⇒ |Nλt
t | ≤ e(�λ+ε)�t� for t > Tε + 1,

which proves that

lim sup
t→∞

log |Nλt
t |

t
≤ �λ P -a.s. �

Remark 1 Since |Nλt
t | takes only integer values we see that for λ >

β

2 the inequality

lim sup
t→∞

log |Nλt
t |

t
≤ �λ < 0

actually implies that |Nλt
t | → 0 P -a.s.
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6.2 Lower Bound

Before we present the proof of the lower bound of Theorem 2 let us give a heuristic argu-
ment, which this proof will be based upon.

Take λ > 0. Suppose we are given some large time t and we want to estimate the number
of particles u ∈ Nt such that Xu

t > λt .
Let p ∈ [0,1]. At time pt the number of particles in the system is very roughly of size

|Npt | ≈ exp( 1
2β2pt) by Theorem 1 and about a half of these should lie in the upper-half

plane. If we ignore any branching that takes place in the time interval (pt, t] then these
particles move as Brownian motion and will end up in the region [λt,∞) at time t with
probability approximately greater than exp(−λ2t/2(1 − p)).

Thus a crude estimate gives us that the number of particles at time t in the region [λt,∞)

is approximately greater than

e− λ2
2(1−p)

t × |Npt | ≈ e− λ2
2(1−p)

t × e
1
2 β2pt .

The value of p which maximises this expression is

p∗ =
{

0 if λ ≥ β

1 − λ
β

if λ < β

and then

log(e− λ2
2(1−p∗)

t × |Np∗t |)
t

∼ �λ =
{− 1

2 λ2 if λ ≥ β
1
2β2 − βλ if λ < β.

Let us now use this idea to give a formal proof of the following lemma.

Lemma 4 Take λ <
β

2 . Then

lim inf
t→∞

log |Nλt
t |

t
≥ �λ = 1

2
β2 − βλ P -a.s.

Proof Let N+
t := {u ∈ Nt : Xu

t > 0} be the set of particles alive at time t that lie in the
upper-half plane at time t . Observe that under P , conditional on |Nt |,

|N+
t | d= Bin

(

|Nt |, 1

2

)

. (18)

To see this note that if for a particle u ∈ Nt we define the events A+
u := {Xu

t > 0} and A−
u :=

{Xu
t < 0} then by symmetry (since branching only takes place at 0) the events

⋂
u∈Nt

Aiu
u ,

where iu ∈ {+,−}, are all equally likely.
Now let us take p := 1 − λ

β
∈ ( 1

2 ,1). For integer times n we shall consider particles in
the set N+

pn.
For each particle u ∈ N+

pn we choose one descendant v alive at time n+1, v ∈ Nn+1, such
that v < u111 · · · , where we have used the Ulam-Harris labelling convention (alternatively,
at each birth event we independently and uniformly at random choose to follow one of
the offspring lines of descent and so on). Let N̂n+1 be a set of such descendants (so that
|N̂n+1| = |N+

pn|).
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With this choice, for each u ∈ N̂n+1, paths (Xu
t )t∈[pn, n+1] correspond to independent

Brownian motions (started at some unknown positions in the upper-half plane at time pn).
Note that, wherever such particle u is at time pn,

{
Xu

s > λs ∀s ∈ [n,n + 1]} ⊇
{
Xu

n − Xu
pn > λ(n + 1) + 1, inf

s∈[n,n+1]
(
Xu

s − Xu
n

)
> −1

}
=: Bu

n

and for any η > 0 and n large enough

P
(
Bu

n

) ≥ e(− λ2
2(1−p)

−η)n = e(− 1
2 βλ−η)n =: qn(λ)

using the tail estimate of the normal distribution.
With (18) and Theorem 1 one can check that for any C < 1

2 , P (|N+
pn| ≥ C|Npn|)

decays faster than exponentially in n. Thus, from the Borel-Cantelli Lemma we have
|N+

pn| ≥ C|Npn| for n large enough P -almost surely. So from Theorem 1 for any δ > 0

|N̂n+1| = |N+
pn| ≥ e( 1

2 β2p−δ)n eventually.

