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Abstract

A general phase-based harmonic separation method for the hydrody-
namic loading on a fixed structure in water waves of moderate steepness
is proposed. An existing method demonstrated in the experimental study
described by Zang et al. (Zang et al. 2010 In Proc. Third Int. Conf.

on Appl. of Phys. Modelling to Port and Coastal Protection. pp. 1–7.)
achieves the separation of a total diffraction force into odd and even har-
monics by controlling the phase of incident focussed waves. Underlying
this method is the assumption that the hydrodynamic force in focussed
waves possesses a Stokes-like structure. Under the same assumption, it
is shown here how the harmonic separation method can be generalised
so that the first four sum harmonics can be separated by phase control
and linear combinations of the resultant time-histories. The effectiveness
of the method is demonstrated by comparisons of the Fourier transforms
of the combined time-histories containing the harmonics of interest. The
local wave elevations around the focus time are also visualized for the first
three harmonics in order to reveal the local dynamics driving components
within the wave force time-history.

1 Introduction

Offshore wind turbines are typically mounted on bottom founded piles and are
situated in areas of high winds where large waves can be expected to occur.
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The wave-induced loads on the foundations due to extreme incident waves will
comprise a linear harmonic component at around the incident spectral peak
frequency and higher order harmonics which are at multiples of the linear peak
frequencies. These arise from the nonlinearity inherent in the waves and in
the interaction. The higher order components of the total wave force are of
interest in order to predict the structural response. This is because the higher
order harmonics arising in the wave structure interaction can cause a large
dynamic response of the piles due to the excitation of a structural resonance in
the lightly damped system. This resonant excitation can occur even when the
high-frequency incident wave and local diffracted wave components are small
relative to the total wave-field. The excitation of sharp transient structural
response by the higher order harmonics (typically the component at the third
order sum frequency) is referred to as “ringing”’ and has been demonstrated
experimentally by among others, [6] and [16]. Both studies involved vertical
circular cylinders. A prior review by [9] discusses how ringing was observed to
arise in steep wave interactions with fixed gravity based structures (GBS) and
floating tension leg platforms (TLP) at model and full scale. Thus, ringing has
been a topic of interest within the field of offshore engineering for a significant
period of time. Given the high-frequency nature of the ringing excitation, it
is important to isolate and accurately compute the higher order wave loading
harmonics in order to fully capture the total forces and response of vertical
cylinders in extreme waves. Rather than the phenomenon of ringing itself, it is
the separation of higher order force harmonics that is considered in detail here.

Extreme waves which arise during prolonged storms can be effectively mod-
elled using focussed wave groups and in particular the NewWave concept de-
scribed by [23]. NewWave-type focussed wave groups correspond to the average
shape of the free surface in the vicinity of large crests occurring in a random sea
state and are used throughout the analysis to follow. As shown by [18] and [24],
the NewWave model captures quite accurately the linear contribution to large
ocean waves. In this paper we seek to understand the effects of nonlinearity in
the interaction between focussed waves and a surface piercing cylinder on the
wave-induced loads. The particular focussed waves considered comprise a lin-
ear NewWave component with additional higher order terms due to wave-wave
interactions. Experimental studies of the harmonic structure of the loads on
a single surface-piercing column for incident focussed wave groups of various
degrees of nonlinearity have been conducted by [20] and [25]. In both cases,
the challenge was to extract the higher order harmonics without recourse to a
Fourier transform of the force time-histories – an approach used in many of the
preceding studies involving regular waves – which is not suitable for transient
interactions.

By assuming the existence of a generalised Stokes-type harmonic series in
both frequency and wave steepness for the free-surface elevation and horizontal
wave loads for focussed waves groups, [25] extracted the higher harmonics in the
interaction. An alternative approach taken by [20] involved the use of a scaled-
averaged wavelet energy analysis to isolate the harmonic force amplitudes. The
dominant loads identified by [25] were found to be potential in form and, al-
though the separation of drag and potential flow contributions to the the total
force was not possible, the effects of drag should be small based on Keulegan-
Carpenter number estimates. The higher order nonlinear contributions to the
free-surface elevation and wave loads (also referred to as higher order harmonics)
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were separated using the ‘phase-inversion’ method described by [3], [17], [4] and
[24] for the wave kinematics at the focus point of the wave group. To extract
the odd and even harmonic contributions to the time histories of kinematic or
dynamic quantities (e.g. the free-surface elevation or total wave force) in the
focussed wave group interaction, it is necessary to conduct two tests involving
incident wave groups with identical component amplitudes and frequencies but
inverted phases. The individual harmonics can then be isolated by digital fre-
quency filtering. The harmonic structure of the total horizontal force was also
demonstrated in [25], even for violent breaking waves, and the amplitude and
time-scale of the higher order harmonics were shown to correspond to the linear
envelope/component raised to the appropriate power. Thus, the generalisation
of the Stokes-type expansion to wave groups was shown to be appropriate in
describing the dynamics of the interaction.

Harmonic separation techniques can be applied to fully nonlinear time-
histories arising from experimental tests or numerical simulations. The advan-
tages of applying harmonic separation methods to numerical simulation data are
that not only can the harmonics of the force time-histories be separated but also
the harmonics of the local flow field. Here, time-histories from fully nonlinear po-
tential flow simulations of the experiments described by [25] involving focussed
wave diffraction by a vertical circular cylinder are analysed. The numerical
scheme adopted for these fully nonlinear simulations was the mixed Eulerian-
Lagrangian higher order boundary element method (BEM) described by [1] and
[2]. Other numerical solution approaches for the potential-flow diffraction prob-
lem in the non-linear wave regime include a finite-element computation based
on Hamilton’s principle [19] and a nonlinear decomposition method to solve
for the diffracted wave field assuming the incident wave is explicitly known as
described by [12] and recently investigated in more detail in [10]. Viscous flow
solvers have also been employed in order to describe the physics of the interac-
tion more comprehensively, including the hybrid finite volume – volume of fluid
method adopted by [7] and a Spectral Wave Explicit Navier-Stokes Equations
(SWENSE) solver used by [13].

