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Abstract 11 

The regional flood frequency hydrology of the 86,000 km
2
 and semi-arid Ebro catchment is 12 

investigated using an extended generalised least square model that includes separate 13 

descriptions for sampling errors and model errors. The Ebro catchment is characterised by 14 

large hydro-climatic heterogeneities among sub-regions. However, differences in flood 15 

processes among sites are better explained by a set of new catchment descriptors introduced 16 

into hydrological regression models, such as new characteristics derived from the slope of 17 

flow duration curves, the ratio of mean annual precipitation to extreme precipitations and the 18 

aridity index. These additions enabled a more direct link to be established between the general 19 

flow regime and the extreme flood characteristics through-out the entire catchment. The new 20 

regression models developed in this study were compared to a set of existing models 21 

recommended for flood frequency estimation in Spain. It was found that the generalised least 22 

squares model developed in this study improves the existing ordinary least squares models 23 
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 2 

both at regional and trans-regional scales. An adequate description of flood processes is 1 

obtained and, as a direct consequence, more reliable flood predictions in ungauged 2 

catchments are achieved.  3 

Keywords: Regional flood hydrology; GLS regression model; Ebro catchment; Catchment 4 

descriptors; Prediction in ungauged basins  5 
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1 Introduction 7 

The prediction of flood frequencies in ungauged catchments is essential for both designing 8 

hydraulic infrastructures and effective flood risk management, as floods are one of the most 9 

important causes of economic losses in most parts of the world and most catchments are 10 

ungauged. To be better prepared for future floods, the European Union has recently 11 

established a framework for the assessment and management of flood risks, with the aim of 12 

reducing its adverse consequences by knowing flood levels for given probabilities at any 13 

stream point (EU, 2007).  14 

The flood level for a given probability at any stream section is usually calculated by a 15 

hydraulic model that takes flood quantile estimations as input, which can be obtained from 16 

observed data. However, most stream points are ungauged. Thus, spatial information 17 

expansion is required to extend the known information in a few gauged catchments to these 18 

unguaged sites (Merz and Blöschl, 2008). This expansion usually entails two steps: (i) 19 

estimation of regional quantiles at gauged sites for the probability of interest; (ii) use of a 20 

regional method to transfer the known information at gauged sites to ungauged catchments.  21 

Several regional flood frequency analyses have been developed in past years. Most of them 22 

are based on the use of the index flood method as regional model to estimate flood frequency 23 

curves (e.g. Robson and Reed, 1999; Bocchiola et al., 2003; Laio et al., 2011; Dawdy et al., 24 

2012). Regions are assumed to be composed of a set of sites that are homogeneous, which can 25 

be grouped by different methods, such as geographical boundaries, cluster analysis and 26 

pooling methods. Homogeneity of proposed regions is confirmed by passing a statistical 27 

heterogeneity test (Hosking and Wallis, 1997; Castellarin et al., 2008).  28 
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The prediction at ungauged sites can be conducted by means of either statistical methods that 1 

use series of discharge records or process-based methods that use climate data to run rainfall-2 

runoff models. A comparison between them in Austria can be found in Viglione et al. (2013). 3 

Statistical methods are usually based on a regression model that tries to explain differences 4 

among flood generation processes through a set of physiographic variables. Catchment 5 

response can be characterised in regression models by either the T-year quantile or the index-6 

flood (so-called index-flood indirect estimation methods) (Brath et al., 2001). Other methods 7 

exist, such as regional envelope and multivariate probabilistic regional envelope curves 8 

(Castellarin et al., 2007) and regional analysis that incorporates historical and palaeoflood 9 

information at ungauged sites (Gaume et al., 2010), among many others. A complete review 10 

of methods for predicting floods in ungauged basins can be found in Blöschl et al. (2013). In 11 

Spain, a regional flood frequency analysis has been conducted recently to improve flood 12 

frequency estimations at both gauged and ungauged sites, within the Floods Directive 13 

framework (Jiménez-Álvarez et al., 2012). Mainland Spain was divided into 36 homogeneous 14 

regions defined by geographical boundaries. Regional quantiles at gauged sites in most 15 

regions were estimated by a Generalised Extreme Value (GEV) distribution fitted by the L-16 

moments method with a regional shape parameter, which is estimated by the regional value of 17 

the L-coefficient of skewness (L-CS). An ordinary least squares (OLS) regression model was 18 

developed to estimate quantiles at ungauged sites in each region.  19 

The main strength of an OLS model is its simplicity, as the estimation of the model 20 

uncertainty is straightforward. However, OLS assumes that  the uncertainty of quantile 21 

estimates at each site are identical, which is not the case as record-lengths vary from site to 22 

site. The OLS also neglects both the correlation between quantiles and the correlation 23 

between regression model errors. In addition, the existing OLS models in Spain use a reduced 24 

set of explanatory variables, usually basin area, precipitation quantiles and mean basin 25 

elevation (CEDEX, 2011; Jiménez-Álvarez et al., 2012). More variables could be added to the 26 

regression model to account for differences in processes that generate floods. To improve the 27 

OLS model currently applied in Spain and overcome its weaknesses, a new regression model 28 

is proposed. 29 

In this paper, a regional flood frequency hydrology analysis was carried out in the Ebro River 30 

catchment in Spain focusing on the spatial expansion of information to improve the existing 31 

regression models. The generalised least squares (GLS) technique that includes the clustering 32 
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tendency of residuals (Kjeldsen and Jones, 2010) was adapted to the recommendations given 1 

in Spain to estimate the frequency distribution, suggesting the use of a GEV distribution fitted 2 

through the L-moments method with a given regional shape parameter (Jiménez-Álvarez et 3 

al., 2012; MARM, 2011). The semi-arid Ebro River catchment was selected as case study 4 

because it shows a significant heterogeneity of climate drivers, rainfall patterns and soil 5 

characteristics among homogeneous sub-regions. In addition, a limitation of the existing 6 

analysis consists of applying an OLS regression model to each of the five homogenous 7 

regions in which the catchment was divided. This paper also addresses the development of a 8 

united regression model in the whole Ebro River catchment to avoid undesirable overfitted 9 

regression models to a reduced set of gauging stations. Summarising, an exploratory analysis 10 

was conducted to investigate how catchment descriptors explain the differences in flood 11 

processes among catchments. 12 

 13 

2 Hydrological regression models 14 

Regression models are commonly used to describe the between-catchment variation in the at-15 

site estimates of T-year flood quantiles (xT) at gauged sites by relating the hydrological 16 

response to different physiographic variables (so called catchment descriptors), which then 17 

take on the role of simplified surrogates of drivers of the flood generation processes. Having 18 

estimated a regression model, the T-year event can then be predicted in ungauged catchments 19 

where only the catchment descriptors are available. Denoting the vector of at-site log-20 

transformed flood quantiles from N sites as y (Eq. 1), the associated matrix of m different 21 

catchment descriptors with a first column of unity as X, i.e. the dimension of this matrix is 22 

N×(m+1), and the vector of m+1 regression model parameters as θ, a regression model can be 23 

formulated by Eq. (2). 24 

 
Txy 10log  (1) 25 

ωθεηθy  TT XX  (2) 26 

where ε is the vector of sampling errors of the log-transformed at-site quantile, η is the vector 27 

of regression model errors, and ω is the vector of total regression errors (ω=ε+η).  28 

The formulation in Eq. (2) shows that the regression model error can be split into the 29 

sampling estimate error and the modelling error. The sampling error represents differences 30 
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between the quantile estimation from observed data and its true value (ξ), which is unknown, 1 

as we would need a record length of an infinite number of years to know it exactly (Eq. 3). 2 

