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Summary  
The transmission line method (TLM) is a very efficient method for dynamic 

modelling of flow in pipelines, and uses delay elements to represent wave 

propagation. In this paper an existing TLM model is investigated and shown to have 

some deficiencies. An alternative technique is introduced to enhance the transient and 

steady state accuracy. Extremely good agreement is obtained between this new TLM 

and an analytical model. The model has been implemented in simulation of a number 

of highly dynamic systems, and has been found to be robust and reliable. 

 

1. Introduction 
Several techniques for dynamic modelling of flow and pressure of liquids in 

pipelines are available, ranging from simple lumped element methods (LEM) [1], to 

the Method of Characteristics (MOC) [2,3], the finite element method (FEM) [4], 

various modal approximation (MA) methods [5, 6], and the Transmission Line 

Method (TLM) [7, 8, 9, 10].  The TLM has been shown to be a very effective method 

for modelling unsteady flow and pressure in pipelines. It can model sudden transients, 

such as those caused by sudden closure of a valve, clearly and precisely, retaining the 

sharp wavefronts without the unrealistic oscillations or excessive smoothing that may 

occur with other methods such as the FEM or LEM. The modal frequencies of the 

pipeline can be captured accurately up to a very high frequency. Frequency dependent 
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friction can be included. TLM models can be incorporated easily into system models, 

and are compatible with variable timestep solvers. Furthermore TLM models are 

ideally suited to parallel computation because of the delays introduced between the 

pipe ends [11, 12]. 

There are some limitations to the TLM, however. It is effectively a linearized 

model and so the fluid properties need to be assumed to be independent of pressure, 

flowrate and position. For this reason cavitation and air release cannot be modelled 

easily, although an approximate method can be used where these effects are assumed 

to occur within lumped compressible volumes at the pipe ends.  

For most fluid system modelling scenarios, the important features of excitation 

and transient responses tend to be over a fairly low frequency range, and high fidelity 

up to a very high bandwidth is not necessary. Simpler pipeline models such as lumped 

element models can be used. However in some situations rapid dynamics, high 

bandwidth and high fidelity are necessary. Examples might include anti-lock braking 

systems, fuel injection systems, and fast-switching ‘digital’ hydraulic systems [13, 

14]. 

A TLM model was presented by Johnston [10]. In this model some of the 

deficiencies of previous TLM models were addressed, particularly with respect to 

frequency-dependent friction. However it still had some inherent inaccuracies. An 

improved, alternative method is presented in this paper. The inaccuracies in the 

previous model are explained, the new model is developed and the parameter 

optimization technique is explained, and some results from the model are compared 

with analytical results. 
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2. Analytical model and block diagram representation 
Flow and pressure in a pipeline can be represented by the transmission matrix 

[15], shown in non-dimensional form in equation (1). 
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This assumes that the properties are independent of pressure, temperature and position 

along the length of pipe. N is a frequency dependent function that depends on the type 

of friction model that is used. A commonly used expression is based on the “two-

dimensional viscous compressible” model [16] in which the effects of frequency-

dependent radial variations in velocity are included but thermal effects are neglected. 

This model is generally suitable for liquid flow in small diameter lines ( r ), and 

is given by equations (3)-(5). 
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where jjz   (4) 

  is the non-dimensional frequency, 





2r
  (5) 

Equations (1) to (5) can be implemented readily in the frequency domain. 

However they are more difficult to transform to and implement in the time domain 

and approximations are generally needed. The TLM is a method to approximate these 

equations in the time domain. 

The TLM model must satisfy several requirements and model the following 

effects correctly: 
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 Steady state pressure drop; 

 Capacitance and inertance; 

 Mass or flow continuity; 

 Wave delay, decay and dispersion. 

In the absence of friction ( 1N ), the TLM is extremely simple and can be 

implemented using delays and algebraic equations. When friction is included, it 

becomes more complicated and approximations are needed, largely because N  is 

complex and frequency dependent. Krus et al [8] and Johnston [9, 10] represented the 

equations by a block diagram similar to that shown in figure 1, where 

111 QZCP C  (6) 

222 QZCP C  (7) 

 

 

Figure 1  Block diagram for transmission line model [8] 

 

The transmission matrix terms for the block diagram shown in figure 1 can be 

determined by setting different boundary conditions. By setting P2 to zero the 

relationship between P1 and Q2 gives 
*

12t , and the relationship between Q1 and Q2 
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gives
*

22t . Similarly by setting Q2 to zero, 
*

11t  and 
*

21t  can be found. Consequently the 

transmission matrix terms are given by equations (8) – (11). 
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The block diagram in figure 1 is an exact representation of the analytical 

transmission matrix, equation (1), if the terms are as follows [8]. 

