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Abstract: When we use a conductive fabric as a pressure sensor, it is necessary to 

quantitatively understand its electromechanical property related with the applied pressure. 

We investigated electromechanical properties of three different conductive fabrics using 

the electrical impedance spectroscopy (EIS). We found that their electrical impedance 

spectra depend not only on the electrical properties of the conductive yarns, but also on 

their weaving structures. When we apply a mechanical tension or compression, there occur 

structural deformations in the conductive fabrics altering their apparent electrical 

impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased 

or decreased under tension or compression, respectively. For an almost non-stretchable 

conductive fabric, both tension and compression resulted in decreased impedance values 

since the applied tension failed to elongate the fabric. To measure both tension and 

compression separately, it is desirable to use a stretchable conductive fabric. For any 

conductive fabric chosen as a pressure-sensing material, its resistivity under no loading 

conditions must be carefully chosen since it determines a measurable range of the 

impedance values subject to different amounts of loadings. We suggest the EIS method to 

characterize the electromechanical property of a conductive fabric in designing a thin and 

flexible fabric pressure sensor. 

OPEN ACCESS 
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1. Introduction 

Conductive fabrics [1–10] have been mainly used for electrostatic discharge, shielding, signal or 

power transmission, and heating. To take advantage of their flexibility, durability, and washability, 

they are finding new applications as sensors in biomedicine and robotics: smart textiles [1–5], 

bioimpedance monitoring [6,7], electrodes [8–10], pressures sensors [11–14], textile electronics [15,16], 

and wearable sensors [17–21]. 

In this paper, we focus on the application of conductive fabrics as a thin and flexible pressure 

sensor. Each conductive fabric has a distinct internal structure and composition that determine its 

electromechanical behavior. Under compression or tension, there occurs a mechanical deformation in 

the conductive fabric, and this should result in some changes in its electrical properties. A conductive 

fabric exhibits its own electromechanical properties since a mechanical deformation alters its electrical 

properties. Knowledge of the electromechanical properties is necessary to design a pressure sensor 

using the flexible conductive fabric. There are several studies about the mechanical stress–strain 

analyses of woven textile composites under compression or tension [22,23] and the electrical 

properties of conductive fabrics [24–29]. However, there is little previous work on the 

electromechanical characteristics of conductive fabrics. 

To explore the electromechanical responses of conductive fabrics for their applications in pressure 

sensing, we chose three types of conductive fabrics to be studied by the electrical impedance 

spectroscopy (EIS) method [30–32] under compression and tension. To our knowledge, there are  

no previous studies that investigate the electromechanical properties of a conductive fabric using the  

EIS method. 

We plan to develop a pressure distribution imaging system using a conductive fabric. Since we 

intend to produce images of the fabric’s electrical properties, in this paper, we study how the electrical 

properties are affected by mechanical compression and tension. When we apply a mechanical pressure 

on a conductive fabric, a structural deformation is induced to produce a measurable change in its 

electrical impedance. We should investigate this change in terms of its magnitude, phase, direction, 

and also frequency dependence, depending on the applied load. 

After describing the details of the chosen materials, we will explain the EIS methods used to 

characterize the conductive fabrics. Using numerical simulation and experimental measurement 

methods, we will evaluate the pressure-induced impedance changes at different frequencies. We will 

analyze the electromechanical behavior of the chosen conductive fabrics through the measured 

impedance changes over a chosen frequency range. 
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2. Materials and Methods 

2.1. Conductive Fabrics 

Conductive yarns are made from conductive and semi-conductive materials that can be blended in 

various ways such as coating or twisting [33–38]. A non-conductive or semi-conductive substrate such 

as cotton, polyester, or nylon is either coated or embedded with electrically conductive elements such 

as carbon, nickel, copper, gold, silver, or titanium. Conductive fabrics are usually manufactured using 

carbon- or metal-coated yarns. The electromechanical property of a conductive fabric is determined by 

the material properties of the yarns and the weaving or knitting methods to construct the interlacing 

structure of the fabric. The particular weave of a fabric also defines the characteristics such as the 

flexibility, sheen, texture, and appearance. 