In this paper, we extend the existing phase-based separation method (i.e.
the ‘phase-inversion’ method) so that the first four harmonics of the force or
elevation can be separated by the application of simple linear combinations
of the relevant time-histories with minimal post-processing. This requires the
data from four diffraction interactions involving incident focussed waves that
are each exactly π/2 out of phase. Therefore, fully nonlinear potential flow
simulations of two focussed-wave interactions not considered experimentally are
also required. The advantages of the generalised four-phase method compared
with the existing two-phase method is demonstrated by the comparison of a
higher harmonic signal obtained from each method. A comparison of the four-
phase harmonic separation results for numerical time-histories to the results of
the phase-inversion method applied to experimental force time-histories is made
in order to validate the numerical approach and to confirm convergence. The
four-phase harmonic separation method is also applied to the elevation of the
free-surface surrounding the body and to the time-history of the wave run-up
on the cylinder. The evolution of the local flow field around the body during
the interaction at first, second and third harmonic is presented and discussed.

The structure of the paper is as follows. In § 2, the extension of the Stokes
wave expansion from regular waves to wave groups is discussed. Thereafter, in
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§ 3 the extension of the phase-inversion method, which separates odd and even
harmonics, to a more general phase-based separation method which isolates the
first four harmonics is presented. The application of this generalised phase-based
separation method to fully nonlinear simulations of an experiment is described
in § 4 with comparisons to these experimental results also provided. The be-
haviour of the first three harmonics of the local flow field during the diffraction
interaction are illustrated and discussed in § 5. Finally, a conclusion regarding
the advantages of the generalised phase-based separation is presented in § 6.

2 Stokes wave expansion generalised to wave groups

The interaction under consideration involves the diffraction of a uni-directional
incident focussed wave by a surface-piercing bottom founded cylinder. It is
assumed that the viscous effects are negligible relative to the potential flow
effects and so the equations for an irrotational flow in an inviscid, incompressible
fluid are used to describe the diffraction. The implications of this assumption are
considered in § 44.1 and § 44.3. According to the classic Stokes perturbation
expansion in the wave slope parameter kA, a regular incident wave of linear
wave amplitude A, frequency ω and wavenumber k will induce a horizontal
hydrodynamic load of the form

F = Af11 cosϕ+A
2(f20 + f22 cos 2ϕ)+

A3(f31 cosϕ+ f33 cos 3ϕ) +A4(f42 cos 2ϕ+ f44 cos 4ϕ)
(1)

up to fourth order in the amplitude A, where the coefficients fmn represent wave-
to-force transfer functions and ϕ = ωt+ϕ0 is the phase of the linear component
of the incident wave with a prescribed phase shift ϕ0. In order to keep this force
expression as simple and compact as possible, the term fmn cosnϕ represents
Re{fmne

i nϕ+ψmn} where ψmn is the phase shift of the force relative to incident
wave at the given order and harmonic. The structure of the terms multiplying
the coefficients fmm, where the power of the amplitude term is the same as the
frequency harmonic, and the terms multiplying coefficients such as fm(m−2),
where the power of the amplitude exceeds that of the frequency harmonic by 2, is
noteworthy. In the notation of Stokes’ expansions, these coefficients correspond
to sum and difference frequency components, respectively. For ringing we are
mostly concerned with the sum harmonics.

Whilst these individual harmonic components are easy to extract for regular
wave forcing, this is much more difficult for broad banded waves trains (either
random or wave groups) where the simple Stokes’ terms are replaced by sum-
mations of products of linear terms and each net higher harmonic contributes
across an increasingly broad range of frequencies. This broadening of the higher
harmonic spectral peaks is referred to as spectral ‘smearing’. For example,
the Stokes’ perturbation expansion to second order in kA for the free-surface
elevation in an irregular sea can be expressed as

η = Re

N
∑

n=1

Ane
iθn+

Re
N
∑

n=1

N
∑

m=1

(

AnAmB
+
mne

i(θn+θm) +AnAmB
−

mne
i(θn−θm)

)

(2)
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whereAn is the amplitude of the free-wave component of frequency ωn, wavenum-
ber kn and phase θn = knx−ωnt. The coefficients B+

mn and B−

mn account for the
super- and sub-harmonic contributions at second order arising from wave-wave
interactions and are given by [8] for constant finite depth and are referred to as
bound waves. Analytical third order solutions for irregular waves in deep water
have also been derived by [26]. The wave loading on a cylinder generalised to
an irregular sea can be written in a similar manner to equation (2) by replacing
the coefficients B+

mn and B−

mn with wave-to-force quadratic transfer functions
(with extensions to higher order).

For a focussed wave group, the phases of each free-wave component are cho-
sen so that the crests of all linear components coincide at the focus event (x0, t0)
and significant nonlinearity will be confined to the neighbourhood of focus loca-
tion around the focus time. If a cylinder is placed at the focus location then the
wave loading will only contain significant nonlinearity in a short time-interval
around the focus time. We propose that the regular wave Stokes equation can
also be used to approximate the (focussed) wave group case where the simple
Stokes terms now represent summations of products (of linear terms). However,
the convergence of the Stokes-type expansion for wave groups is not guaranteed.
Nevertheless, we seek to extract the higher order components as far as fourth
order using phase manipulations to separate each component.

To demonstrate how the regular-wave Stokes’ expansion might be generalised
to wave groups it is useful to assume the energy spectrum of the NewWave is
such that the narrow banded approximation can be adopted. Therefore, around
the focus point the signal envelope can be regarded as a slowly varying function
of time A(t) (relative to the ‘carrier wave’ oscillations at the peak spectral
frequency ω0). In this case, the free-surface elevation to second order at the
focus location around the focus time can be simplified to

η = A(t) cos(ω0t+ ϕ0) +A2(t)(B+ cos(2ω0t+ 2ϕ0) +B−) (3)

where ϕ0 is the phase of the peak frequency component and B+ and B− are
the second order sum and difference coefficients at the peak frequency ω0. The
narrow banded approximation reduces the complexity of the equations signifi-
cantly by approximating the summations and double summations of equation (2)
with the product of a wave group envelope A(t) and the oscillations within the
envelope cos(ω0t). Therefore, for simplicity of demonstration and exposition
the narrow banded approximation is applied. However, it is not necessary for
the spectrum to be narrow banded in order to apply the harmonic separation
method explained in the next section. A necessary condition is that the Stokes’
perturbation expansion form of equation (2) is valid to the required order (e.g.
fourth order). Thus, the harmonic decomposition method, presented in the next
section, cannot be applied to very steep waves. The Stokes’ expansion for the
regular wave force (1) can be extended to represent the harmonic structure of
the diffraction force around the focus time due to an incident wave group (with
a sufficiently narrow banded spectrum) by replacing the constant amplitude A
with time-dependent amplitude A(t) describing the envelope of the oscillations
of peak frequency ω0. For each higher harmonic, the contribution to the total
force is expected to decrease in both amplitude and temporal extent due to the
An(t) term. In mathematical terms, the Stokes’ expansion for a broad banded
wave group ultimately will not converge because the contributions at higher
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harmonics eventually cease to decrease with increasing order. However, typical
energy spectra used in experimental analyses (JONSWAP, Bretschneider) are
sufficiently narrow banded to assume the Stokes structure holds up to fifth order
at least as shown by [25].