 1 NZE C  (12) 

NZF C  (13) 

 1 NTjeG 
  (14) 

3. Previous Transmission Line Model  
Krus et al. [8] derived a model which was enhanced by Johnston [10] to include 

frequency-dependent friction, using equations (15) – (20). 
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  is the dissipation number, 
22 r

T

cr

L 
   . (19) 

κ is an empirical coefficient, 25.1 . (20) 

The characteristic impedance CZ  was adjusted using the correction in parentheses 

in equation (16) to compensate for the effect of the frequency-dependent friction on 

the effective capacitance. 

Johnston [10] showed that this model gave reasonably accurate results in response 

to a step change in pressure or flow, but gave a slight overestimate of the magnitude 

of the pressure pulsation immediately following a step change in flow and a small 

error in the shape of the pulsations. The decay of the pulsations was predicted very 

well. 

To determine the reasons for the inaccuracies in the basic TLM results, the 

transmission matrix obtained using the approximate equations in the frequency 

domain was investigated. Figure 2 shows the analytical (equations (1) – (5)) and 

approximated (equations (8) – (11) and (15) – (20)) transmission matrices, for two 

different dissipation numbers, 01.0  and 0.1. The agreement is reasonably good 

but there are noticeable differences. 
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Figure 2 Transmission Matrix for previous TLM model 
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3. New Transmission Line Method 
 

Because of the inaccuracies in the previous TLM, an alternative configuration was 

investigated in which  jE  and  jG  are represented using separate weighting 

functions, equations (21) and (22).  
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 jF  is scaled from  jE  in order to maintain the correct steady state pressure 

drop, according to the constraint given by equation (23) [8, 10]  
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This constraint is satisfied by equations (24) and (25). 
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Other weighting series were tried for  jF , and the most general was given by 

equation (26), with an independent set of weights Fim .  
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However this required extra optimisation effort, an extra table of weights, and 

extra computation. The approach given by equations  (24) and (25) was found to give 

no significant loss of accuracy, and was more efficient and convenient. 

Best results were obtained by also adjusting the time delay T   by a factor   as in 

equation (27).  
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2.1 Optimisation  

The weighting functions were optimised to minimise the error between the 

analytical equations and the TLM model. The success of this was strongly dependent 

on the object function to be minimised, and on the optimisation parameter set. The 

optimisation parameter vector was [𝑚𝐸1 … 𝑚𝐸𝑘 𝑚𝐺1 … 𝑚𝐺𝑘 𝜏], and the parameters 

were limited to positive values. It was found to be difficult to obtain reliable results if 

the in  terms were included as optimisation parameters, so these were set manually. 

The success of the optimisation was strongly dependent on the values of in . The 

following series was found to give good results.  

31

3.0
1


n , ii nn 31   (28) 

Several approaches were considered, including: 

1. Optimising the response in the time domain for simple boundary 

conditions; 

2. Optimising the weighting functions  jE ,  jF  and  jG  

(equations 21, 22, 24, 25) to their analytical counterparts (equations 12-14) 

in the frequency domain.  

3. Optimising the transmission matrix terms in the frequency domain; 

Approach (1) was rejected because it would be extremely computationally 

intensive and may be subject to numerical integration errors. Approach (2) was found 

to give good agreement between the weighting functions and their analytical 

counterparts, but gave less reliable overall results with steady state errors. Most 

success was obtained by approach (3), minimising the error in the transmission matrix 
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terms in the frequency domain. In doing so, the weighting between the transmission 

matrix terms, and the frequency range and weighting, needed to be selected carefully 

in order to emphasise the important features of the transmission matrix. It was also 

necessary to ensure that the object function was sensitive to all of the parameters 

being optimised in order to provide clearly defined minima and good convergence. 

