

Citation for published version:
Mueller, EH & Scheichl, R 2014, 'Massively parallel solvers for elliptic partial differential equations in numerical
weather and climate prediction: scalability of elliptic solvers in NWP', Quarterly Journal of the Royal
Meteorological Society, vol. 140, no. 685, pp. 2608-2624. https://doi.org/10.1002/qj.2327

DOI:
10.1002/qj.2327

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

This is the peer reviewed version of the following article: Mueller, E. H., & Scheichl, R. (2014). Massively parallel
solvers for elliptic partial differential equations in numerical weather and climate prediction: scalability of elliptic
solvers in NWP. Quarterly Journal of the Royal Meteorological Society, 140(685), 2608-2624, which has been
published in final form at 10.1002/qj.2327. This article may be used for non-commercial purposes in accordance
with Wiley Terms and Conditions for Self-Archiving

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161912442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/qj.2327
https://researchportal.bath.ac.uk/en/publications/massively-parallel-solvers-for-elliptic-partial-differential-equations-in-numerical-weather-and-climate-prediction(a55820d3-e7ca-4e50-885b-8c70c365a527).html

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)

Massively parallel solvers for elliptic PDEs in Numerical
Weather- and Climate Prediction

Eike H. Müllera∗ and Robert Scheichla
aDepartment of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

∗Correspondence to: e.mueller@bath.ac.uk

The demand for substantial increases in the spatial resolution of global weather-
and climate- prediction models makes it necessary to use numerically efficient
and highly scalable algorithms to solve the equations of large scale atmospheric
fluid dynamics. For stability and efficiency reasons several of the operational
forecasting centres, in particular the Met Office and the ECMWF in the UK,
use semi-implicit semi-Lagrangian time stepping in the dynamical core of the
model. The additional burden with this approach is that a three dimensional
elliptic partial differential equation (PDE) for the pressure correction has to
be solved at every model time step and this often constitutes a significant
proportion of the time spent in the dynamical core. In global models this PDE
must be solved in a thin spherical shell. To run within tight operational time
scales the solver has to be parallelised and there seems to be a (perceived)
misconception that elliptic solvers do not scale to large processor counts
and hence implicit time stepping can not be used in very high resolution
global models. After reviewing several methods for solving the elliptic PDE
for the pressure correction and their application in atmospheric models we
demonstrate the performance and very good scalability of Krylov subspace
solvers and multigrid algorithms for a representative model equation with
more than 1010 unknowns on 65536 cores on HECToR, the UK’s national
supercomputer. For this we tested and optimised solvers from two existing
numerical libraries (DUNE and hypre) and implemented both a Conjugate
Gradient solver and a geometric multigrid algorithm based on a tensor-
product approach which exploits the strong vertical anisotropy of the discretised
equation. We study both weak and strong scalability and compare the absolute
solution times for all methods; in contrast to one-level methods the multigrid
solver is robust with respect to parameter variations. Copyright c© 0000 Royal
Meteorological Society

Key Words: Numerical Weather Prediction, Dynamical core, Implicit time stepping, Elliptic Solvers,
Parallel scalability, Multigrid, Krylov subspace methods

Received . . .

Citation: . . .

1. Introduction

Modern forecast models in numerical weather- and
climate- prediction (NWP) use the fully compressible
non-hydrostatic Navier-Stokes equations to simulate the
dynamics of the atmosphere. If the atmospheric fields are

advanced forward in time by explicit time stepping, there
are severe limitations on the size of the model timestep,
which — for the model to remain stable—, must not exceed
the ratio of the grid size and velocity of the fastest waves.
For a compressible fluid these are acoustic waves with a
speed of several hundred metres per second at ground level.