This error only depends on the observed data at each site, the probability distribution used to 3 

estimate quantiles and the method used to estimate the distribution parameters. In contrast, the 4 

modelling error represents the difference between the regression model estimation and its true 5 

value (ξ)(Eq. 4). The model error can be also interpreted as  the inability of the regression 6 

model to explain the catchment behaviour perfectly when only lumped catchment descriptors 7 

are used as surrogate explanatory variables for the more complex, and often non-linear, 8 

catchment scale hydrological processes. In contrast to the sampling error, the model error 9 

depends on the structure of the regression model and, thus, on the selection of catchment 10 

descriptors. 11 

 y  (3) 12 

  TX  (4) 13 

The two errors represent fundamentally different aspects of the modelling process, and in the 14 

following the covariance structure of each error type will be discussed. The covariance matrix 15 

of the regression errors (Σω) is defined as the sum of the covariance matrix of the sampling 16 

errors (Σε) plus the covariance matrix of the modelling errors (Ση) (Eq. 5). It is assumed that 17 

the two errors are mutually independent. 18 

ηεw ΣΣΣ   (5) 19 

Typically, the parameters of the regression model, θ, are estimated by the least squares 20 

method. Different sub-methods exist depending on the complexity of the covariance structure 21 

of the errors adopted in the regression model. They are classified, in an increasing complexity 22 

order, as: ordinary least square (OLS), weighted least squares (WLS), and generalised least 23 

square (GLS). A more in-depth review of regression models can be found in Rosbjerg et al. 24 

(2013). Other methods of estimating the model parameters include maximum-likelihood and 25 

Bayesian methods. 26 

The GLS technique was developed for application in hydrology by Stedinger and Tasker 27 

(1985) to account for the heteroscedasticity and cross-correlation of residuals. Specifically, 28 

the GLS model assumes that estimates of flood quantiles at different sites are correlated, as 29 

they have been estimated using correlated flood data. This then leads to a Σε matrix with 30 
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diagonal elements equal to the estimation variance of quantiles (ζ
2

ε) and off-diagonal 1 

elements equal to the covariance between quantiles across pairs of sites (Eq. 6). 2 

 
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In the GLS model formulation presented by Stedinger and Tasker (1985), the model error 4 

matrix (Ση) only includes non-zero elements along the diagonal, as it assumes that the 5 

modelling errors are uncorrelated between sites. Based on the observation that localised 6 

clusters of positive and negative residuals were prevalent among neighbouring catchments 7 

when modelling a large set of annual maximum series (AMS) of peak flows in the UK, 8 

Kjeldsen and Jones (2009) extended the GLS model to include off-diagonal elements larger 9 

than zero into the Ση matrix to describe inter-site correlations of modelling errors (Eq. 7 and 10 

8). 11 

ηη RΣ
2

ησ  (7) 12 
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ijη,

η ρ
R  (8) 13 

where ζ
2

η is the variance of modelling errors, Rη is a matrix describing inter-site correlations 14 

and ρη,ij is the correlation of model errors between sites i and j. The split between a model 15 

error variance, assumed constant across all catchments, and a correlation matrix, Rη, is 16 

convenient for subsequent model development is the next sections. 17 

In the following sections this GLS regression model framework is developed and tested using 18 

hydrological flood data from a large semi-arid catchment situated in North-East Spain. 19 

 20 

3 Case study: the Ebro River catchment 21 

The Ebro River catchment is located in the Northeast of Spain covering an area of 84,000 km
2
 22 

(see Fig. 1). The regional hydrology shows significant spatial heterogeneities because of i) 23 

abrupt changes in orography, as terrain elevation ranges from sea level at the Ebro Delta to 24 

3,404 m.o.s.l at the Aneto peak in the central Pyrenees, which is the highest point in the 25 

catchment; ii) heterogeneities in precipitation patterns, as the Southeast part of the catchment 26 

has a mean annual rainfall of 450 mm, while in some regions of the Pyrenees a mean annual 27 

rainfall of 2,500 mm is observed, and iii)  a great variability in quantiles of maximum daily 28 
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precipitation, as the 100-year rainfall quantile ranges from 80 mm in the central South part of 1 

the catchment and up to 160 mm in some parts of the Pyrenees. 2 

Observed AMS of instantaneous peak flow from 93 gauging stations located in natural or 3 

near-natural catchments were used in the study (Fig. 1). Regional L-moment values for the 4 

five homogeneous regions used in the Ebro River catchment can be seen in Table 1. Eight 5 

different catchment descriptors were readily available for each of the 93 catchments, 6 

including: 1) catchment area in km
2
 (A); 2) mean elevation of the catchment over the mean 7 

sea level in m (H); 3) maximum daily precipitation with a T-year return period in mm (PT); 4) 8 

mean annual precipitation in mm (Pm); 5) mean infiltration rate in mm (tinf), which was 9 

calculated from a national gridded map obtained previously by the kriging method applied to 10 

a set of site values estimated from either field measurements or a function that simulates the 11 

water transference in a soil;  6) mean catchment slope (S); 7) initial abstraction in mm (P0), 12 

defined as the precipitation needed before runoff begins, which was calculated from a national 13 

gridded map obtained previously using information provided by maps of tinf and land use from 14 

the CORINE Land cover; and, finally, 8) catchment area (again measured in km
2
) located at 15 

elevations in excess of 1,500 m (A1500). 16 

A further three catchment descriptors were developed as part of this study to better capture 17 

climatic differences between sites: i) the mean potential evapotranspiration in mm (PET), 18 

which was obtained from temperature series in the period 1940-1995 through the 19 

Thornthwaite and Penman equations; ii) the aridity index (Ia), defined as the ratio of Pm to 20 

PET; and iii) the extremity index (Ie), defined as the ratio of Pm to PT.  21 

Two additional catchment descriptors were used to capture differences in flood response from 22 

the information given by flow duration curves (FDC).  Specifically, a concavity index (IC) 23 

was adopted, which gives information about the relationship between low-flow and high-flow 24 

regimes (Eq. 9) (Sauquet and Catalogne, 2011). A coefficient was defined to measure the 25 

slope of the upper part of the FDC for the highest flows (SFDCp) (Eq. 10), 26 

99.001.0

99.01.0

QQ

QQ
IC




  (9) 27 

p

QQ
SFDC

p

p
100

max 
  (10) 28 
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where Qp is the daily runoff for an exceedance probability of p and Qmax is the maximum 1 

daily runoff. Both Qp and Qmax are calculated from a FDC standardised by the mean daily 2 

runoff to enable the comparison between catchments. 3 

All these descriptors can be obtained easily from digital terrain models and other gridded 4 

dataset of climate, such as rainfall and evapotranspiration, except for the case of those 5 

descriptors that capture the properties of the FDC. In this case, a further analysis should be 6 

carried out to establish relationships between these indexes and different soil descriptors to 7 

enable estimation in ungauged catchments. However, this additional step is beyond the scope 8 

of this paper. 9 

The following sub-section addresses how these catchment descriptors can explain the 10 

differences in flood generation processes among catchments. 11 

3.1 Explaining flood processes by catchment descriptors 12 

Catchment area, A, and the respective T-year rainfall quantile, PT, are the two first catchment 13 

descriptors usually introduced into a regression model. As expected, catchment area always 14 

exerts the largest influence on the magnitude of floods, as generally larger catchments lead to 15 

larger floods. The inclusion of the rainfall quantile gives additional information about 16 

differences in flood magnitude between similar sized catchments, as larger values of PT will 17 

usually result in larger floods being generated. 18 

The mean catchment slope, S, explains differences among catchments due to their 19 

topography. Catchments with steeper slopes are expected to have faster runoff velocity in 20 

hillslopes which reduces the concentration time, and consequently lead to higher peak flow 21 

values. 22 

The concavity index, IC, characterises the upper part of the FDC, explaining differences in 23 

catchment hydrological responses. Larger values of IC are obtained at sites where the 24 

hydrological response is more smoothed due to the existence of aquifers or the influence of 25 

snowmelt. In contrast, smaller values of IC are found in catchments with fast runoff responses 26 

due to the existence of impermeable soils or extreme climate conditions, as is often the case in 27 

arid and semi-arid regions (Castellarin et al., 2013). 28 

The extremity index, Ie, explains how large PT is in comparison to Pm. This descriptor gives 29 

information about the variability of extreme rainfall events compared to the mean annual 30 
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rainfall. Smaller values of Ie will typically be observed in more arid regions, where larger year 1 

to year variability in extreme rainfall events is observed.  2 

P0 is related to the potential maximum water retention of a soil. Therefore, this descriptor 3 

gives information about the portion of precipitation transformed into surface runoff in the 4 

catchment. In fact, P0 supplies different information than the IC index. The latter explains the 5 

probability distribution of daily runoffs, capturing the relationship between surface runoff and 6 

subsurface flow, without accounting for the precipitation. However, P0 gives information 7 

about the hydrologic abstraction process to transform precipitation into surface runoff. 8 