The object function given by equations (29)-(31) was found to give good results. It 

was designed to emphasize the low frequency accuracy of the  12t  and  21t  

terms. It was found not to be beneficial to include  11t  or  22t  in the object 

function. 
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Here  12t  and  21t represent theoretical values (equations 1-5), and  *

12
t  

and  *

21
t  modelled values (using equations 8-11 and 15-20), at frequency  . The 

summation in equation (28) was done for frequency points spaced in a geometric 

series with 50 points per decade, for knT 01.0 . The additional error terms 
E

  

and 
G

  are included to act as ‘soft’ constraints, and are zero if the constraints are not 

violated but increase according to the amount by which the constraints are violated. 

E
  limits the 3rd – 7th terms in the 𝑚𝐸𝑖 series to a maximum of three times the 

previous term, to avoid excessive higher order terms and smooth the variation in the  

𝑚𝐸𝑖 series. 
G

  limits the sum of the terms in the  𝑚𝐺𝑖 series to a maximum of 1. This 
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ensures that the output of the G filter is of the same sign as the input during a rapid 

transient. Without this constraint, a step input may result in very short duration, 

unphysical spikes in the response. Similar spikes were observed by Johnston [10], 

specifically in figure 4 of that paper. 

The optimization was done separately for numbers of terms k from 3 to 7, and for 

values of   from 
610 

 to 1 with 8 steps per decade. 

The optimisation was done using a simple Newton-Raphson approach. There may 

be several local minima and this approach may not find the global minimum, but this 

is not necessarily a problem provided that a sufficiently good approximation is 

obtained. However in most cases the results were found to be independent of the 

starting conditions for the iterations, which suggests that there may be a single 

minimum for the object function and no other local minima. The exception to this was 

for β > 0.1 where different solutions were obtained for different starting values. In 

these cases the converged weighting values were used as the starting point for the 

iteration at the next value of β, in order to try to obtain a reasonably smooth and 

gradual variation of values with β. A smooth, gradual variation helps to improve the 

accuracy of the model when interpolation is used to obtain the weighting terms for 

other values of β. 

2.2 Optimisation results 

The coefficients for k = 6 are listed in appendix 2, tables 3-4. Analytical and 

approximated transmission matrices are shown in figure 3 for two examples,   = 

0.01 and 0.1, using six terms (k = 6). The agreement is extremely good and the 

analytical and approximate lines overlay each other closely. The optimisation was less 

successful for 5.0 .  
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Figure 3  Transmission matrix for new TLM 
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Figure 4 Error in transfer matrix (vertical lines are at 
k

nT   which is 

the upper limit of the optimization band) 

Figure 4 shows the error ε, which is defined by equation (32).  
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Linear interpolation can be used to obtain the weighting values for values of  

between the optimised values. As the weighting functions are approximately 

proportional to  , the accuracy was found to be very slightly improved if the 

interpolation is done relative to  . For 
610  the parameters 𝑚𝐸𝑖 and 𝑚𝐺𝑖  can 

be scaled proportionally to   with sufficient accuracy.   

The weighting functions are shown in figure 5 for  = 0.01 and 0.1. Over this 

frequency range there are clear differences between the theoretical and approximate 

terms, particularly for the phase of E  and F. The accuracy of the individual terms is 

less good than that of the overall transmission matrix, but that is not necessarily a 

problem as they are only internal components of the model. 
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Figure 5  Weighting functions for new TLM  
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3.2  Time domain results 

The results were compared with step response solutions obtained using an inverse 

discrete Fourier transform of the transmission matrix [4]. In this paper, this is called 

the ‘analytical’ solution, although strictly speaking there are some very small errors in 

this approach, caused by: 

 Truncation of the harmonic series. Provided that sufficient harmonics are 

taken, this should be negligible. 

 Discrete harmonic points. In effect the excitation is a squarewave, that is, a 

series of steps and not a single step. It is necessary that the time between 

subsequent steps is long enough for the transient to decay to negligible 

levels before the next transient occur. If not, the transient response will be 

distorted. This is most likely to be a problem for low damping levels where 

the decay time is long.  

These conditions can be satisfied by using a very large number of frequency points. In 

the cases presented here 
182  points were found to be sufficient. 

Figure 6 shows predicted pressure responses, for a step change in flow at the 

upstream end and a fixed pressure at the downstream end, for different numbers of 

terms k. The accuracy deteriorates as the number of terms k is reduced. For six and 

seven terms, the response is indistinguishable from the analytical result. In all cases 

the correct steady state pressure drop is predicted. 
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Figure 6  Pressure response to a step change in upstream flow with a 

fixed downstream pressure, for different numbers of terms, 01.0 . 