3 Generalisation of the harmonic decomposition

method

3.1 Harmonic decomposition via the phase-inversion method

The phase-inversion method applied to wave kinematics described by [17] can be
used to separate the odd and even harmonics in the diffraction force time history.
In brief, it requires two time histories for a given hydrodynamic quantity from
two interactions involving incident waves generated by linear paddle signals that
are 180◦ out of phase. By consideration of equation (1) it is clear that the phase
shift ϕ0 → ϕ0 + π will cause the signs of the odd harmonics to be inverted and
those of the even harmonics to remain the same. Thus, the averaged difference
and sum of the force signals give the odd and even harmonics respectively:

(F0 − F180)/2 = Af11 cosϕ+A3(f33 cos 3ϕ+ f31 cosϕ) +O(A5) (4)

(F0 + F180)/2 = A2(f20 + f22 cos 2ϕ) +A4(f44 cos 4ϕ+ f42 cos 2ϕ) +O(A6).
(5)

Typically, the paddle signal with the phase ϕ0 is chosen so that it generates a
wave with a crest at the focus and thus the inverted signal results in a trough at
the focus. The even and odd harmonics of the fully nonlinear force time-history
are then separated by frequency filtering. However, there are strict limits as
to what can be achieved by filtering in frequency for higher order harmonics
due to the ‘smearing’ of the spectrum as a result of wave-wave interactions. In
particular, at higher orders overlap between the nth and (n+2)th harmonics can
occur over a range of frequencies. It should be noted that the Stokes expansion
for the force is expressed in regular wave form but is representative of the
generalised expansion for a wave group.

3.2 Generalisation of the phase-inversion method

In order to obtain more effective separation of the harmonics it is necessary
to generate more force signals corresponding to further phase shifts of the lin-
ear paddle signal. Consider four diffraction interactions involving wave groups
generated by the same paddle signal, except the phase of each Fourier com-
ponent is shifted 0◦, 90◦, 180◦ and 270◦ leading to four force time-histories
F0, F90, F180, F270. We then seek to extract the individual Stokes-type com-
ponents through linear combinations of these time histories and the Hilbert
transforms (i.e. the harmonic conjugate of the signal denoted by the super-
script H) of the 90◦ and 180◦ force time-histories, rather than depending on
frequency separation of the signals. The linear harmonic and the first three su-
perharmonics (to fourth order) are of most interest and are sought in isolation
from each other – the second order subharmonic will occur in the same expres-
sion as one of the superharmonics. The required simple linear combinations of
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the four phase-shifted runs are as follows

(F0 − FH90 − F180 + FH270)/4 = Af11 cosϕ+A3f31 cosϕ+O(A5) (6)

(F0 − F90 + F180 − F270)/4 = A2f22 cos 2ϕ+A4f42 cos 2ϕ+O(A6) (7)

(F0 + FH90 − F180 − FH270)/4 = A3f33 cos 3ϕ+O(A5) (8)

(F0 + F90 + F180 + F270)/4 = A2f20 +A4f44 cos 4ϕ+O(A6). (9)

Only in the fourth linear combination (9) are there multiple harmonics of inter-
est present, namely the second order difference long-wave loading and the fourth
order sum harmonic loading, and these are straightforward to separate by fre-
quency filtering because there is no overlap between the harmonics. (There is
a much larger frequency separation of the harmonic contribution for the second
order subharmonic and fourth order superharmonic than for the nth and n+2th

harmonics in the phase inversion method so that separating these contributions
by digital filtering is trivial.) Thus, running four phase shifted cases yields the
dominant harmonic components up to the fourth sum harmonic. We note in
passing the relative importance of the difference terms, such as f31 compared
to the f11 term. These terms have the same frequency content but a different
(higher order) dependency on the wave amplitude. In general, all such differ-
ence terms are likely to be negligible for weakly nonlinear waves, except for the
second order difference long-wave f20 term. Therefore, this harmonic separation
method will only yield the linear harmonic and the first three superharmonics
(with trivial filtering necessary only for the fourth order superharmonic) if the
waves are at most of moderate steepness. We stress that other phase-shifted
combinations of wave groups would allow separation of the harmonics. The
experimental work of [14] makes use of 12 versions of the same wave group,
each shifted by 30◦. It is clear that the four linear combinations that we use
are the minimum number required to give clean separation of the the first four
harmonics.

4 Experimental and simulation results

The harmonic decomposition method generalised to four phase shifted incident
wave groups is demonstrated using time-histories obtained from potential flow
simulations of a set of focussed wave experiments. In particular, a fully nonlinear
higher-order BEM potential flow model (described by [2]) is used to simulate the
experimental tests involving isolated compact wave groups (with phase shifts of
0◦ and 180◦ from the crest focussed case) incident on a single surface piercing
column reported in [25]. In addition to the crest and trough focussed wave
group experimental tests we also simulated interactions involving wave groups
with Fourier components shifted by 90◦ and 270◦ relative to crest focussed wave
groups. A comparison with the harmonic separation obtained from the analysis
of the experimental results (presented by [25] and [15]) is also provided.