Potential evapotranspiration, PET, gives information about the initial moisture content. A 9 

catchment with wetter soil moisture content will drive a larger flood than a catchment with 10 

dryer soil moisture content, for the case of a similar rainfall event. The aridity index, Ia, also 11 

accounts for the likely initial soil moisture content before a flood begins.  12 

 13 

4 Methodology 14 

The methodology section describes the GLS regression model used in this study. In the 15 

following four sub-sections, the necessary developments of different aspects of the GLS 16 

model are described in more detail. Firstly, the estimation of the covariance matrix of 17 

sampling errors is presented based on Taylor series approximations (so-called the delta 18 

method). Next, the estimation of the covariance matrix of the modelling errors is addressed. 19 

Then, the estimation of the regression model parameters by the maximum likelihood 20 

technique is described. Finally, three measures to assess the quality of the GLS regression 21 

model are presented. 22 

4.1 Covariance matrix of sampling errors 23 

The diagonal elements of Σε contain the sampling variance of the log-transformed T-year 24 

quantile of the at-site estimates (Eq. 6), which primarily depends on the frequency distribution 25 

used, the record-length, and the procedure to estimate its parameters. In this paper, Taylor 26 

series expansions were used to obtain approximate analytical solutions of these uncertainties, 27 

but other methods could also have been adopted such as jackknife resampling (Liu and Singh, 28 

1992) or bootstrapping (Efron and Tibshirani, 1993). In the case of the GEV distribution, 29 

which is the frequency distribution recommended in the Ebro River catchment by Jiménez-30 
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Álvarez et al. (2012), the asymptotic variance of the log-transformed quantile is given by Rao 1 

and Hamed (2000) and shown in  Eq. (11). 2 
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where y is the log-transformed quantile defined in Eq. (1), u, α and k are the location, scale 4 

and shape parameters, respectively, of the GEV distribution and e is Euler's number. The 5 

T-year flood quantile, xT, in the case of a GEV distribution is given by Eq. (12). 6 
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In the case when the shape parameter is estimated by a regional estimate of the L-coefficient 8 

of skewness, L-CS, and considered a constant, Eq. (11) can be reduced to only three terms, as 9 

k is a constant (Eq. 13) (Lu and Stedinger, 1992). Further details on the analytical expressions 10 

of the individual terms in Eq. (13) can be found in Appendix A. 11 
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The off-diagonal elements of Σε describe the covariance between at-site estimates at different 13 

sites to account for the fact that individual storms are more likely to affect neighbour 14 

catchments than catchments located further apart. The covariance between log-transformed 15 

quantiles at different sites is estimated using Eq. (14). Further details on the analytical 16 

evaluation of this covariance term can be found in Appendix B. 17 
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When the L-moment method is used, correlations between probability weighted moments 19 

(PWM)  at two different sites are needed in order to estimate the off-diagonal elements of  20 

(Eq, B9-B11). As in previous studies, this correlation is assumed to be related to the 21 
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correlation between AMS by a power function as suggested by Eq. (15) (Stedinger, 1983; 1 

Madsen and Rosbjerg, 1997; Martins and Stedinger, 2002). 2 

 ijbb rjri
,   (15) 3 

where bri is the rth order PWM at site i, 
rjri bb , is the correlation between two rth order PWMs 4 

at sites i and j, ij is the correlation between AMS of peak flows at sites i and j, and δ is the 5 

exponent of ij , which is unknown. 6 

A bootstrap experiment was carried out to estimate the values of δ from the properties of 7 

correlations between PWMs following the methodology used by Kjeldsen and Jones (2006). 8 

For each pair of sites, the overlapping period was identified and a new sample was generated 9 

by means of a bootstrap technique. A year is selected randomly with replacement from the 10 

overlapped record. For each selected year the pair of associated annual maximum peak flow 11 

observations is transferred to the bootstrap sample in order to keep the inter-site correlation. 12 

The procedure is repeated until the synthetic sample length equals the overlapping length, and 13 

finally, the PWMs are calculated from the synthetic samples. The procedure is repeated 1,000 14 

times to estimate the correlation between PWM at different sites. 15 

The final step involves the correlation between logarithmic values of AMS at different sites, 16 

ij , used to estimate 
rjri bb , , which was smoothed by a double exponential expression (Eq. 16) 17 

proposed by Kjeldsen and Jones (2009). . 18 
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where ρε,ij is the smoothed correlation with distance between sites i and j, dij is the distance 20 

between centroids of catchments i and j (in km) and φε,1, φε,2 and φε,3 are coefficients 21 

estimated using the least squares technique. 22 

4.2 Covariance matrix of modelling errors 23 

The covariance matrix of the modelling errors, Ση, equals a matrix describing inter-site 24 

correlations (Rη) scaled by the variance of modelling errors, ζ
2

η, (Eq. 7-8). Therefore, the 25 

diagonal elements of Ση describe the uncertainty in model estimations and are equal to the 26 

variance of modelling errors (ζη
2
). The off-diagonal elements of Ση describe the cross-27 

correlation of model errors between sites by ρη,ij, which is smoothed with distance between 28 
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sites following an expression similar to Eq. (16) with parameters φη,1, φη,2 and φη,3. 1 

     ddij 3,1,2,1,. exp1exp     2 

4.3 Estimation of regression model parameters 3 

The proposed model has several unknown parameters: the m+1 parameters of the regression 4 

model (θ), the variance of the model errors (ζη
2
) and the three parameters describing the 5 

model error correlation with distance (φη,1, φη,2 and φη,3). All these parameters can be 6 

estimated by the maximum likelihood technique, assuming that regression residuals follow a 7 

normal distribution with mean equal to zero and variance given by the covariance matrix Σω 8 

(Kjeldsen and Jones, 2009) (Eq. 17). The negative log-likelihood function, -ln(L), for the 9 

regression model is given by Eq. (18), and is minimised to estimate the model parameter 10 

values. 11 

  GRΣRΣΣΣΣ ηεηεηεw

2

η

2

η

2

η σσσ  2

ησ  (17) 12 

          θyθy XGXG 
12

η

T2

η σσdetlnL2ln  (18) 13 

In practice, the number of unknown parameters can be reduced, as for given values of ζη
2
 and 14 

φη,1, φη,2 and φη,3 the regression model parameters that minimise the negative log-likelihood 15 

function are given by the GLS estimator (Eq. 19). Therefore, the unknown parameters of the 16 

log-likelihood function are reduced to four: ζη
2
, φη,1, φη,2 and φη,3. 17 

  yθ
1T1T

GXXGX


1
ˆ  (19) 18 

4.4 Measures to select the regression model 19 

Once a regression model with m catchment descriptors is fitted to the observations, a 20 

multicollinearity test should be applied to avoid the inclusion of linear related covariates. The 21 

variance inflation factor (VIF) was used, as it is a common test of multicollinearity (Eq. 20). 22 

 j
j

R
VIF

21

1


  (20) 23 

where R
2

j is the determination coefficient between the jth catchment descriptor and the 24 

remaining m-1 catchment descriptors used in the regression model. Multicollinearity arises 25 

when VIF exceeds a value of five (Montgomery et al., 2012). 26 
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Griffis and Stedinger (2007) suggested the standard error of prediction (SEP) of the true flood 1 

quantiles as a useful tool to compare regression models (Eq. 21).  2 

 
110

10ln
 GLSAVP

SEP  (21) 3 

 