Copyright c© 0000 Royal Meteorological Society
Prepared using qjrms4.cls [Version: 2011/05/18 v1.02]

2 E. H. Müller, R. Scheichl

Even if the vertical propagation of sound waves can be dealt
with, horizontal grid resolutions are likely to be reduced to
a few kilometres in the future, severely limiting the model
time step. In contrast, implicit time stepping allows to run
the model with larger time steps without compromising its
stability and without distorting the large scale flow close
to geostrophic balance. However, this requires the solution
of an elliptic partial differential equation (PDE) for the
pressure correction at every time step. In a non-hydrostatic
model this equation has to be solved in three dimensions,
i.e. on a spherical shell representing the earth’s atmosphere.

Elliptic PDEs in semi-implicit time stepping. Schematically,
for a set of variables φ = (u, v, w, π, θ, . . .) the time
evolution is described by the equation

Dφ(x, t)

Dt
= N [φ(x, t)] +Rφ. (1)

Here D/Dt is the material derivative; the (not necessarily
linear) operator N describes the large scale physical
processes such as the Coriolis force, pressure gradients,
gravitational acceleration and divergence due to mass
fluxes. In the dynamical core of the model, unresolved
sub-gridscale processes, such as turbulence, convection and
thermodynamic phase transitions, are included as external
forcings represented by the term Rφ.

In the semi-Lagrangian formulation, first introduced by
Robert (1981), the advection termsDφ/Dt are evaluated as
differences of fields at the next time step and at the departure
point of the current time step. The other terms are treated
semi-implicitly following Kwizak and Robert (1971). The
semi-Lagrangian semi-implicit time discretisation scheme
was first applied to a fully non-hydrostatic model in
Tanguay et al. (1990); a review of more recent models
which use semi-implicit semi-Lagrangian time stepping can
be found in Steppeler et al. (2003). Calculation of the
fields φj+1 at the next timestep tj+1 requires the solution
of an elliptic PDE for the pressure correction π′j+1. After
discretisation and linearisation, this PDE can be written as
a large algebraic problem

Aπ′j+1 = fj (2)

where the pressure correction at the next time step tj+1 is
represented by an n dimensional solution vector π′j+1 and
the right hand side fj only depends on fields at the current
time step tj. The matrix A is a sparse n× n matrix from
the discretisation of the continuum operator. To simplify the
presentation, this matrix is constructed from a discretisation
of the continuous pressure correction equation, instead of
the more common approach of first discretising the Euler
equations and then deriving a pressure correction equation
algebraically.

The number of degrees of freedom n is very large. To see
this, note that the number of grid cells of area h2 necessary
to cover the surface of the earth is n2d = 4πR2

earth/h
2,

which gives n2d ≈ 5 · 108 for a grid spacing of h = 1km.
The typical number of cells in the vertical direction is of the
order of nz ≈ 100 resulting in a total number of degrees of
freedom of n ≥ 1010.

On the other hand, the following estimate reveals the high
demands on the performance of the solver of the elliptic
problem in (2): for a horizontal resolution of 1km, the
limitations on the explicit time step are ∆t . ∆x/cs ≈ 3s

where cs ≈ 350ms−1 is the speed of sound at ground
level. By using implicit time stepping, this can be extended
tenfold to around 30s. To produce a 5 day global forecast
this requires 14400 time steps. When the model is run
operationally, the time available for the dynamical core is
typically less than an hour, often allowing less than twenty
minutes for the elliptic solver. In total, this means that
the non-linear equation has to be solved in less than 0.1s.
Usually this requires a very small number of iterations
(around 3) of the Newton algorithm, in each of which the
linear PDE has to be solved. Hence, the time available
for one linear solve is around 0.03s (requiring terascale
computing capability).

Efficient and massively scalable solvers. To solve a problem
of this size in operational time frames requires state-of-
the-art iterative solvers, such as suitably preconditioned
Krylov subspace or multigrid methods. The algorithms
have to scale algorithmically to problem sizes of O(1010),
i.e. the number of iterations should not grow significantly
with an increase in resolution. They should also be stable
with respect to variations of the coefficients. For optimal
performance it is crucial to exploit the strong vertical
coupling in the discretised operator.