Upper plot shows the early part of the transient, lower plot shows a 

small part of the decaying oscillation 

Little improvement was obtained by using more than six terms, and subsequent 

results are shown using six terms.  

Predicted step responses are shown in figure 7, for a step change in flow at the 

upstream end and a fixed pressure at the downstream end. The agreement with the 

analytical response is extremely good (the lines overlay each other), and the correct 

steady state pressure drop is predicted. 
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(a) 01.0  

 

(b) 1.0  
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(c) 5.0  

Figure 7  Response to a step change in upstream flow with a fixed 

downstream pressure  

 

Figure 8 shows a comparison between the normalized initial pressure peaks 

following a flow step for a range of values of  , for similar conditions to figure 5. 

The axes are normalized such that the analytical curve is independent of   and 

identical to that of an anechoic line until the point at which the downward step occurs 

due to the first reflection. It can be seen that the magnitude and shape of the TLM 

model predictions match the analytical curve very closely, to within 1% at all times. 

In all cases the agreement is better than for the previous model [10].  
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Figure 8  Pressure response to a step change in flow (comparison with 

analytical response of a very long or anechoic line) 

 

Figure 9 shows the normalized predicted pressure for a closed-ended line with a 

smooth sinusoidal pulse of flow at one end of period 5
T

t . A smooth pulse was 

used so that the steady state pressure rise could be seen more clearly without being 

swamped by high frequency pulsations. The steady state pressure and the shape of the 

transient are captured very accurately and are almost indistinguishable from the 

analytical responses.  
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Figure 9  Predicted pressure (non-dimensionalised) for a flow pulse at 

one end with the other end blocked   
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Figure 10  Predicted flowrate  (non-dimensionalised) in response to a 

step change in pressure, with a fixed pressure at the other end 

 

Figure 10 shows the response to a step change in upstream pressure p , with a 

constant downstream pressure. The response of the new model agrees extremely well 

with the analytical response. The steady state flowrate is predicted very accurately in 

both cases. 

4. Experimental Results 
The TLM has been used to model a ‘switched reactance’ hydraulic system [14, 

17] and simulation results have been compared with experimental measurements. 
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The test rig is shown in figure 11. The proportional valve was a Parker Hannifin 

DFplus D1FP. In the results shown here, pulsations were generated by switching the 

valve between 21% opening and 38% opening using a 5 Hz square wave. This was a 

simplified mode of operation which was done for development of the test rig and 

system model; to operate as a ‘switched reactance’ system two supply lines are 

needed [14, 17]. Simulation and experimental parameters are listed in table 1. More 

details are given in [17].  

Table 1 Parameters for the simulations and experiments 

Density  ρ 870 kg/m3 

Viscosity  υ 32 cSt 

Switching frequency  5 Hz 

Inertance tube length  7.9 m 

Inertance tube diameter  7 mm 

Speed of sound c 1293 m/s 

Oil temperature  40 °C 

Supply pressure  55 bar 

Valve pressure/flow characteristic 18 L/min at 10 bar pressure drop,  

100% opening 

Mean flowrate 7 L/min 

Downstream pressure 46.6 bar 

 

The shock suppressor downstream of the tube was modelled as a capacitance of 

0.01L/bar, which resulted in an effectively constant downstream pressure. The 

measured valve spool position was used in the simulation. Experimental and 

simulated results are shown in figure 12, showing the measured valve spool position 

and the pressures measured upstream of the 4.8m tube and midstream between the 

4.8m and 3.1m tubes. Agreement between measured and simulated pressures is good. 

For the mid-stream pressure, figure 12(c), the decaying pulsations due to wave effects 

can clearly be seen in the experimental and simulated results. The amplitude, decay 

rate and shape of the pulsations in the mid-stream pressure are predicted quite well. 
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The speed of sound was tuned to give the best agreement as it depends on the 

effective adiabatic tangent bulk modulus, which in practice is difficult to determine by 

measurement or from manufacturer’s data. It might be possible to improve the 

agreement slightly by tuning the viscosity as well.  

 The TLM model proved to be very effective in this situation and enabled an 

efficient and robust system model.  