4.1 Experimental tests – simulation case study

The numerical simulations utilise the experimental specifications for the small-
est focussed wave group considered, which are as follows: the cylinder has a
diameter of 0.25m, the distance from the wavemaker to the focus point at the
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front stagnation point of the cylinder is 7.8m and the water has a depth of
0.505m. The particular test wave that is considered here is a unidirectional
NewWave-type wave group with an underlying JONSWAP (γ = 3.3) spectrum
of peak frequency fp = 0.61Hz. The linear component of the focussed wave
was prescribed to have an amplitude A = 0.06m corresponding to a steepness of
kpA ≃ 0.1 (the smallest steepness in the programme of experiments) where kp is
the wavenumber corresponding to fp. In the experiments, the wavemaker com-
prises a segmented piston paddle array and a linear signal is used to generate the
waves. In the simulations, a piston motion of a vertical wall is implemented to
model the experimental wave generation. Good agreement between experimen-
tally and numerically generated focussed waves was observed. Implementing
phase shifts in the numerical wavemaker signal and hence obtaining the phase
shifted force time-histories was straightforward.

4.2 Phase-based separation results

Four distinct simulations of the diffraction interaction were conducted each in-
volving an incident wave phase-shifted by 90◦ relative to the preceding simu-
lation. A Hilbert transform was applied to two of the time-histories so that
all the necessary data for obtaining the individual superharmonics from linear
combinations (6)–(9) was available. A simple high-pass filter was applied to
isolate the fourth order superharmonic from the second order subharmonic in
equation (9).

To illustrate the success of the harmonic separation, it is useful to apply a
Fourier transform to the four composite signals (6)–(9) obtained from the four
linear combinations of the time histories and Hilbert transforms. Given the large
difference in the amplitudes of the harmonics (from approximately 50 Newtons
at first order to 1 Newton at fourth order) it is necessary for illustrative purposes
to use a log-scaling of the Fourier transform amplitudes. The semi-log plot of
the Fourier transform of the four composite force time-histories is shown in
figure 1(a) (the FTs are relatively noisy because no smoothing is applied to the
data). The degree of separation between the harmonics is excellent. The semi-
log plot of the Fourier transform of the odd and even harmonics separated using
the two-phase approach (see equations (4) and (5)) is shown for comparison in
figure 1(b).

Although the signal is relatively noisy below an amplitude of 10−2 the har-
monic structure is visible up to fifth order sum frequency as is evident from
the secondary peak in the signal dominated by the linear harmonic at f = 5fp.
This corresponds to the O(a5) term in the first expression in equation (6) which
can be shown to be the fifth harmonic a5 cos(5ϕ). Isolating the second har-
monic sum and difference and fourth harmonic components from the spectrum
of the even harmonic components of the total signal in figure 1 (b) is relatively
straightforward because the overlap between harmonics is minimal – this is ev-
ident from a comparison of the amplitude spectrum for the even harmonic to
those of the second order sum harmonic and second order difference and fourth
order sum harmonics in figure 1 (a). However, isolating the third order har-
monic is not as straightforward because the amplitudes of the high frequency
‘tail’ contributions of the first harmonic spectrum are of the same order of mag-
nitude as the third harmonic peak contribution in figure 1 (a) and occur in the
same frequency range.
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Figure 1: Amplitude spectra at log-scale for (a) the four linear combinations (6)–
(9) and (b) the odd and even harmonics from equations (4)–(5).

To isolate the third harmonic from the Fourier transform of the odd harmonic
signal it is necessary to apply a suitable filter. In section 7.3 of [15], two possible
filters for the nth sum harmonic are proposed: one of width fp centred on
f = nfp and the other of width 2fp centred on f = nfp. Here, both narrow
and wide filters are applied to the odd harmonic amplitude spectrum and the
corresponding time-signals are cross-compared with the third order signal from
the four-phase harmonic separation method. A representation of the digital
filter applied to the amplitude spectrum of the odd harmonic signal (4) extracted
using the two-phase approach is shown in figure 2(a) – the amplitude spectrum
of the third harmonic linear combination (8) from the four-phase method is also
plotted in this figure. The associated time-histories are compared in figure 2(b).
From this comparison it is evident that the narrow filter does not ‘pass’ enough
of the third order contribution, in particular the tail of the third order peak,
so that the amplitude of the force oscillation is smaller than for the four-phase
case. In contrast, the wide filter includes contributions from the odd harmonic
spectrum over an excessive frequency range including some of the tail of the
first order peak. The resultant signal is too large relative to the four-phase
third harmonic signal. The spectral overlap of the first and third harmonic
contributions is unavoidable and so the third harmonic cannot be isolated from
the odd harmonic spectrum obtained using the two-phase separation method.
Of the two filters, the narrow version yields a more accurate representation of
the third order contribution and the same approach is used for all the higher
order harmonics in the phase inversion method.
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Figure 2: (a) Log-scale amplitude spectra of the odd harmonics (black) (with
representations of wide (grey, dashed) and narrow (grey, solid) third harmonic
filters) compared to third harmonic spectrum from equation (8) (black, dashed)
and (b) corresponding time-signals for the third sum harmonic combination
(black), the isolated third order harmonic using a narrow filter (grey, solid) and
a wide filter (grey, dashed).

A comparison of the first four sum harmonics and the second order differ-
ence harmonic as obtained from the numerical simulations using the four-phase
combination and the two-phase combination (narrow filter) methods is shown
in figure 3. There is a significant difference in the shape of the wave packets
obtained using the two- and four-phase approaches for the second order differ-
ence, third and fourth harmonics. In the case of the third and fourth harmonics,
the amplitude of the oscillations at the focus time are smaller for the two-phase
approach and the oscillations prior to the focus time have a slightly larger am-
plitude compared to the four-phase approach. For the first two harmonics, the
differences between the time-histories extracted using the different phase sepa-
ration approaches are minimal.