N

1i

12

ηGLS
N

1
σAVP T

ii xx XΣX
1

w

T  (22) 4 

where AVPGLS is the average variance of prediction for a GLS regression model (Eq. 22) 5 

across all the N gauging stations used in the regression model and xi is a row vector with the 6 

catchment descriptors used in the regression model at site i. Lower values of AVPGLS and SEP 7 

suggest a more accurate regression model. 8 

In addition, the improvement of a more complex GLS model when compared to a simpler 9 

OLS model should be quantified to decide when the more complex model can be accepted. 10 

For this purpose, the error variance ratio (EVR) was adopted to quantify the relationship 11 

between the magnitude of the average sampling variance and the magnitude of the model 12 

error variance (Eq. 23). Griffis and Stedinger (2007) argue that an OLS model should be used 13 

when EVR is greater than 0.2, as the sampling error is negligible compared to the modelling 14 

error . 15 

 
 mσN

tr
EVR

2

η

Σ̂
  (23) 16 

where  Σ̂tr  is the trace of the covariance matrix of the sampling errors and  m2

  is the 17 

variance of modelling errors for the regression model with m catchment descriptors. 18 

 19 

5 Results 20 

This section is composed of two sub-sections. Firstly, the results about the implementation of 21 

the proposed GLS technique with a view to the existing recommendations given in Spain to 22 

estimate the frequency distribution is presented. Then, the application of the GLS regression 23 

model to the semi-arid Ebro River catchment is documented. 24 
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5.1 Specification of sampling and model error structures 1 

5.1.1 Assessment of sampling variance based on Taylor series 2 

The accuracy of the analytical expressions of the variance of the flood quantile estimates 3 

based on the Taylor series approximations (Appendix A) was assessed through a Monte Carlo 4 

experiment. A set of random synthetic series with varying sample lengths from 10 to 100  was 5 

generated from a GEV distribution. Five experiments were conducted, one for each 6 

homogeneous region in the Ebro River catchment. The regional growth curve was used in 7 

each homogeneous region, with L-mean equal to one and the regional values of L-CV and L-8 

CS given in Table 1. A total of 10,000 random realisations were generated for each case. 9 

The results of the Monte Carlo experiment (Fig. 2) show the Taylor series approximation fits 10 

the sampling variance estimated by Monte Carlo simulations almost perfectly for the three 11 

return periods in Regions 91, 92, 93 and 95, except some slight deviations for shorter record-12 

lengths in Regions 92 and 94. In Region 93, the analytical expressions overestimate the 13 

sampling variance, mainly for the case of smaller record lengths. These deviations can be 14 

explained by the sharp curvature of the frequency distribution in this region, given by a low 15 

shape parameter (Table 1) that leads to large uncertainties in quantile estimates. All the 16 

gauging stations used in the Ebro River catchment exceed 20 years of record-length. As the 17 

main purpose of the variance-covariance estimates is to give relative weight to the different 18 

sites in the GLS model framework, the performances of the Taylor series approximations 19 

were considered adequate for the purpose of this study.  20 

5.1.2 Correlation of sampling errors 21 

The off-diagonal elements of Σε represent the sampling covariance between quantiles at 22 

different sites (Eq. 14). Evaluation of these non-diagonal elements requires a functional 23 

relationship between the correlation of the observed flood series and the corresponding 24 

correlation between the PWMs as expressed in Eq. (15). The bootstrap experiment described 25 

in Section 3.1 was executed on the set of 93 gauging stations selected in the Ebro River 26 

catchment. The procedure was repeated 1,000 times to estimate the correlation at different 27 

sites. Figure 3 shows the correlation between AMF series at each pair of sites against the 28 

correlation between PWMs. The results suggest a linear relationship for the case of the first 29 

two order PWMs. Consequently, it is concluded that the value of the power δ used in Eq. 15 is 30 

equal to one for all the combinations between the first two order PWM.  31 
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Next, the three coefficients (φε,i) of the double exponential expression (Eq. 16) were estimated 1 

from the AMF data at the 93 observed sites in the Ebro River catchment using a simple least 2 

squares approach. Pairs of gauge stations with an overlapping record exceeding 30 years were 3 

selected to fit the model. The results are reported in Table 2 and the fitted model is shown in 4 

Fig. 4. 5 

5.2 Development of a GLS regression model in the Ebro River catchment 6 

Once the covariance matrices of the sampling were obtained, the parameters of a number of 7 

alternative regression models were estimated for the Ebro River catchment.  8 

Firstly, the results of the GLS regression model were compared to the results of the existing 9 

OLS regression models developed by Jiménez-Álvarez et al. (2012). This comparison was 10 

conducted on the homogeneous regions 91 and 92. Following on, the results of applying the 11 

GLS regression model in these regions were improved using additional catchment descriptors. 12 

Finally, an exploratory analysis was carried out to obtain a GLS regression model of the entire 13 

Ebro River catchment, aiming to capture its great heterogeneities by a single model. 14 

5.2.1 GLS regression model applied to the Region 91 15 

The Region 91 has observed data from 34 gauging stations. Firstly, a GLS regression model 16 

was compared to the existing OLS model using the same catchment descriptors: A, PT, H and 17 

tinf. Adopting the GLS model leads to a decrease of 3-5% in the SEP (Table 3). However, the 18 

regression parameters are very similar. The benefits of the GLS model from the OLS model 19 

were quantified by the EVR measure. The three GLS models selected improve the existing 20 

OLS models, as EVR is positive for the three return periods. However, EVR is smaller than 21 

20%, showing that the sampling error is negligible compared to the GLS modelling error. 22 

Consequently, the OLS could be preferred in this case, as the use of a more complex GLS 23 

model does not lead to a sufficient improvement from the more simple OLS model. 24 

Nevertheless, the developed GLS regression model is a powerful tool that takes into account 25 

the sampling variance of quantile estimations, the spatial correlation of quantiles between 26 

sites, the error of the regression model and the spatial correlation of residuals. Additional 27 

catchment descriptors were introduced in the analysis to improve the initial results of the GLS 28 

regression model. 29 



 16 

In this region, climatic differences among catchments are almost negligible. On one hand, IC 1 

provides information about the soil storage capacity and the existence of aquifers. On the 2 

other, as PT shows a small variability, Ie gives information about the initial moisture content 3 

before the flood event. In addition, PET was also included in the two-year return period 4 

regression model. 5 

The results of the GLS regression model in Region 91 are shown in Table 4. Small modelling 6 

errors are achieved for the three return periods (Fig. 5). SEP was reduced to 15-20% from the 7 

30-40% obtained by the OLS model. This is a significant improvement of the GLS regression 8 

model. Furthermore, the EVR results show values around 40%, which indicates that the 9 

sampling error variance cannot be neglected compared to the modelling error variance. 10 

Consequently, the improved GLS regression model is preferred to the existing OLS model in 11 

the Region 91 of the Ebro River catchment. In addition, no linear related covariates were 12 

found in this region, as VIF values are smaller than five in all the models (Table 5).  13 

The evolution of spatial correlation of modelling errors is also shown in Fig. 6. The 14 

introduction of PT into the regression model leads to a significant reduction of the spatial 15 

correlation between residuals, thus suggesting a more complete description of the processes 16 

controlling the between-sites variation in flood quantiles. Furthermore, the introduction of the 17 

last descriptor into the regression models leads to the lowest spatial correlation. It should be 18 

noted the inclusion of H was considered worthwhile, as its introduction removes almost 19 

completely the correlation of residuals with distance. 20 

5.2.2 GLS regression model applied to the Region 92 21 

The Region 92 has observed data from 25 gauging stations. Firstly, a GLS regression model 22 

was constructed and compared to the existing OLS model using the same set of catchment 23 

descriptors: A, PT and A1500. The results show that the GLS model leads to a reduction of 24 

6-9% in the SEP for the return periods of 25 and 100 years when compared to the benchmark 25 

performance of the existing OLS model (Table 3). In addition, the GLS models for 25 and 26 