 

 

(a) Valve spool position 

 

(b) Upstream pressure 
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(c) Mid-stream pressure 

Figure 12 Experimental and simulated pressures 

 

5. Discussion 
In a previous paper [10], a TLM model was proposed. The model has been found 

to give errors in the effective inertance, in the step response amplitude and shape, and 

in the frequency response.  

A new TLM model has been proposed in this paper. This is shown to be 

significantly more accurate than the previous model. However it has some slight 

disadvantages. Firstly it may require a larger number of weighting functions than the 

previous model, although this depends on the required bandwidth. Secondly, the 

weighting values depend on the damping constant   so lookup tables are needed, 

whereas in the basic model the same weighting values could be used regardless of the 

value of . In many situations the previous model may be sufficiently accurate. A 

summary and comparison of the two models is given in table 2. 

 

Table 2  Summary of models 

 Previous TLM 

(Johnston [10]) 

New TLM 

Accuracy and 

bandwidth 

Reasonably good accuracy but some 

error in magnitude and shape of 

Very good accuracy from 
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transient. Unlimited bandwidth, 

dependent on number of terms k.  
steady state up to k

nT 

. This depends on number 

of terms k.  

Number of state 

variables 
14 state variables if 4k . 

Generally (2* k + 2) state variables. 
24 state variables if 6k . 

Generally 4* k state 

variables.  

Stability Good provided that suitable 

numerical solver is used, and that 

modified G terms (model 2 or 3) are 

implemented. Model 1 for G may be 

inherently unstable at high damping 

levels. 

Good, provided that 

suitable numerical solver 

is used. 

Suitability Use when high accuracy not 

essential. 

Use when high accuracy is 

needed, at the expense of 

slightly more complexity. 

Range of   Reasonably good results for 

3.00    
Very good results for 

5.00    

 

Comparison of the computational speed of the two models is difficult because it 

depends on many factors including boundary conditions, excitation bandwidth, 

required bandwidth, number of terms k, method of implementation and numerical 

solver type. Using Matlab Simulink, the new model has been found to take between 

one and two times longer to run than the previous model in most cases, provided that 

the numerical solver and the number of terms k are chosen appropriately in both 

models. 

The parameters in the model have been optimized for 110 6   , although the 

accuracy deteriorates severely for 5.0 . For 610  the parameters 𝑚𝐸𝑖 and 𝑚𝐺𝑖  

can be scaled proportionally to   with sufficient accuracy.  However for   less 

than about 
410 
, the effect of friction in the pipeline may be unimportant and 

damping in adjoining components is likely to be more significant. A very simple 

undamped model may be adequate in this situation. 

The model may not be suitable for 5.0 , which may occur for very long lines 

with small diameter and high viscosity. Wave effects may not be important for these 
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very high damping conditions, and simpler lumped parameter models may be used. 

Alternatively multiple TLM models can be connected in series to represent very high 

values of  .  

The number of weighting terms k can be set according to the required accuracy 

and the bandwidth of the pressure and flow pulsations. For the step responses 

considered in this paper, where the pulsation frequency and shape is governed by the 

pipeline length and damping, five or six terms is generally enough and little or no 

improvement in the results is gained by using more than six terms. The parameters for 

the model with six terms are presented here in Appendix 2, so it is not necessary to 

perform the optimisation process again in order to use the model. 

The TLM model has been applied to a switched inertance hydraulic system. It has 

proved to be very effective in this situation and enabled an efficient, robust and 

accurate system model. However it is difficult to judge the TLM model to a high 

degree of accuracy by comparing with experimental results, as discrepancies tend to 

be introduced by uncertainties in the experimental boundary conditions or limitations 

in the modelling of the boundary conditions. It is considered to be more useful and 

meaningful to compare the numerical model with the well-established and precise 

analytical model, as has been done in this paper. 

The TLM model could very usefully be extended to turbulent flow. However this 

is more complex as additional factors need to be considered – Reynolds number and 

roughness. The flowrate history also needs to be considered as the turbulence 

parameters do not change instantaneously with Reynolds number [18, 19]. A 

preliminary investigation has been done using the previous TLM model and this gave 

encouraging results, subject to the known accuracy limitations of that model. It will 

be significantly more difficult to develop the new model for turbulent flow, and this 
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may necessitate another dimension in the lookup tables unless simplifications can be 

made. It may also require that the coefficients are time-dependent as Reynolds 

number will change during a transient simulation. 