We chose three commercially available conductive fabrics with different compositions and 

structures. Fabric A (Figure 1a) is a silver plated nylon-based elastic fiber fabric with Lycra-like 

stretch called the stretch conductive fabric (Cat. #321, Less EMF Inc., Latham, NY, USA) [39]. As 

shown in its SEM image, its structure is not tight and there are large air gaps among the fibers to allow 

high elasticity. With its resistivity of 0.5 /m2, it is the most conductive. It has been used for 

antibacterial wound and burn dressings and also as electromagnetic shielding [39]. The weight 

percentages and atomic percentages of silver and carbon for fabric A were 86.39 Wt%/42.76 At% and 

10.69 Wt%/42.52 At%, respectively. 

Figure 1. SEM images (×200) and EDS microanalyses of three conductive fabrics. Fabric 

A was plated with silver. Fabrics B and C were coated with carbon. Figures in the upper 

and lower rows are the SEM images and the EDS microanalysis results, respectively. 

(a) (b) (c)

× 200 × 200 × 200

Ag: 86%

C  : 10%

C  : 85% C  : 83%

Fabric A Fabric B Fabric C
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Fabric B (Figure 1b) is a knitted nylon/Spandex coated with carbon (EeonTex™ LR-SL-PA-10E5, 

Eeonyx Corp., Pinole, CA, USA) [40]. Its SEM image shows a tightly knitted structure. It can be 

stretched a little in the longitudinal direction. It is the least conductive, with a resistivity of 10
5
 m

2
. It 

has 85% carbon. 

Fabric C (Figure 1c) is a nonwoven microfiber coated with carbon (NW170-SL-PA-1500, Eeonyx 

Corp., Pinole, CA, USA) [41]. Since the microfibers are strongly attached each other in a  

non-uniform structure, it is almost non-stretchable. It is moderately conductive, with a resistivity of 

1500 /m
2
. It has 83% carbon. Figure 1 shows the Energy Dispersive Spectrometry (EDS) results 

together with the SEM images of the fabrics. 

2.2. Basics for EIS of Conductive Fabrics 

The electrical impedance is a complex quantity consisting of resistance and reactance in its real and 

imaginary parts, respectively. The resistance is determined by the conductivity, shape, and size of a 

sample. The reactance is determined by its permittivity, shape, and size. The conductivity is a material 

property that includes the effects of the concentrations of mobile charges and their mobility. The 

permittivity is also a material property that includes the effects of the dielectric polarization and 

capacitances among microscopic conductive surfaces. The fabrication methods of a conductive fabric, 

including its composition, weaving, coating, and density, should affect these properties. For the design 

of a fabric sensor, we can choose its shape and size depending on a specific application. 

A conductive fabric appears to be resistive under an applied DC current. For an AC current, its 

behavior becomes complex with both resistive and reactive terms since the interactions of the 

conductive yarns and air gaps produce apparent capacitances. A stretchable conductive fabric shows a 

more interesting behavior. When it is compressed or pulled, there occur structural deformations of both 

the yarns and weaves, which result in measurable changes of its apparent electrical impedance value, 

therefore, we can investigate the electromechanical behavior of a fabric subject to applied pressures 

through its measured electrical impedance values at multiple frequencies. 

In conventional electrical impedance spectroscopy (EIS), we inject a sinusoidal current with 

constant amplitude and phase and measure an induced voltage in a chosen frequency range. Applying 

Ohm’s law, we can obtain a complex impedance spectrum, Z(ω) where ω is the angular frequency.  

In this paper, we performed EIS measurements of the chosen fabrics under varying amounts of 

applied pressures. Therefore, we will denote the measured impedance spectrum as Z(ω,p) where p is 

the applied pressure. It presents the electromechanical property of the fabric including the effects of its 

internal structural changes subject to the applied pressure. We denote the real and imaginary parts of 

Z(ω,p) as Rz and Xz, respectively. Both in numerical simulations and experiments, we prepared all the 

fabrics in the same shape and size before we applied any loading. 

2.3. EIS Numerical Simulations of Conductive Fabrics 

To provide a theoretical background about the electromechanical property of a conductive fabric, 

we designed two numerical simulations of the EIS measurements with tension and compression as 

shown in Figure 2. We assumed an elastic fabric weaved in a uniform structure to analyze the effects 

of its structural deformation and air volume changes among conductive yarns. We used COMSOL 
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(COMSOL Inc., Burlington, MA, USA) to numerically solve the partial differential equation for the 

models shown in Figure 2. 