To prove Lemma 4 we fix an arbitrary ε > 0 and consider the events

Bn :=
{ ∑

u∈N̂n+1

1Bu
n

< e(�λ−ε)n

}

.

We wish to show that P (Bn i.o.) = 0. Now,

P
(
Bn ∩ {|N̂n+1| > e( 1

2 β2p−δ)n
})

= P

(

|N̂n+1| > e( 1
2 β2p−δ)n,

∑

u∈N̂n+1

1Bu
n

< e(�λ−ε)n

)

≤ P

(
e( 1

2 β2p−δ)n

∑

i=1

1Ai
< e(�λ−ε)n

)

,

where Ai ’s are independent events with P (Ai) ≥ qn(λ) for all i and n large enough. Thus
for n large enough

P

(
e( 1

2 β2p−δ)n

∑

i=1

1Ai
< e(�λ−ε)n

)

= P
(
e−∑

1Ai > e−e(�λ−ε)n)

≤ ee(�λ−ε)n

E
(
e−∑

1Ai

)

= ee(�λ−ε)n
e( 1

2 β2p−δ)n

∏

i=1

E
(
e−1Ai

)

= ee(�λ−ε)n
∏(

1 − P (Ai)
(
1 − e−1

))

≤ ee(�λ−ε)n
∏(

1 − qn(λ)
(
1 − e−1

))
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≤ ee(�λ−ε)n
∏

e−qn(λ)(1−e−1)

= exp
{
e(�λ−ε)n − (

1 − e−1
)
qn(λ)e( 1

2 β2p−δ)n
}

= exp
{
e(�λ−ε)n − (

1 − e−1
)
e(�λ−δ−η)n

}
.

This expression decays fast enough if we take δ + η < ε. Thus

P
(
Bn ∩ {|N̂n+1| > e( 1

2 β2p−δ)n
}

i.o.
) = 0.

And since P ({|N̂n+1| > e( 1
2 β2p−δ)n}ev.) = 1, we get that P (Bn i.o.) = 0. That is, for n large

enough P -almost surely
∑

u∈N̂n+1

1Bu
n

≥ e(�λ−ε)n.

Hence for t large enough

|Nλt
t | =

∑

u∈Nt

1{Xu
t >λt} ≥

∑

u∈N̂�t�+1

1{Xu
s >λs ∀s∈[�t�,�t�+1]} ≥

∑

u∈N̂�t�+1

1Bu�t� ≥ e(�λ−ε)�t�.

Thus

lim inf
t→∞

log |Nλt
t |

t
≥ �λ. �

Lemmas 3 and 4 together prove Theorem 2.

6.3 Decay of P (|Nλt
t | ≥ 1) in the Case λ >

β

2

Theorem 2 told us that if λ >
β

2 then |Nλt
t | → 0. Let us also prove that in this case

logP (|Nλt
t | ≥ 1)

t
→ �λ,

where �λ is defined in (1).

Proof of Lemma 1 Trivially P (|Nλt
t | ≥ 1) ≤ E|Nλt

t |. Hence by Proposition 2

lim sup
t→∞

logP (|Nλt
t | ≥ 1)

t
≤ �λ.

For the lower bound we use the same idea as in Lemma 4. Let us take

p =
{

0 if λ ≥ β

1 − λ
β

if λ < β

Let t > 0 be fixed. As in Sect. 6.2 for each particle u ∈ Npt we choose one descendant alive
at time t so that its motion over time interval [pt, t] is a Brownian motion and we let N̂t be
a set of such descendants (so that N̂t ⊂ Nt , |N̂t | = |Npt |). Then for each u ∈ N̂t wherever it
is at time pt for any η > 0 and t large enough we have

P
(|Xu

t | > λt
) ≥ e(− λ2

2(1−p)
−η)t =: pt(λ).
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Then

P
(|Nλt

t | ≥ 1
) ≥ 1

2
P
(|N±λt

t | ≥ 1
)
,

where N±λt
t := {u ∈ Nt : |Xu

t | > λt}. Thus for a small δ > 0 to be specified later we have

P
(|Nλt

t | ≥ 1
) ≥ 1

2
P
(|N±λt

t | ≥ 1, |Npt | > e( 1
2 β2p−δ)t

︸ ︷︷ ︸
:=nt (δ)

)

≥ 1

2
P

(⋃

u∈N̂t

{|Xu
t | > λt

}
, |Npt | > nt(δ)

)

≥ 1

2

(
1 − (

1 − pt(λ)
)nt (δ)

)
P
(|Npt | > nt(δ)

)
.