100 years are preferred to the existing OLS models in terms of EVR, as sampling errors are 27 

more than 100% greater than modelling errors. However, for the case of a return period of 28 

two years, the OLS model is preferred, as the GLS model worsens the SEP. 29 

In this region, the existing regression models were improved by introducing the initial 30 

abstraction, P0, to explain differences in runoff production. Once the portion of precipitation 31 
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transformed into runoff is considered in the regression model, the concavity index, IC, was 1 

introduced to account for the relationship between surface and subsurface processes in the 2 

catchment. 3 

The results of the improved GLS regression model in the Region 92 are presented in Table 6. 4 

A reduction of modelling errors is obtained as additional catchment descriptors are included 5 

in the model (Fig. 5). The SEP values obtained using the GLS model halved those of the 6 

existing OLS regression models, obtaining values around 20-25%. In this region, adopting the 7 

GLS regression model leads to a significant improvement compared to the OLS model for 8 

return periods of 25 and 100 years. The GLS model is clearly preferred to the OLS for all 9 

combinations of catchment descriptors, even for the model with only the catchment area. 10 

Furthermore, regression models with six parameters lead to small EVR values, i.e., small 11 

modelling variances are achieved compared to the mean sampling variance. However, the 12 

GLS model for the two-year return period requires at least five descriptors to be preferred to 13 

the OLS model, as the regression model errors show a slight increase with respect to the rest 14 

of return periods. Nevertheless, the GLS regression model improves significantly the results 15 

of the OLS model and SEP is reduced to 25%.  In addition, no linear related covariates were 16 

found in this region, as VIF values are smaller than five in all the models (Table 7).  17 

The introduction of the initial abstraction, P0, leads to an almost complete eradication of the 18 

cross correlation between model error residuals (Fig. 6), suggesting that this descriptor 19 

effectively explains the local differences between flood series not otherwise captured by the 20 

scale and climate descriptors. 21 

5.2.3 A GLS regression model for the entire Ebro River catchment 22 

A GLS regression model was fitted to the 93 gauging stations of the Ebro River catchment, 23 

with the aim of capturing its great heterogeneities by a single model. In this case, the aridity 24 

index (Ia) was found to explain much of the remaining spatial clustering of the regression 25 

residuals when the effects of both catchment area (A) and extreme rainfall (PT) have been 26 

taken into account. In the central part of the catchment there exists a large area characterised 27 

as being semi-arid, while sub-humid climate areas can be found at the catchment boundaries, 28 

and small humid climate areas are observed in the Pyrenees. However, for the case of the two-29 

year return period, Pm explains better the differences in the magnitude of floods. 30 
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The results of the GLS regression model for the entire Ebro River catchment are shown in 1 

Table 8. The GLS model gives SEP values around 30%, which means that the GLS model for 2 

the entire Ebro River catchment captures its spatial heterogeneities in the regional hydrology 3 

and leads to a good description of the flood processes. However, the results are slightly larger 4 

than those of the GLS models applied individually to the homogeneous regions 91 and 92. 5 

Consequently, a GLS model fitted to a given homogeneous region with a reduced number of 6 

sites leads to more accurate results, as it was expected. Nevertheless, the GLS model for the 7 

entire basin also improves the results of the OLS model. In addition, no linear related 8 

covariates were found in this region, as VIF values are smaller than five in all the models 9 

(Table 9).  10 

 11 

6 Conclusions 12 

A regional flood frequency hydrology analysis was carried out focusing on the spatial 13 

expansion of information by a regression model based on the generalised least squares 14 

technique, where inter-site correlations of both sampling and modelling errors were explicitly 15 

accounted for in the error structure of the regression model. The regression model was 16 

developed following the existing recommendations in Spain for estimating flood frequency 17 

curves: (i) a Generalised Extreme Value distribution fitted by the L-moment estimation 18 

method; (ii) at-site estimations of both location and scale parameters and regional estimation 19 

of the shape parameter. The covariance matrix of sampling errors was adapted to reflect these 20 

assumptions case. 21 

The semi-arid Ebro River catchment located in Spain was selected as case study because 22 

previous studies encountered great heterogeneities of climate drivers, rainfall patterns and soil 23 

characteristics among sub-regions. 24 

An exploratory analysis on catchment descriptors was conducted to explain differences in 25 

flood processes among catchments. The results showed that differences in T-year peak flow 26 

estimates between catchments were mainly explained by: (i) catchment area, which is the 27 

main driver of the flood magnitude; (ii) One day T-year design rainfall, which is the main 28 

driver of the differences in flood magnitude between catchments with similar catchment area; 29 

(iii) the concavity index, which characterises the split between fast surface runoff and slow 30 

subsurface flow based on the FDC; (iv) mean catchment slope, which explains differences 31 

due to the topography that have influence on the runoff velocity in hillslopes; (v) the 32 
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extremity index, which in the Ebro River catchment gives information about the influence of 1 

antecedent precipitation on probable initial moisture content before the onset of flood events; 2 

(vi) potential evapotranspiration, which gives a better description of the probable initial 3 

moisture content; (vii) the precipitation depth absorbed by the soil before runoff begins, 4 

which explains differences caused by the hydrologic abstraction process. 5 

Summarising, the use of these catchment descriptors in a generalised least squares regression 6 

model improved the results of the existing ordinary least squares regression models, in terms 7 

of variance of modelling errors and standard error of prediction. In addition, most of the 8 

regression models removed almost completely the spatial correlation of residuals, which 9 

suggests a satisfactory description of the flood processes that controls quantile variations 10 

between sites. Consequently, the generalised least squares regression model developed in this 11 

paper can be used for making more reliable predictions in ungauged catchments with the 12 

purpose of both designing hydraulic infrastructures at sites without observed information, and 13 

thus improving flood risk management. 14 

 15 

Appendix A: Variance and covariance of the GEV parameters for the case of a 16 

constant shape parameter 17 

In the case of a GEV distribution, the asymptotic variance of xT for a constant shape 18 

parameter can be simplified by Eq. 11. In terms of L-moments, the remaining two parameters 19 

of the GEV distribution can be estimated by Equations A1 and A2. 20 
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where λ1 and λ2 are the first two L-moments, Γ is the gamma function and K1 and K2 are 23 

constants for a given k parameter (Equations A3 and A4). 24 

   k

k
K

k 


 121
1  (A3) 25 

 
k

k
K




11
2  (A4) 26 



 20 

Therefore, the variance and covariance of u and α parameters, for a given k parameter in Eq. 1 

(11), are derived as follows in terms of L-moments: 2 
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The variance and covariance of the first two L-moments can be obtained by Eq. A8 (Elamir 6 

and Seheult, 2004). 7 
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where var(b0), var(b1) and cov(b0,b1) can be estimated as follows (Hosking et al., 1985): 12 
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 5 

Appendix B: Covariance between GEV quantiles at different sites 6 

The covariance between GEV quantiles at different sites with a constant shape parameter can 7 

be obtained by Eq. B1.  8 
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As the partial derivative of xT with respect to the location parameter equals one, Eq. B1 can be 10 

simplified to Eq. B2. 11 
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 (B2) 12 

The covariance between u and α parameters for a given k parameter can be obtaiend as 13 

follows, in terms of L-moments: 14 
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     jijijjiiji KKKK ,2,2,1,1,1,2,1,2 ,cov,cov,cov    (B4) 16 
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where K1 and K2 are given in Equations A3 and A4. Covariance between L-moments can be 2 

obtained in terms of PWM as follows: 3 

   jiji bb ,0,0,1,1 ,cov,cov   (B6) 4 
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where covariance between PWM can be obtained by the following expressions: 7 
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where mij is the number of overlapping years between sites i and j, ni and nj are record-lengths 11 

at sites i and j respectively, and 
rjri bb ,  is the correlation between the rth order PWMs at sites i 12 

and j given by Eq. 15. 13 

 14 

Acknowledgements 15 

The authors thank the financial contribution made by the COST Office grant ES0901 16 

"European procedures for flood frequency estimation (FloodFreq)" by means of the Short 17 

Term Scientific Mission COST-STSM-ECOST-STSM-ES0901-020712-018289. 18 

 19 

References 20 



 23 

Blöschl, G., Sivalapan, M., Wagener, T., Viglione, A. and Savenije, H.: Runoff prediction in 1 

ungauged basin. Synthesis across processes, places and scales. Cambridge University Press, 2 