First, we considered the numerical model of a conductive fabric under tensile forces. The width to 

thickness ratio of the two-dimensional model without any force was 1:0.032. We applied four different 

tensile forces to extend its length by 1.2, 1.5, 2.0, and 3.0 times compared with the case of no loading. 

We decreased the width by 0.9, 0.8, 0.7, and 0.6, respectively. In the blue region of the yarns, we set 

the conductivity and relative permittivity values as 0.01 S/m and 1.5, respectively. For the grey region 

presenting air gaps between yarns, we assumed the conductivity of 10
−10

 S/m and a relative 

permittivity of 1. In the case of a tensile force, the fabric fibers are stretched and the diameters of the 

yarns become thinner. As the contact areas among the fibers are decreased, we can expect the 

impedance to increase. 

Figure 2. Numerical models of a conductive fabric under tension and compression. The 

blue and grey regions denote the conductive yarns and air gaps, respectively. (a) Models of 

the conductive fabric subject to different amounts of tension at the edges. (b) Models of the 

conductive fabric subject to compressive forces at the middle. 
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In the second simulation, we applied a compressive force at the center region of a two-dimensional 

fabric model (33% of the total length). We decreased the thickness of the compressed region 

depending on the applied force. With the relative thickness without loading set as 1, the thickness was 

decreased by 0.9, 0.8, 0.7, and 0.6, respectively, for the same amounts of loadings used in the first 

simulation. For the blue region of the yarns, we use the conductivity of 0.05 S/m and the relative 

permittivity of 1.5. The air gaps shown in grey color had the same conditions as in the first simulation. 

Under compression, the fabric fibers are flattened with subsequent increases in fiber diameters. This 

makes the fibers come closer each other. Thus, the area of the air gaps decreases and the contact area 

among the fibers increase. From these, we can expect the impedance to decrease. 
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2.4. EIS System 

To measure the impedance spectrum of each fabric under tension and compression, we used a 

commercial electrical impedance analyzer (Solartron 1260, AMETEK Inc., Berwyn, PA, USA). Since 

the performance of the impedance analyzer deteriorates beyond 1 MHz as described in its datasheet [42], 

we collected the impedance data below 1 MHz. 

Noting that the impedance analyzer produces erroneous results for very small and also very large 

values of the load impedance, we used the compensation method described in Mohamadou et al. [43] 

to improve the measurement accuracy. In summary, we used a set of small and large loads with known 

impedance values and obtained their impedance spectra using the analyzer. This allowed us to find the 

system transfer functions of the analyzer. Using this information, we could compensate the measured 

spectra of the fabrics for better accuracy when their impedance values were small or large. 

As shown in Figure 3a, we adopted the four-electrode method where the current was injected 

through the outer pair of the electrodes and the voltage was measured between the inner pair of 

electrodes [44]. Using a constant current source and a differential voltage amplifier with a very high 

input impedance, we could get rid of the undesirable effects of the contact impedance between the 

electrode and the sample and minimize the measurement errors. 

Figure 3. EIS measurements of conductive fabrics under tension and compression.  

(a) Four-electrode method for impedance measurements. (b) Measurement setup using the 

Solartron 1260 impedance analyzer. (c) EIS measurement setup for applied tension using 

acrylic supports. (d) EIS measurement setup for applied compression. 

ZC1 ZC2 ZC3 ZC4

ZL(t,p)ZL1 ZL2

I

V

(b)(a)

(d)(c)  

2.5. EIS Experiments of Conductive Fabrics 

We prepared the samples of the fabrics A, B, and C as sheets of 150 × 50 mm
2
. Their thicknesses 

were 0.4, 0.4, and 0.6 mm, respectively. Since the dimensions of the samples were fixed, we compared 
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the measured impedance values instead of extracting their conductivity and permittivity values which 

are independent of the geometrical factors. 

We used two different acrylic scaffolds to hang the sample and connect them to four long stainless 

steel electrodes (Figure 3b). One was to measure the impedance spectrum subject to tension (Figure 3c) 

and the other was for the case of compression (Figure 3d). Four rectangular stainless steel rods and acrylic 

screws tightly hold the fabric samples. Tension or compression was applied to the fabric sample by using 

insulating weights of 0, 25, 50, 75, 100, 125, and 150 gram-force placed on the center of the sample. We 

collected the impedance data at 14 frequencies between 50 Hz and 1 MHz to plot its spectrum. 