It is useful to note that if the wide filter had been employed then the third
and fourth order results would be larger for the two-phase approach than for
the four-phase approach. The unambiguous time-histories obtained from the
four-phase harmonic separation method contrast with the filter-dependent time-
histories obtained from the two-phase method. Furthermore, assuming (as often
happens when ringing arises in diffraction problems) the third-order harmonic
force excites the structural resonance then the accurate isolation of this har-
monic contribution will be of critical importance. The four-phase harmonic
separation method returns an unambiguous third order sum harmonic time-
history whereas the third order signal depends on the range of the spectral
filter in the two-phase method. Therefore, the four-phase harmonic separation
method can be considered a significant improvement on the two-phase method
when investigating the excitation of high frequency ringing loads on structures.
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4.3 Computational mesh specifications and preliminary

validation

The amplitude spectra of the force harmonics shown in figure 1 indicate that the
numerical simulation resolves the fully nonlinear interaction up to fourth order
with possible fifth order contributions also. The properties of the mesh were
specified so that the fourth order waves would be resolved but also so that the
computational times for the simulations would not become prohibitive. A proper
convergence investigation would require a simulation involving a finer mesh.
However, the results presented correspond to approximately 6300 quadratic
boundary elements and 15800 nodes in the numerical model. The computational
time for the simulations was approximately 800 CPU hours and a significant in-
crease in the number of elements/nodes would have resulted in excessively long
computational time.

Nevertheless, it is useful to describe the main properties of the computa-
tional mesh implemented in the fully nonlinear simulations. The unstructured
free-surface mesh of triangular elements implemented in the boundary element
method as part of the fully nonlinear simulation (see [2] for further details) are
of side-length 0.089 (where one unit of length equals a metre in the numerical
simulation). The wavelength of the peak frequency component of the incident
focussed wave is 3.19m and so there are approximately 36 free-surface elements
per first order wavelength. For the fourth order bound waves of wavelength
0.80m, there are approximately 8 elements per wavelength and for the fourth-
order free-waves (0.26m) only 3 elements per wavelength. The boundary data
(position coordinate, velocity potential) vary quadratically on the elements and
on each triangular element there are 6 nodes. Such a higher order boundary
element method does not require a large density of elements to resolve a given
wave component. Furthermore, immediately around the body where free-waves
will be generated the free-surface is finer with mesh elements at the cylinder
of length 0.033 corresponding to 8 elements per fourth-order free-wave length.
This mesh was considered sufficiently fine to model the nonlinear interaction up
to fourth order. The time-step was chosen to be 0.01s corresponding to 1/160th

of the peak period.
A preliminary validation of the simulation results was possible by comparing

the results of harmonic decomposition of the numerical time-histories to the
diffraction load harmonics measured in the experimental tests (decomposed as
described by [25]). This comparison of the numerical results to the experimental
results is also shown in Figure 3. Apart from the third order sum harmonic the
agreement between the simulations and experimental tests is very good. There
are a number of possible reasons for the large discrepancy between the numerical
and experimental results at third order. Firstly, viscous effects such as drag and
wave-induced vortex shedding may play a role in the higher order harmonics.
If the representative time scale of the interaction is considered to be the peak
period then the Keulegan-Carpenter parameter for the interaction is KC ≃ 1.5.
Therefore, the drag contribution will be significantly smaller than the potential
flow contribution to the total load but may be large enough to affect the higher
harmonic forces such as the third harmonic (large-scale wave-induced vortex
shedding is unlikely to occur for this KC value). Another possible reason for
the discrepancy is the use of the two-phase harmonic separation method for
processing the experimental data – the filtering of the amplitude spectrum may
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not have completely isolated the third order contribution from the first order
contribution. Although the amplitude of the fourth order time-histories do not
agree exactly just after the focus time t = 0, the phase of the oscillations aligns
almost exactly. Therefore, it is concluded that the interaction is simulated
accurately to fourth order.

It is beneficial to explore the drag contribution to the experimental force in
more detail in order to understand the applicability of the model to experimen-
tal diffraction forces. The Morison drag term in a sinusoidal flow field can be
expanded into harmonic components as u|u| ∼ 8

3πa
2(cosϕ+ 1

5 cos 3ϕ). The first
harmonic drag term of order O(a2) is likely to be much smaller than the cor-
responding potential flow force harmonic which is of order O(a); however, the
third harmonic potential flow force is O(a3) and so smaller than O(a2) cos 3ϕ
so that the drag term could contribute. A key point is that the drag force is
proportional to the square of the wave amplitude but features odd harmonics
- this breaks the Stokes’ structure assumed to exist for the harmonic separa-
tion method. If the drag force is relatively large then the method will not be
applicable.

5 Numerical solution – analysis and discussion

The four-phase harmonic separation method summarised by equations (6)–(9)
allows the properties of the solution at the individual separated harmonics – such
as the diffraction force time history and the wave field surrounding the body – to
be investigated in a straightforward manner. To extract the first four harmonics
from the fully nonlinear diffraction force time-history (given four fully nonlinear
time-histories for focussed waves 90◦ out of phase) it is necessary to apply the
Hilbert transform to two of the nonlinear time-histories and to filter equation (6)
as previously described. This procedure requires minimal computational effort.
However, the separation of the harmonics of the nonlinear free-surface through-
out the computational domain is much more computationally intensive as it
necessitates taking the Hilbert transform of the elevation of each node on the
free-surface over a specified duration of time. Given that the free-surface mesh
changes in time, this requires that the elevation of the free-surface nodes at each
output time must be interpolated onto a fixed mesh (e.g. the mesh at the first
time-step). Thereafter, the elevation time-history of each of the nodes on this
fixed mesh must be processed using the Hilbert transform. Once these steps
have been taken the harmonic separation equations may be applied to obtain
the separated harmonics at each instant at which the free-surface elevation is
outputted.

5.1 Harmonic force time-histories

The harmonic separation of the diffraction force time-history has already been
described and discussed (albeit briefly) in § 44.2. However, to put the higher-
order harmonic force time-histories into context it is useful to compare the har-
monics with the powers of the linear harmonic envelope. In [25], it is noted that
the envelope of the first five higher order harmonic contributions in time match
the envelope of the linear force component raised to the appropriate power and
scaled according to the magnitude of the appropriate harmonic. The envelope of
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Figure 4: Force time-histories around the focus time for the (a) second, (b)
third and (c) fourth sum harmonics (black) with the scaled linear envelope to
the appropriate power (grey, dashed) also included.

the linear force component F1 is obtained from FE1 =
√

(F1)2 + (FH1 )2, where
FH1 is the Hilbert transform of the first order force time-history. Therefore, in
obtaining the estimated wave envelope for the third order harmonic the quan-
tity (FE1 )3 must be computed and scaled according to the magnitude of the
third order wave packet. Figure 4 illustrates the harmonic force time-histories
at second, third and fourth order with the (scaled) linear wave envelope to the
appropriate power included for comparison. The envelopes indicate how the
second order sum and fourth order sum harmonics “follow” or are bound to the
linear component.