New York, USA, 2013.  3 

Bocchiola, D., De Michele, C. and Rosso, R.: Review of advances in index flood estimation. 4 

Hydrol. Earth Syst. Sci., 7 (3), 283-296, 2013. 5 

Brath, A., Castellarin, A., Franchini, M. and Galeati, G.: Estimating the index flood using 6 

indirect methods. Hydrolog. Sci. J., 46 (3), 399-418, 2001. 7 

Castellarin, A., Botter, G., Hughes, D. A., Liu, S., Ouarda, T. B. M. J., Parajka, J., Post, D. A., 8 

Sivapalan, M., Spence, C., Viglione, A. and Vogel, R. M.: Prediction of flow duration curves 9 

in ungauged basins. In: Runoff prediction in ungauged basins. Synthesis across processes, 10 

places and scales. G. Blöschl, M. Sivapalan, T. Wagener, A. Viglione and H. Savenije (Eds.), 11 

Chapter 7, 135-162. Cambridge University Press, Cambridge, UK, 2013. 12 

Castellarin, A., Burn, D. H. and Brath, A.: Homogeneity testing: how homogeneous do 13 

heterogeneous cross-correlated regions seem? J. Hydrol., 360, 67-76, 2008. 14 

Castellarin, A., Vogel, R. M. and Matalas, N. C.: Multivariate probabilistic regional 15 

envelopes of extreme floods. J. Hydrol., 336, 376-390, 2007. 16 

CEDEX.: Mapa de caudales máximos. Memoria Técnica (Map of maximum flows. Technical 17 

Report). Centre for Hydrographic Studies of CEDEX, Madrid, Spain, 2011.  18 

Dawdy, D. R., Griffis, V. W. and Gupta, V. K.: Regional flood-frequency analysis: how we 19 

got here and where we are going. J. Hydrol. Eng., 17, 953-959, 2012. 20 

Efron, B. and Tibshirani, R. J.: An introduction to the Bootstrap. Monographs on statistics and 21 

applied probability, 57. Chapman & Hall / CRC Press, Boca Raton, Florida, USA, 1993. 22 

Elamir, E. A. H. and Seheult, A. H.: Exact variance structure of sample L-moments. J. Stat. 23 

Plan. Inf., 124, 337-359, 2004. 24 

European Union: Directive 2007/60/EC of the European Parliament and of the Council of 23 25 

October 2007 on the assessment and management of flood risks. Official Journal of the 26 

European Union, L 288, 27-34, 2007. 27 

Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S. and Blöschl, G.: Bayesian 28 

MCMC approach to regional flood frequency analyses involving extraordinary flood events at 29 

ungauged sites. J. Hydrol., 394, 101-117, 2010. 30 



 24 

Griffis, V. W. and Stedinger, J. R.: The use of GLS regression in regional hydrologic 1 

analyses. J. Hydrol., 344, 82-95, 2007. 2 

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis. An approach based on L-3 

Moments. Cambridge University Press, Cambridge, UK, 1997. 4 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F.: Estimation of the Generalized Extreme-5 

Value distribution by the method of Probability-Weighted Moments. Technometrics, 27 (3), 6 

251-261, 1985. 7 

Jiménez-Álvarez, A., García-Montañés, C., Mediero, L., Inicio, L. and Garrote, J.: Map of 8 

maximum flows of intercommunity basins, Revista de Obras Públicas, 3533, 7-32, 2012. 9 

Kjeldsen, T.R. and Jones, D.A. Predicting the index flood in ungauged UK catchments: on the 10 

link between data-transfer and spatial model structure. J. Hydrol., 387, 1-10, 2010. 11 

Kjeldsen, T. R. and Jones, D. A.: An exploratory analysis of error components in hydrological 12 

regression modelling. Water Resour. Res., 45, W02407, 2009. 13 

Kjeldsen, T. R. and Jones, D. A.: Prediction uncertainty in a median-based index flood 14 

method using L-moments. Water Resour. Res., 42, W07414, 2006. 15 

Laio, F., Ganora, D., Claps, P. and Galeati, G.: Spatially smooth regional estimation of the 16 

flood frequency curve (with uncertainty). J. Hydrol., 408, 67-77, 2011. 17 

Liu, R. Y. and Singh, K.: Efficiency and robustness in resampling. Ann. Stat., 20 (1), 370-18 

384, 1992. 19 

Lu, L. and Stedinger, J. R.: Variance of two- and three-parameter GEV/PWM quantile 20 

estimators: formulae, confidence intervals, and a comparison. J Hydrol, 138, 247-267, 1992. 21 

Madsen, H. and Rosbjerg, D.: The partial duration series method in regional index-flood 22 

modelling. Water Resour. Res., 33 (4), 771-781, 1997. 23 

MARM.: Guía metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas 24 

Inundables (Handbook of flood mapping in Spain). Ministerio de Medio Ambiente y Medio 25 

Rural y Marino, Madrid, Spain, 2011. 26 

Martins, E. S. and Stedinger, J. R.: Cross correlations among estimators of shape. Water 27 

Resour. Res., 38 (11), 1252, 2002. 28 



 25 

Merz, R. and Blöschl, G.: Flood frequency hydrology. 1. Temporal, spatial and causal 1 

expansion of information, Water Resour. Res., 44, W08423, 2008. 2 

Montgomery, D. C., Peck, E. A. and Vining, G. G.: Introduction to linear regression analysis. 3 

John Wiley & Sons, Hoboken, New Jersey, USA, 2012. 4 

Rao, A. R. and Hamed, K. H.: Flood frequency analysis. CRC Press, Boca Raton, Florida, 5 

USA, 2000. 6 

Robson, A. and Reed, D.: Flood Estimation Handbook. 3: Statistical procedures for flood 7 

frequency estimation. Centre for Ecology & Hydrology, Wallingford, UK, 1999. 8 

Rosbjerg, D., Blöschl, G., Burn, D. H., Castellarin, A., Croke, B., Di Baldassare, G., 9 

Iacobellis, V., Kjeldsen, T. R., Kuczera, G., Merz, R., Montanari, A., Morris, D., Ouarda, T. 10 

B. M. J., Ren, L., Rogger, M., Salinas, J. L., Toth, E. and Viglione, A. Prediction of floods in 11 

ungauged basins. In: Runoff prediction in ungauged basins. Synthesis across processes, places 12 

and scales. G. Blöschl, M. Sivapalan, T. Wagener, A. Viglione and H. Savenije (Eds.), 13 

Chapter 9, 189-226. Cambridge University Press, Cambridge, UK, 2013. 14 

Sauquet, E. and Catalogne, C.: Comparison of catchment grouping methods for flow duration 15 

curve estimation at ungauged sites in France. Hydrol. Earth Syst. Sci., 15, 2421-2435, 2011. 16 

Stedinger, J. R.: Estimating a regional flood frequency distribution. Water Resour. Res., 19 17 

(2), 503-510, 1983. 18 

Stedinger, J. R. and Tasker, G. D.: Regional hydrologic analysis 1. Ordinary, weighted and 19 

generalized least squares compared, Water Resour. Res., 21 (9), 1421-1432, 1985.  20 

Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivalapan, M. and Blöschl, G.: 21 

Comparative assessment of predictions in ungauged basins - Part 3: Runoff signatures in 22 

Austria. Hydrol. Earth Syst. Sci., 17, 2263-2279, 2013. 23 

 24 



 1 

Figure 1. Location of the Ebro River catchment. Solid points show location of the gauging 1 

stations used in the study. 2 

 3 

Figure 2. Comparison between sampling variance estimated by Monte Carlo simulations and 4 

the analytical solution estimated by Taylor series approximation. Regions by rows: a) Region 5 

91; b) Region 92; c) Region 93; d) Region 94; e) Region 95. Return period by columns: 1) 6 

two years; 2) 25 years; 3) 100 years 7 

 8 

Figure 3. Correlation between AMF series and PWMs. a) Between first-order PWMs (b0); b) 9 

between second-order PWMs (b1); c) between first-order and second-order PWMs (b0 and b1) 10 

 11 

Figure 4. Correlation between AMF series and distance between catchment centroids for the 12 

93 flood series from the Ebro catchment. Solid line shows the double exponential function 13 

fitted using the least square technique. 14 

 15 

Figure 5. Evolution of the variance of modelling errors, σ
2
η. Regions by rows: a) Region 91; 16 

b) Region 92; c) Entire Ebro River catchment. 17 

 18 

Figure 6. Evolution of correlation of residuals with distance between sites in km
2
. Regions by 19 

rows: a) Region 91; b) Region 92; c) Entire Ebro River catchment. Return period by column: 20 

1) two years; 2) 25 years; 3) 100 years. 21 
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Table 1. Regional values of the L-CS and L-coefficient of variation (L-CV), number of 

gauging stations, N, and regional shape parameter of the GEV distribution, k, in the five 

homogeneous regions of the Ebro River catchment. 