By Theorem 1, P (|Npt | > nt(δ)) → 1, so this term is well-behaved. Then

(
1 − (

1 − pt(λ)
)nt (δ)

)

= nt (δ)pt (λ) −
(

nt (δ)

2

)

pt(λ)2 +
(

nt (δ)

3

)

pt(λ)3 − · · ·

≥ nt (δ)pt (λ) − nt (δ)
2pt(λ)2

(
1 + nt (δ)pt (λ) + nt (δ)

2pt(λ)2 + · · · ).

Note that for δ and η small enough

nt (δ)pt (λ) = e( 1
2 β2p−δ)te(− λ2

2(1−p)
−η)t = e(�λ−δ−η)t � 1.

Hence for t large enough P (|Nλt
t | ≥ 1) ≥ ( 1

2P (|Npt | > nt(δ)))e(�λ−δ−η)t +o(e(�λ−δ−η)t ) and
therefore

lim inf
t→∞

logP (|Nλt
t | ≥ 1)

t
≥ �λ.

This completes the proof of Lemma 1. �

6.4 The Rightmost Particle

Observe that the number of particles above the line λt grows exponentially if λ <
β

2 and is
eventually 0 if λ >

β

2 . Hence, as a corollary of Theorem 2, we get that

Rt

t
→ β

2
P -a.s.,

where (Rt )t≥0 is the rightmost particle of the branching process.

Proof of Corollary 1 Take any λ <
β

2 . By Theorem 2 |Nλt
t | ≥ 1 ∀t large enough, so Rt ≥ λt

for t large enough. Thus lim inft→∞ t−1Rt ≥ λ P -a.s. Letting λ ↗ β

2 we get

lim inf
t→∞

Rt

t
≥ β

2
P -a.s.
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Similarly, if we take λ >
β

2 then by Theorem 2 |Nλt
t | = 0 ∀t large enough and so Rt ≤ λt for

t large enough. Hence lim supt→∞ t−1Rt ≤ λ P -a.s. So, letting λ ↘ β

2 we get

lim sup
t→∞

Rt

t
≤ β

2
P -a.s.

and this proves Corollary 1. �

Note that the particles that we used to bound the rightmost particle in our proofs above
suggest very different behaviours of the path history of rightmost particle in BBM with
branching at the origin compared to homogeneous branching.

In the BBM model with homogeneous branching rate β , roughly speaking, for any ε > 0,
infinite lines of descent can be found that stay ‘near’ the line (

√
2β − ε)t for all time. See,

for example, [12]. (For fine behaviour of the rightmost particle see, for example [1, 15].)
On the other hand in the BBM model with branching rate βδ0(x), since branching only

takes place at the origin, no particle can stay close to the straight line λt for too long for any
λ > 0. The optimal way for some particle to have reached the critical line βt/2 at time T

is to wait near the origin up until the time T/2 in order to give birth to as many particles as
possible, and then at time T/2 one of approximately exp(β2T/4) particles will have a good
chance of reaching βT/2 at time T .

7 Strong Law of Large Numbers

Recall the additive martingale Mt = e− β2

2 t
∑

u∈Nt
e−β|Xu

t |, t ≥ 0 from (9) and the measure
π(dx) = βe−2β|x| dx from Proposition 3. In this section, we shall prove Theorem 3 which
says that for a continuous compactly-supported function f (·)

lim
t→∞ e− β2

2 t
∑

u∈Nt

f
(
Xu

t

) = M∞
∫ ∞

−∞
f (x)βe−β|x| dx

= M∞
∫ ∞

−∞
f (x)eβ|x|π(dx) P -a.s. (19)

Observe that the expectation of the LHS converges to the expectation of the RHS by the
Many-to-One theorem and the uniform integrability of (Mt)t≥0:

E

(

e− β2

2 t
∑

u∈Nt

f
(
Xu

t

)
)

= Ẽ
(
e− β2

2 t f (ξt )e
βL̃t

)

= Ẽ
(
f (ξt )e

β|ξt |(e−β|ξt |+βL̃t − β2

2 t
))

= EQ̃β
(
f (ξt )e

β|ξt |) →
∫

f (x)eβ|x|π(dx).