In contrast, the third harmonic force time-history displays a distinct be-
haviour of its own. The oscillations in the force time history do not follow the
linear envelope raised to the power of three, rather there is a delay relative to the
envelope prediction before significant oscillations occur. Furthermore, the third
harmonic oscillations persist with an amplitude close to the peak amplitude for
a slightly longer time compared to the envelope prediction. This indicates that
some particular interaction mechanisms arise at third order which do not arise
at second or fourth order.

To further examine the properties of the third harmonic force time-history,
the contributions from the third harmonic amplitude spectrum immediately
around that spectrum’s peak (f ≃ 3fp) are separated from the ‘high-frequency’
tail (f > 3.5fp) contributions. These contributions are then compared to the
high-frequency tail component of the second harmonic and the peak fourth
harmonic component, respectively. The second, third and fourth harmonic am-
plitude spectra are all cleanly separated; we are interested in comparing the
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Figure 5: Time-histories for the overlapping contributions from (a) the second
(black) and third harmonic (grey) force amplitude spectra and for the (b) third
(black) and fourth (grey) harmonic force amplitude spectra.

behaviour of the components of the amplitude spectra on the same frequency
ranges. These contributions to the isolated harmonics are extracted using a
simple frequency filter. It must be emphasised that this filter is required only to
examine the properties of the third harmonic – it has not been used in producing
the spectra shown in figure 1 (a) or for the numerical results in figure 3. The
filter is designed to fully pass the spectral contributions in the frequency interval
(2.75fp, 3.25fp) and to linearly ramp the contributions to zero from the 2.75fp
to 2.5fp and from 3.25fp to 3.5fp. It is clear from figure 5 (a) that the high
frequency ‘tail’ of the second harmonic and the peak third harmonic contribu-
tions correspond to forces of a quite different time-dependence. The maximum
force of this component of the third harmonic occurs approximately 1 second
later than the high frequency component of the second harmonic force – this
accounts for the delayed maximum observed in figure 4 (b). It is not clear why
the occurrence of the maximum amplitude is delayed. However, the harmonic
separation method coupled with some frequency filtering has allowed a more
detailed examination of the third harmonic. A similar comparison of the forces
corresponding to the high frequency tail component of the third harmonic and
the peak frequency component of the fourth harmonic for the frequency range
(3.75fp, 4.25fp) (with linearly ramped spectral contributions to either side of
this interval included as before) is shown in figure 5 (b). In this case, the force
time-histories are very similar – the maxima occur at approximately the same
time – but the oscillations of the high-frequency spectral contribution to the
third harmonic force begin slightly later than the oscillations corresponding to
the overlapping fourth harmonic spectral contribution.

Therefore, the force time-history at the third harmonic displays different
properties to those at the second and fourth harmonic. To identify possible
differences between the interactions at each harmonic it is useful consider the
evolution of the wave field around the cylinder at each harmonic. To complement
this decomposition of the free-surface elevation around the body into individual
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harmonics, the first three harmonics of the nonlinear run-up on the cylinder are
also extracted and presented.

5.2 Scattered wave field

To investigate the diffraction processes which yield the particular force time-
histories described above, it is useful to plot the total and diffracted wave-field
during the interaction. To obtain the diffracted wave-field pattern from the
numerical simulations it is necessary to simulate both the diffraction problem
with the cylinder present and the incident wave-propagation problem in the
absence of the cylinder. The incident wave field is obtained using simulations
involving a narrow numerical wave tank (comprising a free-surface two elements
wide) thus avoiding long computational times. The free-surface elevation on the
centre line is used to determine the 2D wave field. Given that the free-surface
meshes for the propagation and diffraction are different, the incident wave field
must first be interpolated onto the (initial) free-surface mesh from the diffraction
problem before subtracting the incident field from the total field to yield the
diffracted wave-field. This process is repeated for the first three harmonics only.
To obtain the fourth order diffracted wave field it is necessary to filter the free-
surface elevation time-history obtained from equation (9) to extract the sum
frequency term for every node on the free-surface. Such a process would be
quite time consuming and computationally demanding and so only the second
and third harmonic wave-fields were considered.

The features of the linear, second and third order harmonic wave-fields are
highlighted by plotting sequences of contour plots for the free-surface elevations
around the cylinder as shown in figures 6, 7 and 8, respectively. In these figures,
the upper half of the plots illustrates the contours of the total wave-field and
the lower half illustrates the contours of the diffracted wave-field. Although
the computational domain has a half-width of 1.5m and length approximately
ten times the half-width, only a reduced square sub-domain in the immediate
vicinity of the cylinder is plotted for each harmonic (with the sub-domain extent
smaller for the higher harmonics) in order to emphasise the local wave field
structure. The free-surface at different instants around the focus time t =
0.0s with time-increment being larger for the linear harmonic free-surface plots
(∆t = 0.20s) than for the corresponding second and third harmonic plots. To
put these time-steps in context it is reiterated that the peak period for the
incident focussed waves is 1.64s.

A cursory inspection of the contour plots reveals that the diffracted com-
ponents of the free-surface elevation at second and third order are significantly
larger (relative to the incident component of the free-surface) and more com-
plex in form than for the linear harmonic. For the linear component of the
interaction, the peak incident wavelength λ1 ≃ 3.2m is much larger than the
cylinder dimensions (diameter D = 0.25m) so that the diffracted wave field
is relatively small and exhibits no remarkable properties beyond alternating
positive and negative diffracted wave run-up at the front and rear face of the
cylinder. The dominance of the incident wave implies the first harmonic can
be well approximated by the Morison inertia force. However, the peak second
order bound incident wavelength is half that of the first order wave λ2 ≃ 1.6m
so the diffracted wave field and incident wave field are of similar order, as is
clear from figure 7. The same argument applies for the third harmonic com-
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Figure 6: Contour plots of the first harmonic of the free-surface elevation for
the total wave field (y > 0) and for the diffracted wave field (y < 0) for nine
time instants at increments of ∆t = 0.2s.

ponent of the free-surface. In fact, for the third harmonic the local diffracted
wave-field is significantly larger than the incident wave component as is clear
from figure 8 (it may be recalled that the upper figures show the sum of inci-
dent and diffracted waves). The local structure of the free-surface immediately
surrounding the cylinder for the second and third harmonics features distinct
diffraction patterns which show the generation of free-waves which propagate
laterally outwards from the cylinder. The structure of the diffracted wave is
quite different in each case.