 

Region L-CS L-CV N k 

91 0.194 0.257 34 -0.037 

92 0.410 0.343 25 -0.343 

93 0.489 0.569 10 -0.444 

94 0.386 0.497 12 -0.312 

95 0.272 0.357 12 -0.154 

 

 

Table 1
Click here to download Table: Table_1.docx



Table 2. Coefficients (φε,i) and results of the root mean squared error (RMSE) and 

coefficient of determination (R
2
) for the double exponential function (Eq. 14) fitted to 

the observed data. 

 

φε,1 φε,2 φε,3 RMSE R
2 

0.5406 0.0952 0.0073 0.210 0.370 
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 1 

Table 3. Comparison between OLS and GLS regression models for return periods, T, of two, 25 1 

and 100 years.  2 

 Region 91 

 OLS GLS 

Coefficient T = 2 T = 25 T = 100 T = 2 T = 25 T = 100 

Intercept (θ0) -4.8949 -5.5541 -5.7549 -5.0833 -5.2676 -5.7015 

log10(A) 0.7753 0.7733 0.7738 0.7822 0.7743 0.7732 

log10(PT) 2.9029 2.6320 2.5530 3.0057 2.7855 2.5547 

log10(H) 0.0296 0.2758 0.3441 0.0337 0.0951 0.3311 

log10(tinf) -0.0480 -0.0179 -0.0200 -0.0655 -0.0695 -0.0382 

σ
2
η
 

0.0196 0.0247 0.0268 0.0136 0.0168 0.0176 

SEP (%) 33.12 37.40 39.05 29.81 34.15 34.08 

EVR - - - 0.100 0.135 0.150 

 Region 92 

 OLS GLS 

Coefficient T = 2 T = 25 T = 100 T = 2 T = 25 T = 100 

Intercept (θ0) -4.2161 -5.7193 -6.0179 -2.9825 -4.7874 -4.9560 

log10(A) 0.7025 0.6616 0.6445 0.5987 0.5877 0.5667 

log10(PT) 2.4689 3.1736 3.2754 1.9132 2.8129 2.8796 

log10(A1500) 0.0555 0.0525 0.0576 0.0888 0.0790 0.0861 

σ
2
η
 

0.0258 0.0253 0.0270 0.0229 0.0117 0.0100 

SEP (%) 38.34 37.88 39.23 42.60 31.90 30.26 

EVR - - - 0.113 1.194 1.802 

 3 
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 1 

Table 4. Parameters and statistics of the GLS regression models fitted in the Region 91 for return periods, T, of two, 25 and 100 years.  1 

T Model θ0 log(A) log(PT) log(IC)
9 

log(S)
-1 

Ie log(PET) σ
2
η AVPGLS SEP (%) MLE EVR 

2 

1 0.1178 0.7845 - - - - - 0.1202 0.1751 123.7 -81.1 0.011 

2 -5.3561 0.7747 3.1911 - - - - 0.0138 0.0153 29.12 -107.3 0.098 

3 -5.5245 0.7760 3.2620 -9.8808 - - - 0.0118 0.0137 27.48 -116.0 0.115 

4 -5.7334 0.8185 3.3343 -10.7554 -0.0246 - - 0.0105 0.0126 26.28 -122.0 0.129 

5 -5.1518 0.8234 2.7761 -10.2848 -0.0288 0.0169 - 0.0053 0.0066 18.92 -135.9 0.254 

6 -10.468 0.7933 2.8021 -10.1947 -0.0275 0.0271 1.8255 0.0032 0.0042 14.97 -148.2 0.427 

  θ0 log(A) log(PT) log(IC)
9 

log(S)
-1 

Ie log(H)      

25 

1 0.5563 0.7433 - - - - - 0.0484 0.0565 59.08 -77.24 0.047 

2 -5.4299 0.7648 2.9819 - - - - 0.0175 0.0204 33.81 -99.36 0.129 

3 -5.2504 0.7598 2.8763 -12.0162 - - - 0.0126 0.0158 29.58 -112.6 0.179 

4 -5.3600 0.7939 2.8953 -12.6452 -0.0309 - - 0.0095 0.0120 25.68 -119.4 0.238 

5 -4.9145 0.8075 2.5148 -13.4199 -0.0342 0.0125 - 0.0065 0.0084 21.39 -126.2 0.348 

6 -5.7168 0.8177 2.5009 -14.2157 -0.0335 0.0103 0.2875 0.0059 0.0076 20.34 -128.12 0.383 

  θ0 log(A) log(PT) log(IC)
9 

log(S)
-1 

Ie log(H)      

100 

1 0.6834 0.7375 - - - - - 0.0456 0.0522 56.47 -76.38 0.058 

2 -5.5355 0.7617 2.9404 - - - - 0.0193 0.0228 35.86 -96.58 0.137 

3 -5.2784 0.7564 2.8039 -12.5680 - - - 0.0141 0.0181 31.73 -110.18 0.187 

4 -5.3863 0.7916 2.8192 -13.1645 -0.0322 - - 0.0105 0.0136 27.31 -117.09 0.253 

5 -4.9152 0.8034 2.4591 -14.0366 -0.0349 0.0114 - 0.0076 0.0102 23.58 -122.29 0.346 

6 -6.0353 0.8188 2.4423 -15.0828 -0.0346 0.0088 0.3956 0.0065 0.0084 21.36 -124.54 0.409 

 2 
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 1 

Table 5. Results of the VIF coefficient for  the GLS regression models fitted in the Region 91 for return periods, T, of two, 25 and 100 years.  1 

T Model log(A)
 

log(PT) log(IC)
9
 log(S)

-1
 Ie log(PET) 

2 

1 - - - - - - 

2 1.0060 1.0060 - - - - 

3 1.0085 1.0066 1.0033 - - - 

4 1.1735 1.0102 1.0211 1.1878 - - 

5 1.2226 1.1117 1.0262 1.1922 1.1625 - 

6 1.3373 1.1140 1.0337 1.1971 2.2382 2.3499 

25 

 log(A) log(PT) log(IC)
9
 log(S)

-1
 Ie log(H) 

1 - - - - - - 

2 1.0106 1.0106 - - - - 

3 1.0133 1.0106 1.0027 - - - 

4 1.1816 1.0169 1.0202 1.1909 - - 

5 1.2282 1.0771 1.0262 1.1950 1.1190 - 

6 1.2379 1.0812 1.1070 1.2227 1.4795 1.5862 

100 

 log(A) log(PT) log(IC)
9
 log(S)

-1
 Ie log(H) 

1 - - - - - - 

2 1.0109 1.0109 - - - - 

3 1.0137 1.0111 1.0029 - - - 

4 1.1835 1.0195 1.0201 1.1934 - - 

5 1.2303 1.0685 1.0265 1.1974 1.1072 - 

6 1.2409 1.0686 1.1066 1.2237 1.4835 1.5802 

 2 
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 1 

Table 6. Parameters and statistics of the GLS regression models fitted in the Region 92 for return periods, T, of two, 25 and 100 years.  1 