6. Conclusions  
Existing transmission line models have been found to be inaccurate under certain 

circumstances. The reasons for these inaccuracies have been analysed. A new TLM 

model has been developed to enhance the transient and steady state accuracy, with the 

result that very good agreement is obtained between the TLM and an analytical 

model. However the enhanced model is slightly more complicated, and the previous 

model [10] may be sufficiently accurate for many applications.  

The TLM has been implemented in Matlab Simulink and is available for 

downloading [20]. It has been used in various system models and has been found to 

be reliable and efficient. It is easy to link into system simulations using variable time 

step solvers. However at present it is limited to laminar flow with linear, time-

invariant properties. 
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Appendix 1: Nomenclature 
A  Internal cross-sectional area 

c  Speed of sound 

21, CC  Characteristic at end 1 and 2 

E  Weighting function 

F  Weighting function 

G  Weighting function 

1G  Steady friction component of G  

2G   Unsteady friction component of G  

H  Friction function 

210 ,, JJJ  Bessel functions of the first kind 

L  Length of pipeline 

im  Coefficient of weighting function 

Eim   Coefficient of weighting function for E  

Gim  Coefficient of weighting function for G  

in  Coefficient of weighting function 

N  Friction function 

r  Internal radius of pipe 

R  Resistance 

21, pp  Pressure at end 1 and 2 

21, PP  Fourier transform of pressure at end 1 and 2 

21, qq   Flow into end 1 and 2 

21, QQ   Fourier transform of flow into end 1 and 2 

22211211 ,,, tttt  Analytical transmission matrix terms 
*

22

*

21

*

12

*

11 ,,, tttt  Modelled transmission matrix terms 

T  Wave propagation time for pipeline 

T   Adjusted delay time for model 

V  Fluid volume in pipeline 

z  Complex non-dimensional frequency parameter 

CZ  Characteristic impedance 

p  Pressure difference across ends of pipe 

q  Magnitude of step change in flowrate 

V  Volume of fluid injected into pipe 

  Non-dimensional frequency 

  Dissipation number 

  Error 

  Empirical factor 

 Wavelength 

  Kinematic viscosity 

  Fluid density 

  Angular frequency 
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Appendix 2: Tables of weights for 6-term series  
Table 3  Weights for E   