In the contour plots for the second (sum) harmonic component of the free-
surface elevation shown in figure 7, there is a clear diffracted wave component
detaching from the cylinder and radiating outwards in the approximate direction
θ = ±π/2 radians (θ = 0 corresponds to the direction of incident wave propaga-
tion). A large diffracted wave is also reflected back towards the wavemaker and
spreads into a large arc some of which is evident in the contour plot at t = 0.2s
and t = 0.3s. This wave arises due to the large run-up and local free-surface
distortion that occurs at the front of the cylinder due to the presence of the
cylinder. A small wave is also radiated from the downstream stagnation point
but is not as significant as either the radiated wave travelling upstream or the
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Figure 7: Contour plots of the second harmonic of the free-surface elevation for
the total wave field (y > 0) and for the diffracted wave field (y < 0) for nine
time instants at increments of ∆t = 0.1s.

radiated wave detaching from the side of the cylinder.
A comparison of figure 8 to figure 6 shows how the local third harmonic

diffracted wave-field is much more significant than the third harmonic incident
wave field in contrast to the dominance of the incident wave field at first or-
der. (Nonetheless, in absolute terms the third order diffracted wave amplitude
is smaller than that of the first order diffracted wave amplitude.) Furthermore,
the free-surface variations at third order are of much more spatially compact
than at first order which is why the contour plots are shown over a smaller
region than the contour plots of the former. The most striking aspect of the
third order diffracted wave field is the lateral radiation of two different wave
disturbances from each side of the cylinder – as opposed to the single wave dis-
turbance radiated at second order. On the downstream side of the cylinder, a
wave disturbance detaches from the cylinder and radiates outwards at an angle
approximately equal to θ = ±π/3. On the upstream side of the cylinder wave
diffraction occurs through the radiation of a free wave in the direction θ ≃ 2π/3.
Wave scattering from the upstream stagnation point is also visible although the
wave amplitude is smaller than in the second harmonic case. The evolution
of the upstream diffracted wave-field and, in particular, the final three snap-
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Figure 8: Contour plots of the third harmonic of the free-surface elevation for
the total wave field (y > 0) and for the diffracted wave field (y < 0) for nine
time instants at increments of ∆t = 0.05s.

shots in figure 8 bear some resemblance to the scattered waves reported by [22].
The high-frequency scattered waves documented in that paper were observed
for cylinder diameter-to-wavelength ratios similar to the case considered here.
However, rather than focussed waves, steep regular incident waves were exam-
ined in most detail in that paper. The generation of the free-waves at the two
lateral points (as opposed to the front and rear of the cylinder) on the cylinder
circumference may have an influence on the third harmonic force time-history
and its divergence from the first order envelope prediction. The distance be-
tween a successive positive and negative radiated disturbance is a little greater
than 0.2m and this half-wavelength is approximately equal to the peak wave-
length of the third harmonic free-waves computed to be 0.46m. It should be
noted that this wave diffraction pattern persists well beyond the time-interval
illustrated in figure 8 and is visible past t = 1.0s.

5.3 Wave run-up on cylinder

The fully nonlinear wave run-up on the cylinder is also decomposed into its
constituent harmonics. Rather than considering the total run-up, however, the
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run-up due to diffraction only is considered. The time-history of the first three
harmonics of the wave run-up on the cylinder is represented through the (t, θ)
surfaces illustrated in figure 9 (a) and (b) and figure 10. The first harmonic
of the diffracted wave run-up on the cylinder is shown in figure 9(a) and the
presence of the cylinder induces an alternating magnification and reduction of
the free-surface elevation at the upstream and downstream face of the cylinder,
respectively. Thus, for t ≃ −0.4s the diffracted wave yields a significant increase
in the run-up on the cylinder around the front stagnation point (θ = 180◦) while
simultaneously yielding significant decrease in the run-up around the rear stag-
nation point (θ = 0◦). (The increase and decrease is relative to the incident wave
free-surface elevation at the cylinder.) No significant diffracted wave run-up is
observed at the cylinder ‘shoulder’, i.e. at θ = 90◦. This behaviour is consistent
with the flow-field contour plots in figure 6 and, more importantly, with the
nonlinear wave slender body theory described by [11] generalised for irregular
waves by [21]. In this case, the first harmonic component of the diffracted wave
elevation at the cylinder is given by

ζ1(a, θ, t) = A cosωt+ 2k0Aa cos θ sin(ω0t) (10)

where the narrow-banded approximation is assumed so that the incident wave
amplitude A is the slowly varying linear focussed wave envelope A(t) and ω0

is the peak angular frequency with associated peak wavenumber k0. The free-
surface elevation at the cylinder as computed by this slender body approxima-
tion is shown in figure 9 (c) and it compares very well to the first harmonic of
the nonlinear potential flow results.

A similar comparison is made for the second harmonic component of the
diffracted run-up. First, it should be noted that the presence of a large diffracted
wave disturbance at the shoulder of the cylinder in the fully nonlinear model
computations of wave run-up (see figure 9 (b)) is consistent with the second
harmonic local flow field shown in figure 7. Furthermore, the perturbation
analysis of [11] (‘FNV’ theory) can be used to obtain second harmonic free-
surface elevation to O(A2):

ζ2(a, θ, t) = k0A
2(cos 2θ − 1/2) cos(2ω0t)/2 + k0A

2a cos(θ) sin(2ω0t) (11)

where ζ2 is evaluated on the cylinder r = a and the narrow banded approxima-
tion as been applied in the same manner as for equation (10). The FNV theory
prediction for the second harmonic component of the diffracted wave run-up
shown captures, qualitatively at least, much of the run-up behaviour present in
the fully nonlinear computational results as can be seen from a comparison of
figure 9 (d) to figure 9 (b). In particular, the large free-surface oscillations at
θ = 90◦ are present in the FNV theory in addition to some small oscillations
at the downstream stagnation point. However, the significant run-up occurring
at the upstream face of the cylinder is not present in the FNV run-up predic-
tion. Furthermore, the FNV theory yields a significantly smaller amplitude for
the second harmonic run-up as can be seen from the elevation scales in each
case. These differences between the theory and the fully nonlinear results arise
because the cylinder does not satisfy the slender body assumption ka ≪ 1,
assumed to hold for all harmonics, at the second harmonic. For the first har-
monic, the wavenumber of the peak incident wave component corresponds to
a slenderness parameter ka ≃ 0.25 so the cylinder is approximately slender.
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Figure 9: Variation of the diffracted run-up on the cylinder with time and with
angular displacement from the incident wave heading (θ = 0◦) as computed by
the numerical model for (a) the first harmonic and (b) the second harmonic
and from the FNV approximation for (c) the first harmonic and (d) the second
harmonic.