3. Results 

3.1. Numerical Simulation Results 

Figures 4a,b show the results of two different amounts of compression expressed as thickness ratios 

of 1:0.6 and 1:0.51, respectively. We computed the electric potential distribution and current 

streamlines inside the fabric. As we increase the frequency of the injected current, the electric current 

streamlines became straighter due to the decreased reactance terms at high frequency. This phenomenon 

was more distinct for higher compression, as seen in Figure 4b. For the results in Figure 4, the 

conductivity and relative permittivity of the simulated fabric were 0.05 S/m and 1.5, respectively. We 

assumed the air conductivity of 10
−10

 S/m. We could observe similar results for all five cases shown in 

Figure 2. For tension, the current streamlines did not change much at frequencies below 1 MHz. 

Figure 4. Computed electric potential distributions and current streamlines inside the 

fabric under two different amounts of compression. The color bars denote the electric 

potential subject to the injected current from the right to left direction. The curved lines are 

current streamlines. (a) and (b) show the electric potential distributions and current 

streamlines, respectively, at 10, 500, and 1000 kHz subject to two different amounts of 

compression (1:0.6 and 1:0.51). 
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Figures 5a,b display the profiles of the real and imaginary parts, respectively, of the computed 

electric potentials at 10, 500, and 1000 kHz along the horizontal line at the middle of the fabric for two 

different amounts of compression shown in Figure 4. Figure 5a shows that the larger amount of 

compression made the compressed region more conductive and resulted in a smaller slope. In Figure 5b, 

we can observe that the larger amount of compression produced smaller reactance values, that is, larger 

capacitance values. For all five cases in Figure 2, we could obtain similar results. 

Figure 5. Changes of the computed electric potentials along the middle horizontal line:  

(a) real and (b) imaginary parts. 
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For tension, the values of the real part were smaller than those in Figure 5a. Since the fabric was 

elongated uniformly under tension, the voltage changed linearly throughout the entire fabric along the 

horizontal direction. The values of the imaginary part also changed linearly for the same reason. 

Figure 6 summarizes the numerical simulation results of the computed impedance spectra.  

Figures 6a,c are the Argand diagrams of the computed impedance spectra Z(ω,p) of the fabric model 

under tension and compression, respectively. Figures 6b,d plot the changes in the magnitudes of the 

impedances as the amounts of the loadings increase. 

We can observe interesting results from the Argand diagrams for both cases. Under tension, the real 

part of the impedance significantly changes with the amount of the loading, whereas the imaginary part 

shows negligible change for all chosen frequencies. Therefore, the changes of the impedance 

magnitude stemmed from the changes in the real part. 

Under compression, both real and imaginary parts change with loading but the amounts of the 

changes are much smaller compared with the changes in the real part under tension. When we use the 

conductive fabric as a pressure sensor, we should expect more compression than tension. Therefore, it 

is necessary to measure both the real and imaginary parts of the impedance to estimate its changes 

associated with different amounts of loadings. 
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Figure 6. Simulation results of impedance spectra of conductive fabrics under tension and 

compression. (a) and (c) are the Argand diagrams. (b) and (d) show changes in the 

magnitude of the impedance for different amounts of loadings. 
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3.2. Experimental Results of EIS from Conductive Fabrics without Loading 

Figure 7d shows the impedance magnitude spectra of the three chosen conductive fabrics, A, B and 

C. The impedance magnitudes were largest for the carbon-coated fabric B, which was least conductive. 

The most conductive silver-plated fabric A showed the smallest values for all chosen frequencies. To 

closely observe the effects of their compositions, we showed the Argand diagrams of the measured 

impedance spectra in Figures 7a–c. The highly conductive fabric A behaves more like a conductor at 

frequencies below 100 kHz with decreasing resistance (or real part) values. It exhibits a characteristic 

frequency of about 100 kHz where its imaginary part starts increasing. 