Also the Weak Law of Large Numbers for this model has been proved by J. Engländer and
D. Turaev in [8]. In particular they have given the law of M∞.

The Strong Law of Large Numbers was proved in [9] for a large class of general diffusion
processes and branching rates β(x). In our case the branching rate is a generalised function
βδ0(x), which doesn’t satisfy the conditions of [9]. Nevertheless we can adapt the proof to
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our model if we take the generalised principal eigenvalue λc = β2

2 and the eigenfunctions
φ(x) = e−β|x|, φ̃(x) = βe−β|x| in [9]. Also the proof relies on the Lp convergence of the
martingale (Mt)t≥0 and the linear asymptotic growth of the rightmost particle which we
have derived earlier in this article.

As the final remark, let us note that Theorem 3 together with the Fatou’s lemma and the
fact that M∞ > 0 P -a.s. and EM∞ = 1 gives us that

lim inf
t→∞ e− β2

2 t |Nt | = 2M∞.

We conjecture that limt→∞ e− β2

2 t |Nt | = 2M∞, but as yet we have not established the con-

vergence of e− β2

2 t |Nt |.
We now finish the article with the proof of Theorem 3.

Proof of Theorem 3 Take B ⊆R to be an interval (possibly unbounded). As it will be shown
later, it is sufficient to prove the theorem for functions of the form f (x) = e−β|x|1{x∈B}. For
such an interval B let

Ut := e− β2

2 t
∑

u∈Nt

e−β|Xu
t |1{Xu

t ∈B} = e− β2

2 t
∑

u∈Nt

f
(
Xu

t

)
.

So if B = R then we would have Ut = Mt and generally Ut ≤ Mt . We wish to show that

Ut → π(B)M∞
(

=
∫

f (x)eβ|x|π(dx)M∞
)

as t → ∞.

The proof can be split into three parts.

Part I

Let us take K > 0. At this stage it doesn’t matter what K is, but in Part II of the proof we
shall choose an appropriate value for it. Let mn := Kn (using the same notation as in [9]).
Also fix δ > 0. We first want to prove that

lim
n→∞|U(n+mn)δ − E(U(n+mn)δ|Fnδ)| = 0 P -a.s. (20)

We begin with the observation that

∀s, t ≥ 0 Us+t =
∑

u∈Nt

e− β2

2 tU (u)
s , (21)

where conditional on Ft , U(u)
s are independent copies of Us started from the positions Xu

t .
To prove (20) using the Borel-Cantelli lemma we need to show that for all ε > 0

∞∑

n=1

P
(|U(n+mn)δ − E(U(n+mn)δ|Fnδ)| > ε

)
< ∞. (22)

Let us take any p ∈ (1,2]. Then

P
(|U(n+mn)δ − E(U(n+mn)δ|Fnδ)| > ε

) ≤ 1

εp
E
(|U(n+mn)δ − E(U(n+mn)δ|Fnδ)|p

)
.
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Next we shall apply the following inequality, which was used in the proof of the SLLN in
[9] and can also be found in [2]: if p ∈ (1,2] and Xi are independent random variables with
EXi = 0 (or they are martingale differences), then

E

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

p]

≤ 2p

n∑

i=1

E

[|Xi |p
]
. (23)

Note, as the martingale M is L2 bounded, we could take p = 2 throughout and simplify
some computations, however the p ∈ (1,2] argument presented is instructive as it can be
adapted to more general situations. By (21)

Us+t − E(Us+t |Ft ) =
∑

u∈Nt

e− β2

2 t
(
U(u)

s − E
(
U(u)

s |Ft

))
,

where conditional on Ft , U(u)
s − E(U(u)

s |Ft ) are independent with 0 mean. Thus applying
(23) and Jensen’s inequality we get

E
(|Us+t − E(Us+t |Ft )|p|Ft

) ≤ 2pe−p
β2

2 t
∑

u∈Nt

E
(|U(u)

s − E
(
U(u)

s |Ft

)|p|Ft

)