However, for the second harmonic the bound (peak) incident wavelength is such
that ka ≃ 0.5 and thus the cylinder dimensions are effectively larger and the
slender body theory is less applicable. Therefore, it might be expected that a
larger wave run-up would occur at the front of the cylinder in the fully nonlinear
solution than that predicted by the FNV theory.

The behaviour of the third order harmonic component of the diffracted wave
run-up, shown in figure 10 (b), is not compared to the FNV theory for two rea-
sons. Firstly, an explicit third order perturbation expression is not presented
by [11] for the free-surface elevation. Secondly, although it is possible to obtain
such an expression, the assumptions behind the theory will be violated at the
third harmonic and even qualitative agreement with the full solution is unlikely.
Nevertheless, the diffracted wave run-up at third harmonic exhibits a behaviour
consistent with the corresponding local diffracted wave field plots in figure 8.
That is, the run-up is minimal at the shoulder and maximal at approximately
θ = π/3 and θ = 2π/3. These diffracted wave disturbances are also clear in
figure 8 where radiation of these disturbances occurs periodically. An impor-
tant distinction between the second and third order diffracted wave run-up is
that at third order the run-up pattern is not symmetric around the focus time
– it is significant for t ≥ −0.75s until t ≤ 1.5s – whereas the second harmonic
component is approximately symmetric in time. Such behaviour confirms the

21



Figure 10: Variation of the third harmonic component of diffracted wave run-up
on the cylinder in time and with angular displacement from the incident wave
heading (θ = 0◦).

observations of the second and third harmonic force time-histories. The tem-
poral structure of the third harmonic wave elevation and force appears quite
different to that of the second harmonic (and fourth harmonic for the force as
is evident in figure 4). This suggests that the local dynamics (which may give
rise to the free wave structure around the cylinder circumference) are differ-
ent at the third harmonic. The occurrence of local dynamics particular to the
third harmonic may also explain the apparent dual nature of the third harmonic
force, i.e. the different properties of the two third harmonic force components
illustrated in figure 5. A different treatment of the third order contributions
to the force on a slender cylinder in nonlinear waves compared to the first and
second order is required in the FNV analysis. Thus, the introduction of the
third order nonlinear potential Ψ in this analysis of the solution in the inner
domain suggests that new sources of nonlinear dynamics arise beyond second
order. Nevertheless, the fourth harmonic force time-history appears consistent
with that of second harmonic.

6 Conclusion

A generalisation of the phase-based separation method for fully nonlinear free-
surface elevation or hydrodynamic forces, utilised previously by [17] among oth-
ers, has been presented here. The effectiveness of this method, which requires
four time-histories obtained during interactions involving four focussed waves
90◦ out of phase, has been demonstrated for the case of a JONSWAP NewWave
incident on a single cylinder. The particular case considered utilised a fully non-
linear potential flow code to generate the time-histories; however, the method is
applicable to both numerical and experimental investigations. In the latter case,
the method requires the wave steepnesses to be at most moderate and viscous
drag effects to be small. Separation of the first four superharmonics and the sec-
ond order subharmonic can be achieved with simple linear combinations of the
time-histories. In experimental studies where focussed wave group simulations
are extremely short in duration, minimal extra effort is needed to generate four
time-histories rather than one time history for a given wave. Therefore, this
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method is considered to be very useful for experimental investigations involving
focussed waves based on typical energy spectra (e.g. JONSWAP, Bretschneider)
where higher order nonlinear contributions are of interest. The method is not
specific to the wave packet considered here and does not require the spectrum
to be narrow banded.

A particular advantage to using the generalised four-phase harmonic sepa-
ration method is that only a trivial frequency filter is necessary to isolate the
second order difference harmonic and fourth order sum harmonic. The first,
second and third sum harmonics are obtained directly from the linear combina-
tions of the four force time-histories (each π/2 out of phase) and the two Hilbert
transform time histories. In contrast, careful filtering of the odd and even har-
monic force time-histories is necessary in the two-phase harmonic separation
method where spectral ‘leakage’ between harmonics can occur. This is particu-
larly problematic when isolating the third harmonic in the two-phase approach
due to the disparate magnitudes of the first and third harmonics wherein the
high-frequency tail of the first harmonic spectrum overlaps and has a similar
order of magnitude to the third harmonic spectral peak. For investigations into
the phenomenon of ringing the third order sum frequency can often be the most
important higher order term and thus isolating the contribution effectively is
important.

The structure of the wave-fields and the wave run-up at each of the first
three harmonics (linear, second order sum, third order sum) was also inves-
tigated through contour plots of the corresponding free-surface elevations ob-
tained from the linear combinations in the four-phase harmmonic separation
method. Free wave radiation from the cylinder in one predominant direction
was observed in the second harmonic of the diffracted wave-field. Similar be-
haviour was noted by [5] in a second order analysis of wave diffraction by a
cylinder. The fully nonlinear simulation results allow us to analyse the third
harmonic of the diffracted wave-field also. For this third harmonic, two different
wave disturbances were observed to radiate from points on the circumference
of the cylinder located at θ = π/4 (leading to lateral wave radiation in the
downstream direction) and θ = 3π/4 (leading to lateral wave radiation in the
upstream direction). Furthermore, qualitative agreement was observed between
the fully nonlinear computational results for the diffracted wave run-up and
run-up predictions from an analytical nonlinear wave slender body theory.
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