Since the fabrics B and C have similar compositions, the difference in their Argand diagrams 

should be connected to their structural differences. The measured impedance values themselves were 

larger for fabric B since it was less conductive than fabric C. However, fabric B exhibits more 

capacitive effects, especially at high frequencies, due to its regularly weaved structure with many  

air gaps. 
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Figure 7. Argand diagrams of the impedance spectra from three conductive fabrics without 

any applied loading. (a), (b), and (c) are from the fabrics A, B, and C. (d) shows the plots 

of the impedance magnitude changes at 10 kHz. 
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3.3. Experimental Results of EIS from Conductive Fabrics under Tension 

We showed the Argand diagrams of the measured impedance spectra for fabrics A, B, and C under 

tension in Figures 8a–c, respectively. Since fabric A was highly stretchable, its Argand diagrams are 

similar to the ones from the numerical simulations in Figure 6a. The fabrics B and C were very stiff 

and their Argand diagrams indicate that they were not elongated by the applied tension. Instead, the 

axially applied loading by weights compressed the fabrics. Therefore, the Argand diagrams  

of the fabrics B and C show the patterns of the compression in Figure 6c. The high-frequency  

behaviors in Figures 8b,c are not visible in Figure 6c since we used only one parallel RC model in the  

numerical simulations. 

Figures 9a–c are the plots of the impedance magnitude spectra for fabrics A, B, and C, respectively, 

under seemingly applied tension. For the highly conductive fabric A, the plots are flat up to 100 kHz 

since their time constants RCs were small.  
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Figure 8. Argand diagrams of the impedance spectra from three conductive fabrics under 

tension. (a), (b), and (c) are from the fabrics A, B, and C, respectively. 
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Figure 9. Impedance magnitude spectra of three conductive fabrics under tension. (a), (b), 

and (c) are from the fabrics A, B, and C, respectively; (d) shows the plots of the impedance 

magnitude changes at 10 kHz. 
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Comparing the impedance magnitude spectra of the fabrics B and C, fabric B seems to have a 

higher capacitive term. Comparing the Argand diagram in Figure 9a with those in b and c, we can 

observe that the impedance values change in the opposite directions as we increased the amount of 

tensile loadings. This is more clearly depicted in Figure 9d at 10 kHz. As mentioned in the previous 

paragraph, this indicates that the axially applied loading on fabrics B and C did not elongate the fabrics 

and behaved as compression in effect. The amount of the effective compression must have been 

smaller than the vertical compression described in the next section. 
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3.4. Experimental Results of EIS from Conductive Fabrics under Compression 

We show the Argand diagrams of the measured impedance spectra for fabrics A, B, and C under 

compression in Figures 10a–c, respectively. For the stretchable fabric A, the changes of the impedance 

values are in the opposite direction compared with the case of tension in Figures 8 and 9. Though the 

least conductive fabric B shows large values of the measured impedance spectra, they do not change 

much subject to the applied compression. On the other hand, fabric C produces larger amounts of 

changes in the impedance spectra for different amounts of the applied compression. 

Figure 10. Argand diagrams of the impedance spectra from three conductive fabrics under 

compression. (a), (b), and (c) are from the fabrics A, B, and C, respectively.  
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Figures 11a–c are the plots of the impedance magnitude spectra for fabrics A, B, and C, 

respectively, under applied compression. Unlike the results in Figure 9, all plots in Figure 11 show the 

changes in the same direction of compression. From the plots in Figure 11d, we can see that fabric A 

has the largest sensitivity to the applied compression. Therefore, if we consider the relative impedance 

changes only, fabric A appears to be the best candidate as a pressure sensor. Since the highly 

conductive fabric A produces small changes in its absolute impedance values, however, we will need 

to amplify the signals using a low-noise amplifier. Both fabrics B and C produce large impedance 

changes subject to the applied compression. However, fabric C appears to be better than fabric B since 

it has a higher sensitivity. 

Figure 11. Impedance magnitude spectra of three conductive fabrics under compression. 

(a), (b), and (c) are from the fabrics A, B, and C, respectively; (d) shows the plots of the 

impedance magnitude changes at 10 kHz. 
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4. Discussion 

Conductive fabrics are being widely used in biomedicine, robotics, and other industrial applications. 