T Model θ0 log(A) log(PT) log(P0)
 

log(S)
-4 

log(IC)
-2 

log(PET)
 

σ
2
η AVPGLS SEP (%) MLE EVR 

2 

1 0.2124 0.6948 - - - - - 0.0614 0.0910 78.74 -63.31 0.042 

2 -3.8397 0.6907 2.3191 - - - - 0.0244 0.0313 42.50 -69.96 0.106 

3 -3.4487 0.7295 2.6532 -0.8035 - - - 0.0160 0.0190 32.55 -75.24 0.162 

4 -3.2008 0.7334 2.5334 -0.8262 -0.0042 - - 0.0132 0.0164 30.15 -79.37 0.196 

5 -4.2909 0.7631 3.0036 -0.6297 -0.0052 20.7162 - 0.0098 0.0128 26.48 -85.19 0.265 

6 -2.3569 0.7795 2.7762 -0.3597 -0.0042 25.6163 -0.6854 0.0085 0.0116 25.22 -87.92 0.305 

  θ0 log(A) log(PT) log(P0)
 

log(S)
-2 

log(IC)
-2 

log(H)
 

     

25 

1 0.7975 0.6658 - - - - - 0.0354 0.0482 53.97 -59.05 0.395 

2 -5.5499 0.6670 3.1263 - - - - 0.0130 0.0181 31.72 -68.22 1.071 

3 -5.2879 0.7048 3.4322 -0.7303 - - - 0.0086 0.0124 26.02 -72.50 1.616 

4 -4.9948 0.7058 3.3175 -0.7436 -0.0342 - - 0.0061 0.0101 23.42 -75.76 2.296 

5 -5.2986 0.7235 3.5572 -0.8263 -0.0467 -0.0165 - 0.0039 0.0082 21.05 -78.72 3.566 

6 -6.0505 0.7380 3.5820 -0.7889 -0.0375 -0.0213 0.1997 0.0034 0.0081 20.99 -79.15 4.149 

  θ0 log(A) log(PT) log(P0)
 

log(S)
-2 

log(IC)
-2 

log(H)
 

     

100 

1 1.0508 0.6568 - - - - - 0.0316 0.0427 50.40 -57.02 0.571 

2 -5.7504 0.6513 3.1881 - - - - 0.0120 0.0170 30.69 -65.60 1.506 

3 -5.4909 0.6891 3.4835 -0.7355 - - - 0.0082 0.0124 26.05 -69.80 2.208 

4 -5.1896 0.6899 3.3698 -0.7445 -0.0362 - - 0.0052 0.0096 22.90 -73.13 3.488 

5 -5.6423 0.7114 3.6705 -0.8368 -0.0491 -0.0171 - 0.0030 0.0079 20.70 -75.77 5.973 

6 -6.7731 0.7324 3.7300 -0.7801 -0.0363 -0.0243 0.2851 0.0019 0.0073 19.86 -76.53 9.279 
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 1 

Table 7. Results of the VIF coefficient for the GLS regression models fitted in the Region 92 for return periods, T, of two, 25 and 100 years.  1 

T Model log(A)
 

log(PT) log(P0) log(S)
-4

 log(IC)
-2

 log(PET) 

2 

1 - - - - - - 

2 1.0135 1.0135 - - - - 

3 1.2079 1.0142 1.1977 - - - 

4 1.2106 1.0327 1.2008 1.0225 - - 

5 1.2780 1.2812 1.3827 1.0685 1.6025 - 

6 1.3348 1.4027 2.1386 1.2074 1.8078 2.3525 

25 

 log(A) log(PT) log(P0) log(S)
-2

 log(IC)
-2

 log(H) 

1 - - - - - - 

2 1.0087 1.0087 - - - - 

3 1.2122 1.0134 1.2025 - - - 

4 1.2168 1.0273 1.2068 1.0209 - - 

5 1.2461 1.0532 1.2453 1.1967 1.2383 - 

6 1.5315 1.0582 1.2676 1.9033 1.9632 3.4105 

100 

 log(A) log(PT) log(P0) log(S)
-2

 log(IC)
-2

 log(H) 

1 - - - - - - 

2 1.0052 1.0052 - - - - 

3 1.2109 1.0159 1.2096 - - - 

4 1.2160 1.0239 1.2137 1.0151 - - 

5 1.2455 1.0524 1.2552 1.1945 1.2414 - 

6 1.5329 1.0554 1.2776 1.9039 1.9690 3.4037 
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Table 8. GLS regression models in the entire Ebro River catchment for return periods, T, of two, 25 and 100 years.  1 

T Model θ0 log(A) log(PT) log(Pm)
-5 

log(H)
 

log(PET)
 

σ
2
η AVPGLS SEP (%) MLE EVR 

2 

1 -0.0472 0.7429 - - - - 0.4685 0.7817 788.0 -212.5 0.008 

2 -5.1623 0.7519 2.9652 - - - 0.2147 0.3676 245.4 -243.1 0.018 

3 -2.7361 0.7607 1.8430 -122.95 - - 0.0561 0.0801 72.73 -258.8 0.069 

4 0.9896 0.7305 1.3611 -211.59 -0.7869 - 0.0199 0.0229 35.90 -267.9 0.196 

5 3.1365 0.7308 1.4349 -195.29 -0.9033 -0.7030 0.0184 0.0211 34.40 -271.0 0.212 

  θ0 log(A) log(PT) (Ia)
-5 

log(IC)
-2 

log(PET)
 

     

25 

1 0.5265 0.7012 - - - - 0.2182 0.3287 217.1 -196.1 0.060 

2 -5.3890 0.7135 2.9550 - - - 0.0653 0.0962 81.57 -230.2 0.199 

3 -4.5950 0.7181 2.6027 -0.0318 - - 0.0176 0.0195 33.04 -240.1 0.742 

4 -4.2863 0.7097 2.4894 -0.0320 -0.0119 - 0.0159 0.0180 31.64 -247.5 0.821 

5 -1.6877 0.7175 2.4654 -0.0264 -0.0132 -0.9109 0.0148 0.0167 30.46 -253.5 0.881 

  θ0 log(A) log(PT) (Ia)
-5 

log(FDCS1)
-1 

log(H)
 

     

100 

1 0.7484 0.6881 - - - - 0.1718 0.2434 162.3 -188.9 0.089 

2 -5.4774 0.6993 2.9552 - - - 0.0386 0.0478 53.72 -222.5 0.397 

3 -4.7826 0.7055 2.6522 -0.0255 - - 0.0188 0.0209 34.24 -233.3 0.816 

4 -4.4789 0.7103 2.6070 -0.0280 -0.3016 - 0.0167 0.0189 32.49 -240.4 0.918 

5 -5.4395 0.7250 2.6234 -0.0285 -0.3731 0.3117 0.0149 0.0168 30.52 -245.7 1.031 

  2 
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Table 9. Results of the VIF coefficient for the GLS regression models fitted in the entire Ebro River catchment for return periods, T, of two, 25 1 

and 100 years.  2 

T Model log(A)
 

log(PT) log(Pm)
-5

 log(H) log(PET) 

2 

1 - - - - - 

2 1.0619 1.0619 - - - 

3 1.0782 1.8467 1.8555 - - 

4 1.0976 1.9108 2.1729 1.2312 - 

5 1.1006 2.1182 3.8694 1.2924 2.4152 

25 

 log(A) log(PT) (Ia)
-5

 log(IC)
-2

 log(PET) 

1 - - - - - 

2 1.0636 1.0636 - - - 

3 1.0886 1.2022 1.1924 - - 

4 1.0987 1.2855 1.1984 1.0719 - 

5 1.1075 1.2857 1.6745 1.0938 1.5301 

100 

 log(A) log(PT) (Ia)
-5

 log(FDCS1)
-1

 log(H) 

1 - - - - - 

2 1.0627 1.0627 - - - 

3 1.0899 1.1756 1.1671 - - 

4 1.1020 1.2281 1.3182 1.1464 - 

5 1.1483 1.2313 1.3185 1.2396 1.1411 

 3 

 4 

Table 9
Click here to download Table: Table_9.docx