  
1Em  2Em  

3Em  4Em  
5Em  6E

m  

0.0001 0.005224 0.00028 0.001957 0.006269 0.01886 0.05642 

0.000133 0.006014 0.000357 0.00229 0.00729 0.02193 0.065632 

0.000178 0.006918 0.000457 0.002684 0.008489 0.025523 0.076406 

0.000237 0.00795 0.000587 0.003154 0.009898 0.029735 0.089023 

0.000316 0.009123 0.000759 0.003715 0.011559 0.034678 0.103822 

0.000422 0.01043 0.001004 0.004503 0.013911 0.041724 0.112346 

0.000562 0.011873 0.001345 0.005576 0.017134 0.051391 0.112413 

0.00075 0.013448 0.001815 0.006984 0.021346 0.064019 0.103591 

0.001 0.015139 0.002459 0.008842 0.026882 0.080616 0.080978 

0.001334 0.016918 0.003334 0.011288 0.034145 0.102377 0.038864 

0.001778 0.01872 0.0046 0.0148 0.04452 0.085382 0.088978 

0.002371 0.020433 0.006384 0.019861 0.059608 0.051 0.152626 

0.003162 0.021541 0.009762 0.029582 0.050599 0.067159 0.201189 

0.004217 0.022063 0.014855 0.042392 0.031041 0.092996 0.278335 

0.005623 0.020802 0.026993 0.040999 0.044018 0.105609 0.316673 

0.007499 0.01905 0.039761 0.045404 0.053708 0.118626 0.35557 

0.01 0.018107 0.049415 0.064419 0.045936 0.137568 0.412546 

0.013335 0.017792 0.058637 0.08845 0.048627 0.145573 0.436719 

0.017783 0.022452 0.062431 0.120783 0.050613 0.151709 0.455088 

0.023714 0.033358 0.064688 0.150064 0.055224 0.165602 0.496748 

0.031623 0.049046 0.070715 0.171912 0.063309 0.189932 0.569684 

0.04217 0.065722 0.090133 0.18034 0.075641 0.226946 0.680707 

0.056234 0.080943 0.130838 0.172406 0.091602 0.274813 0.824296 

0.074989 0.094505 0.195053 0.155481 0.107548 0.322683 0.967929 

0.1 0.107712 0.281616 0.141863 0.11916 0.357638 1.0729 

0.133352 0.123113 0.389289 0.136899 0.126441 0.379639 1.13897 

0.177828 0.144203 0.519871 0.127579 0.138422 0.415811 1.24755 

0.237137 0.178576 0.670638 0.093133 0.168379 0.505848 1.51776 

0.316228 0.229176 0.831103 0.090869 0.224069 0.521304 1.56407 

0.421697 0.318762 0.935833 0.177905 0.540387 0.232797 0.698746 

0.562341 0.476083 0.947676 0.27107 0.827213 0.170571 0.513138 

0.749894 0.643645 1.00269 0.510308 0.512483 0.529807 1.6152 

1 0.593385 1.24543 0.938237 0.762194 2.51601 7.89072 
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Table 4  Weights for G  and   

  
1Gm  2Gm  3Gm  4Gm  5Gm  

6G
m    

0.0001 0.005281 0 0.000752 0.01526 0 0.043497 1.00047 

0.000133 0.006072 0 0.001095 0.017373 0 0.050316 1.00054 

0.000178 0.006976 0 0.001567 0.019727 0 0.058228 1.00062 

0.000237 0.008004 0 0.002217 0.022329 0 0.067422 1.00072 

0.000316 0.009168 0 0.003108 0.02517 1.68E-05 0.078096 1.00082 

0.000422 0.010465 0 0.004568 0.027162 0.002838 0.085756 1.00098 

0.000562 0.011896 0 0.006654 0.028678 0.007242 0.092952 1.00117 

0.00075 0.013456 0 0.009568 0.02945 0.013743 0.099223 1.00141 

0.001 0.015126 0 0.013597 0.029073 0.023083 0.103854 1.0017 

0.001334 0.016881 0 0.019075 0.027091 0.036102 0.106014 1.00206 

0.001778 0.018675 0 0.026489 0.022941 0.053319 0.10429 1.00252 

0.002371 0.020324 0.000654 0.034608 0.018856 0.072203 0.102424 1.00304 

0.003162 0.020886 0.006192 0.03379 0.029262 0.074279 0.124191 1.00341 

0.004217 0.020793 0.01381 0.031767 0.042678 0.074396 0.150901 1.00379 

0.005623 0.019354 0.02491 0.027194 0.060007 0.074838 0.178772 1.00421 

0.007499 0.017404 0.036458 0.025483 0.076106 0.079963 0.202558 1.00473 

0.01 0.016047 0.045638 0.031119 0.086445 0.09429 0.215674 1.00545 

0.013335 0.015258 0.053672 0.040232 0.098934 0.108665 0.229636 1.0062 

0.017783 0.018798 0.056843 0.055246 0.109522 0.127279 0.237375 1.00706 

0.023714 0.027864 0.057489 0.07057 0.122702 0.144791 0.245414 1.00792 

0.031623 0.041049 0.059954 0.081052 0.143575 0.156545 0.25909 1.00859 

0.04217 0.055185 0.070266 0.082903 0.174329 0.162444 0.278455 1.0088 

0.056234 0.068417 0.092116 0.077021 0.211043 0.169426 0.299161 1.00798 

0.074989 0.08059 0.125688 0.069245 0.242871 0.190806 0.287179 1.00666 

0.1 0.092371 0.170209 0.062699 0.261616 0.206408 0.206439 1.0098 

0.133352 0.105223 0.226105 0.057112 0.270498 0.212392 0.128658 1.01335 

0.177828 0.121249 0.294258 0.048478 0.266598 0.209589 0.059833 1.01704 

0.237137 0.145048 0.374495 0.026291 0.254982 0.19425 0.004997 1.02071 

0.316228 0.182775 0.445286 0.00886 0.252796 0.110269 0 1.02825 

0.421697 0.250535 0.479733 0.007109 0.228974 0.033674 0 1.03608 

0.562341 0.363395 0.474821 0 0.161637 0 0 1.04608 

0.749894 0.478032 0.460853 0 0.060783 0 0 1.06002 

1 0.5 0.470745 0.029126 0 0 0 1.07869 

 