≤ 2pe−p
β2

2 t
∑

u∈Nt

E
(
2p−1

(|U(u)
s |p + |E(

U(u)
s |Ft

)|p)|Ft

)

≤ 2pe−p
β2

2 t
∑

u∈Nt

E
(
2p−1

(|U(u)
s |p + E

(|U(u)
s |p|Ft

))|Ft

)

= 22pe−p
β2

2 t
∑

u∈Nt

E
(|U(u)

s |p|Ft

)
. (24)

Hence using (24) and recalling that Ex stands for the expectation with respect to the proba-
bility measure under which the branching process starts at position x we have

∞∑

n=1

E
(|U(n+mn)δ − E(U(n+mn)δ|Fnδ)|p

) ≤ 22p

∞∑

n=1

e−p
β2

2 δnE

( ∑

u∈Nδn

EXu
δn

[
(Umnδ)

p
]
)

≤ 22p

∞∑

n=1

e−p
β2

2 δnE

( ∑

u∈Nδn

EXu
δn

[
(Mmnδ)

p
]
)

≤ 22p

∞∑

n=1

e−p
β2

2 δnE(C|Nδn|)

≤
∞∑

n=1

e−p
β2

2 δne
β2

2 δn × C ′,

where C and C ′ are some positive constants and we have applied Theorem 7 and Proposition
1 in the last two inequalities. Since p > 1 the sum is < ∞. This finishes the proof of (22)
and hence (20).



Branching Brownian Motion with Catalytic Branching at the Origin

Part II

Let us now prove that

lim
n→∞

∣
∣E(U(n+mn)δ|Fnδ) − π(B)M∞

∣
∣ = 0 P -a.s. (25)

Together with (20) this will complete the proof of Theorem 3 along lattice times for func-
tions f (x) of the form e−β|x|1{x∈B}.

We begin by noting that

E(Us+t |Ft ) = E

(∑

u∈Nt

e− β2

2 tU (u)
s |Ft

)

=
∑

u∈Nt

e− β2

2 tEXu
t Us

=
∑

u∈Nt

e− β2

2 tEXu
t

(∑

u∈Ns

e− β2

2 s−β|Xu
s |1{Xu

s ∈B}
)

=
∑

u∈Nt

e− β2

2 t ẼXu
t
(
e− β2

2 s−β|ξs |1{ξs∈B}eβL̃s
)

=
∑

u∈Nt

e− β2

2 t−β|Xu
t |Q̃Xu

t
β (ξs ∈ B)

=
∑

u∈Nt

e− β2

2 t−β|Xu
t |
∫

B

ps

(
Xu

t , y
)
dy,

where Q̃β and p·(·, ·) were defined in (7) and Proposition 3. Thus

E(U(n+mn)δ|Fnδ) =
∑

u∈Nnδ

e− β2

2 nδ−β|Xu
nδ |

∫

B

pmnδ

(
Xu

nδ, y
)
dy. (26)

Recalling that mn = Kn where K > 0 we have

E(U(n+mn)δ|Fnδ) =
∑

u∈Nnδ

e− β2

2 nδ−β|Xu
nδ |

∫

B

pKnδ

(
Xu

nδ, y
)
dy.

Now choose M >
β

2 and consider events

Cn := {|Xu
nδ| < Mnδ ∀u ∈ Nnδ

}
.

Then

∑

u∈Nnδ

e− β2

2 nδ−β|Xu
nδ |

∫

B

pKnδ

(
Xu

nδ, y
)
dy

=
∑

u∈Nnδ

e− β2

2 nδ−β|Xu
nδ |

∫

B

pKnδ

(
Xu

nδ, y
)
dy 1Cc

n

+
∑

u∈Nnδ

e− β2

2 nδ−β|Xu
nδ |

∫

B

pKnδ

(
Xu

nδ, y
)
dy 1Cn .



S. Bocharov, S.C. Harris

The first sum is 0 for n large enough by Corollary 1 (or even earlier by Theorem 2). To deal
with the second sum we substitute the known transition density p·(·, ·):

∫

B

pKnδ

(
Xu

nδ, y
)
dy 1Cn

=
∫

B

1√
2πKnδ

exp

{

β
(|Xu

nδ| − |y|) − β2

2
Knδ − (Xu

nδ − y)2

2Knδ

}

+ βΦ

(
βKnδ − |Xu

nδ| − |y|√
Knδ

)

e−2β|y| dy 1Cn .