The electrical impedance of a conductive fabric is determined by the electrical properties of its 

components and also its structure. Changes in the impedance stem from structural deformations subject 

to mechanical loadings such as tension or compression. We could evaluate the electromechanical 

behavior of a conductive fabric using the electrical impedance spectroscopy method and observe the 

effects of such structural deformations through its impedance spectrum. 

With an applied tensile force, the fabric fibers were stretched and became thinner. Decreasing the 

fiber width, the fibers moved away from each other. This decreased the contact areas between the 

fibers and hence the impedance increased. On the other hand, under compression, the fabric fibers 

were compressed and flattened. This increased the fiber width and thus the fibers moved closer to each 

other to increase the contact areas among them. Hence, the area of the air gaps decreased and the 

impedance decreased. 

From the numerical simulations and experimental results of the impedance spectra, we could 

characterize the electromechanical properties of the chosen three conductive fabrics. We suggest using 

the proposed methods to evaluate a fabric material as a candidate of a pressure sensor. 

In the EIS of a conductive fabric, we can inject a constant current and measure the induced voltage. 

The impedance is determined not only by the material properties (conductivity and permittivity) but 

also by the geometry (shape and size) of the sample. Longer or wider fabric samples of the same 

material will have larger or smaller impedance values, respectively, even though their material 

properties are the same. Therefore, in practice, we should carefully control the current amplitude not to 

make the induced voltage out of its operating range. 

For a given fabric sensor with a certain geometrical design, its impedance at no loading condition is 

predetermined. Without loading, fabric A has a smaller impedance value than those of fabrics B and C. 

However, fabric A shows a larger fractional change of the impedance with loading. By choosing a 

proper amount of injection current into fabric A, the fractional change of the induced voltage will also 

be larger since the voltage change is proportional to the impedance change subject to the applied 

pressure. It is desirable for a conductive fabric to produce large fractional impedance changes for a 
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given range of loading. If we use a voltage amplifier with an enough signal-to-noise ratio (SNR), 

therefore, fabric A will have a higher sensitivity expressed in volt per Newton. If the SNR is not 

enough, fabrics B and C can be advantageous since they produce larger voltage signals for the  

same current. 

To measure both tension and compression, we need to use a stretchable fabric such as fabric A. The 

fabrics B and C can be used only for compression. These characteristics stem from their fabrication 

methods. Since we used commercial fabric samples in this paper, we could not alter their compositions 

and fabrication methods such as coating, weaving, and density control. As previously mentioned, all of 

these should affect their electromechanical properties. We may consider a design problem where we 

specify a desirable electromechanical property such as a pressure sensor and fabricate such a 

conductive fiber. If we control the fabrication methods in future studies, we should be able to 

separately evaluate the effects of them including composition, coating, weaving, and so on. 

We plan to develop an imaging system, which quantitatively visualize the pressure distribution on a 

sheet of a conductive fabric. We will install multiple electrodes around the boundary of the fabric sheet 

to inject currents and measure induced voltages. Expanding the EIS device to a multi-channel 

measurement system, we can collect boundary current-voltage data subject to many different current 

injection patterns. Adopting the image reconstruction methods of electrical impedance tomography 

(EIT) in biomedical applications, we plan to produce pressure images [45,46]. For this research goal, it 

would be useful to develop more sophisticated simulation methods including distributed parameter 

models and finite element models. 

Noting that the electrical impedance of a conductive fabric changes with frequency, we may 

consider using the fabric together with a multi-frequency EIT system. Though we limited the 

maximum operating frequency as 1 MHz in this paper, future EIS studies at higher frequencies may 

reveal more electromechanical properties of the conductive fabrics. 

5. Conclusions 

We investigated how the electrical impedance spectrum of a conductive fabric changes subject to 

structural deformations under tension or compression using the electrical impedance spectroscopy 

(EIS) method. We found that the electrical impedance spectrum depends on the composition and 

structure of the given fabric. Under tension or compression, its electromechanical behavior can be 

captured as changes in its impedance spectrum mainly due to structural deformations. This means that 

conductive fabrics are potentially useful as pressure sensors for various applications. Since tensile and 

compressive loadings affect the impedance differently, we may separately measure those using 

stretchable conductive fabrics. We suggest testing various conductive fabrics using the EIS method to 

design a sensor to measure a pressure or visualize a pressure distribution as an image.  
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