

Citation for published version: Sun, L, Zang, J, Eatock Taylor, R, Taylor, P & Choo, YS 2014, 'Numerical analysis of Wave-structure Interactions Using Potential-flow Solver' The 1st Partnership for Research in Marine Renewable Energy (PRIMaRE) annual conference, Plymouth, UK United Kingdom, 4/06/14 - 5/06/14, .

Publication date: 2014

Document Version Early version, also known as pre-print

Link to publication

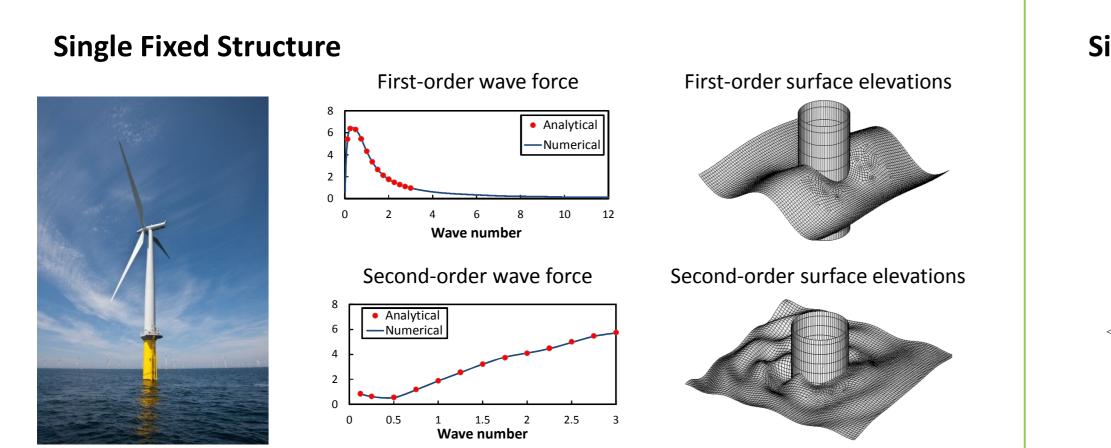
University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Numerical analysis of Wave-structure Interactions **Using Potential-flow Solver**


Liang Sun¹, Jun Zang¹, Rodney Eatock Taylor^{2,3}, Paul H. Taylor^{2,3}, Yoo Sang Choo³

¹ University of Bath, ² University of Oxford, ³ National University of Singapore

Introduction

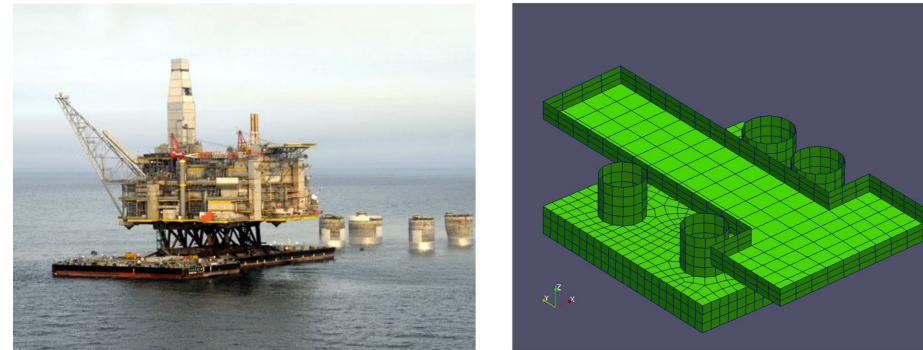
A potential-flow solver DIFFRACT* written in FORTRAN has been used to analyse the interactions between waves and 3D structures in frequency domain. The program is based on higher-order Boundary Element Method. Meshes generated by some commercial and free pre-processors (e.g. GAMBIT and SALOME) can be imported into the potential-flow solver to carry out hydrodynamic analysis.

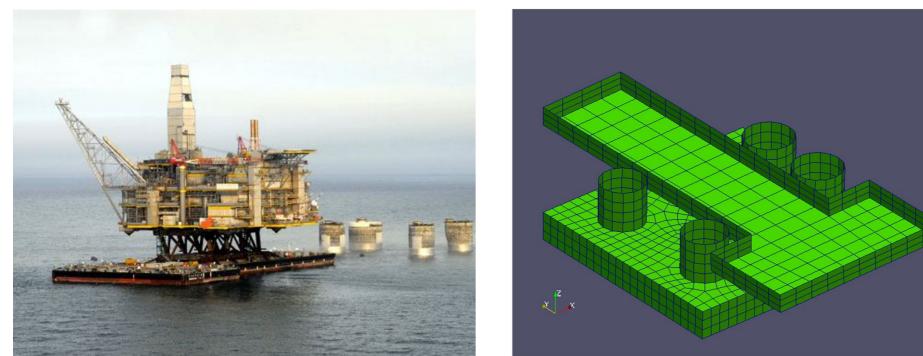
Validation and Applications

Single Floating Structure

Second-order horizontal force				
Vave number	Kim and Yue	Present		
1.2	1.067	1.102		

Numerical results of the first- and second-order forces on uniform cylinder have been validated by comparing with analytical solutions and good agreements have been obtained. Surface elevations around structure can also be predicted.


Multiple Floating Structures



Violent surface behaviour in the gap

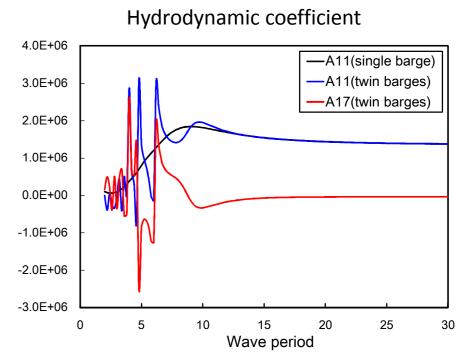

In the interactions between waves and multiple floating structures with small gap, violent local surface elevations have been found in the gap at some special frequencies, which are closely related to the peak values of wave forces and motions of floating structures.

Multiple Fixed/Floating Structures

1.6	0.778	0.811
2.0	0.829	0.860

Present

2.335


1.388

1.917

Second-order vertical force Kim and Yue Wave number 1.2 2.338 1.6 1.383 2.0 1.918

To predict the second-order forces on floating structure, the contribution from the first-order motions has to be considered. Satisfying agreements have been achieved in the comparisons with other published numerical results.

Hydrodynamic characteristics (including hydrodynamic coefficients and wave excitation forces) of multiple floating bodies may change dramatically comparing with those of single structure.

Interconnected Floating Structures

Large dimensional substructures have significant effects on the motions of installation barge during float-over installation.

±45 degree		
	-	
୍ୱ 90 degree		

Both hydrodynamic interactions and mechanical connections in interconnected multiple floating structures can be considered in a two-stage approach which offers great flexibility for systems that have complex constraints or where the linking components require optimization.

Concluding Remarks

Numerical results from potential-flow solver DIFFRACT* have been validated by comparing with analytical solutions and other published results Hydrodynamic/dynamic interactions have to be considered to provide accurate predictions in the interactions between waves and multiple structures Extensive wave-structure interactions in offshore engineering can be investigated using present potential-flow solver DIFFRACT* \succ

^{*} http://www.mendeley.com/groups/2020743/4diffract/papers/