Then for any given M >
β

2 we can choose K > 2M
β

and hence

∫

B

1√
2πKnδ

exp

{

β
(|Xu

nδ| − |y|) − β2

2
Knδ − (Xu

nδ − y)2

2Knδ

}

dy 1Cn

≤ exp

{(

βM − β2

2
K

)

nδ

}

× C ′ → 0 as n → ∞,

where C ′ is some positive constant and

∫

B

βΦ

(
βKnδ − |Xu

nδ| − |y|√
Knδ

)

e−2β|y| dy 1Cn →
∫

B

βe−2β|y| dy = π(B) as n → ∞

since Φ(x) → 1 as x → ∞ and 1Cn → 1 as n → ∞. Then going back to (26) we see that

lim
n→∞

∣
∣E(U(n+mn)δ|Fnδ) − π(B)Mnδ

∣
∣ = 0 P -a.s.

and so also

lim
n→∞

∣
∣E(U(n+mn)δ|Fnδ) − π(B)M∞

∣
∣ = 0 P -a.s.

As it was mentioned earlier parts I and II together complete the proof of Theorem 3 along
lattice times for functions of the form f (x) = e−β|x|1B(x). To see this put together (20) and
(25) to get that

lim
n→∞|U(n+mn)δ − π(B)M∞| = 0 P -a.s.

That is,

lim
n→∞|Un(K+1)δ − π(B)M∞| = 0 P -a.s.

Then K + 1 can be absorbed into δ which stayed arbitrary throughout the proof. Also as it
was mentioned earlier we can easily replace functions of the form e−β|x|1B(x) with any
compactly-supported continuous functions. To see this we note that given a compactly-
supported continuous function f and ε > 0 we can find functions f̄ ε(x) and f ε(x), which
are linear combinations of functions of the form e−β|x|1B(x) such that

f̄ ε(x) − ε ≤ f (x) ≤ f̄ ε(x)

and

f ε(x) ≤ f (x) ≤ f ε(x) + ε.
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Then

f̄ ε(x)βe−β|x| ≤ (
f (x) + ε

)
βe−β|x|

⇒
∫ ∞

−∞
f̄ ε(x)βe−β|x| dx ≤

∫ ∞

−∞
f (x)βe−β|x| dx + 2ε

and hence P -almost surely we have

lim sup
n→∞

e− β2

2 nδ
∑

u∈Nnδ

f
(
Xu

nδ

) ≤ lim sup
n→∞

e− β2

2 nδ
∑

u∈Nnδ

f̄ ε
(
Xu

nδ

)

= M∞
∫ ∞

−∞
f̄ ε(x)βe−β|x| dx

≤ M∞
(∫ ∞

−∞
f (x)βe−β|x| dx + 2ε

)

.

Since ε is arbitrary we get

lim sup
n→∞

e− β2

2 nδ
∑

u∈Nnδ

f
(
Xu

nδ

) ≤ M∞
∫ ∞

−∞
f (x)βe−β|x| dx.

Similarly

lim inf
n→∞ e− β2

2 nδ
∑

u∈Nnδ

f
(
Xu

nδ

) ≥ M∞
∫ ∞

−∞
f (x)βe−β|x| dx.

This completes the proof of Theorem 3 with the limit taken along lattice times. Now let us
finish the proof of the theorem by extending it to the continuous-time limit.

Part III

As in the previous parts of the proof it is sufficient to consider functions of the form f (x) =
e−β|x|1B(x) for intervals B .

Let us take ε > 0 and define the following interval

Bε(x) := B ∩
(

−|x| − 1

β
log(1 + ε), |x| + 1

β
log(1 + ε)

)

.

Note that y ∈ Bε(x) iff y ∈ B and e−β|y| > e−β|x|
1+ε

. Furthermore, for δ, ε > 0 let

Ξ
δ,ε
B (x) := 1{Xu

s ∈Bε(x) ∀s∈[0,δ] ∀u∈Nδ }

and

ξ
δ,ε
B (x) := Ex

(
Ξ

δ,ε
B (x)

) = P x
(
Xu

s ∈ Bε(x) ∀s ∈ [0, δ] ∀u ∈ Nδ

)
.

Then for t ∈ [nδ, (n + 1)δ]

Ut = e− β2

2 t
∑

u∈Nt

e−β|Xu
t |1{Xu

t ∈B}
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=
∑

u∈Nnδ

e− β2

2 nδU
(u)
t−nδ ≥ e− β2

2 nδ
∑

u∈Nnδ

U
(u)
t−nδ Ξ

δ,ε
B

(
Xu

nδ

)

≥ e− β2

2 nδ
∑

u∈Nnδ

e− β2

2 δ e−β|Xu
nδ |

1 + ε
Ξ

δ,ε
B

(
Xu

nδ

)
(27)

because at time t there is at least one descendent of each particle alive at time nδ. Let us
consider the sum

e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

)
.

Note that

Ξ
δ,ε
B

(
Xu

nδ

)
are independent conditional on Fnδ, (28)

E

(

e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

)|Fnδ

)

= e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

)
, (29)

and

lim
n→∞ e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

) =
∫

ξ
δ,ε
B (x)π(dx)M∞. (30)

The last equation follows from the SLLN along lattice times which we already proved. Also
we should point out that if we further let δ → 0, ξ

δ,ε
B (x) will converge to 1B(x) (with the

exception of at most two points on the boundary of interval B) and (30) will converge to
π(B)M∞. Our next step then is to show that

lim
n→∞

∣
∣
∣
∣
∣
e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

) − e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

)
∣
∣
∣
∣
∣
= 0. (31)

In view of (28) and (29) we prove this using the method of Part I. That is, we exploit the
Borel-Cantelli Lemma and in order to do that we need to show that for some p ∈ (1,2] the
following sum is finite:

∞∑

n=1

E

(∣
∣
∣
∣
∣
e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

) − E

(

e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

)
∣
∣
∣
∣
∣
Fnδ

)∣
∣
∣
∣
∣

p)

.

A similar argument to the one used in Part I (see (24) gives us that

∞∑

n=1

E

(∣
∣
∣
∣
∣
e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

) − E

(

e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

)
∣
∣
∣
∣
∣
Fnδ

)∣
∣
∣
∣
∣

p)

≤
∞∑

n=1

22pe−p
β2

2 nδE

( ∑

u∈Nnδ

e−βp|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

)
)

,

where Ξ
δ,ε
B (Xu

nδ) is an indicator function and therefore raising it to the power p leaves it
unchanged. Using once again the Many-to-One Lemma and the usual change of measure we
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get

∞∑

n=1

22pe−p
β2

2 nδE

( ∑

u∈Nnδ

e−βp|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

)
)

≤
∞∑

n=1

22pe−p
β2

2 nδE

( ∑

u∈Nnδ

e−βp|Xu
nδ |

)

=
∞∑

n=1

22pe−(p−1)
β2

2 nδEQ̃β
(
e−β(p−1)|ξnδ |) < ∞.

Thus we have proved (31), which together with (30) implies that

lim inf
n→∞ e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |Ξδ,ε

B

(
Xu

nδ

) = lim inf
n→∞ e− β2

2 nδ
∑

u∈Nnδ

e−β|Xu
nδ |ξ δ,ε

B

(
Xu

nδ

)

=
∫

ξ
δ,ε
B (x)π(dx)M∞.

Putting this into (27) and letting n = � t
δ
� gives us

lim inf
t→∞ Ut ≥ e− β2

2 δ

1 + ε

∫
ξ

δ,ε
B (x)π(dx)M∞.

Letting δ, ε ↘ 0 we get lim inft→∞ Ut ≥ π(B)M∞. Since the same result also holds for Bc

(which is the union of at most two disjoint intervals) we can easily see that lim supt→∞ Ut ≤
π(B)M∞. Thus

lim
t→∞Ut = π(B)M∞.

Then the same argument as at the end of Part II of the proof extends the result for functions
of the form 1B(x)e−β|x| to all continuous compactly-supported functions. �
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