Problems of this size can only be solved in a reasonable
time on massively parallel computers. This introduces
additional complications such as communication overheads,
synchronisation- and load balancing issues. In this paper we
intend to dispel the common misconception that solvers for
elliptic PDEs arising from semi-Lagrangian semi-implicit
time stepping do not scale to large core counts.

To demonstrate this we compare different solvers and
study their performance and scalability for the solution of
a model equation on up to 65536 cores on HECToR, the
UK’s national supercomputer which is hosted and managed
by the Edinburgh Parallel Computing Centre (EPCC). We
tested and optimised existing solvers from the Iterative
Solver Template Library (ISTL) which is part of the
Distributed and Unified Numerics Environment (DUNE;
Bastian et al. (2008a,b)) and from the hypre library (Falgout
and Yang (2002); Falgout et al. (2006)). The most efficient
general purpose preconditioners from these packages are
algebraic multigrid solvers, which have been shown to
scale to 100,000s of cores for different problems before
(Ippisch and Blatt (2011); Baker et al. (2012a,b)). However,
algebraic multigrid methods have an additional cost for
setting up the discretisation matrix and constructing the
hierarchy of multigrid levels. Since the problem we are
studying is discretised on a grid which can be written
as the tensor-product of a (semi-) structured horizontal
mesh and a regular one dimensional grid in the vertical
direction, we also implemented a geometric multigrid code
based on the tensor-product idea in Börm and Hiptmair
(1999). In this approach the grid is only coarsened in the
horizontal direction and a line-smoother is used to relax
all degrees of freedom in a vertical column simultaneously.
More specifically, we use a red-black block-SOR smoother
in combination with simple linear interpolation and cell-
average restriction in the horizontal direction. As discussed
in detail below, a small number of smoother iterations is
sufficient to solve the coarse grid problem.

All the solvers are based on a pure MPI implementation
and show very good weak scaling up to 65536 cores; in
addition they are all algorithmically scalable. The multigrid
solvers require substantially less iterations than the classical

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 3

Conjugate Gradient (CG) algorithm in Hestenes and Stiefel
(1952), preconditioned with vertical line relaxation, and
they are fully robust under variations of the parameters in
the model equation (as opposed to CG). In terms of absolute
performance, not surprisingly, the matrix-free geometric
multigrid solver outperforms the algebraic multigrid solvers
as (i) it requires less iterations to converge, (ii) each iteration
is about twice as fast and (iii) it does not have any coarse-
level setup costs. Our numerical results show that the
difference is quite significant (more than factor 10). We
are able to carry out one multigrid V-cycle for a problem
with 3.4 · 1010 degrees of freedom in 0.177s on 65536
cores, giving a total solution time of around one second
to reduce the residual by five orders of magnitude. We
also demonstrated good strong scaling for different problem
sizes. The tests show that it is realistic that the total solution
time can be decreased below the threshold required for
operational runs.

We emphasize that in contrast to latitude-longitude grids,
on cubed sphere grids there is no fundamental difference
in the performance of elliptic solvers between limited
area models and global models. The main reason for the
difference in performance on latitude-longitude grids is
the additional horizontal anisotropy due to the converging
grid lines at the poles, which is not present for quasi-
uniform grids, such as the cubed sphere where the ratio
between the smallest and largest grid spacing is bounded
from below. For simplicity most runs reported in this paper
were carried out on one panel of a cubed sphere grid.
However, we also included one global test case which
confirms the scalability of the solver in a global model.
For this the code was implemented in the DUNE-grid
framework, which allows the treatment of more general
(semi-)structured horizontal grids. First results with this
code show promising scalability on up to 24576 cores for
a global cubed sphere grid. Compared to the optimised
Fortran code which was used for all other numerical
experiments, this code converges in the same number of
iterations but still has a small performance overhead; further
details on the implementation can be found in Dedner
et al. (2014). Future extensions to alternative discretisation
schemes (such as higher-order discontinuous Galerkin,
cf. Bastian et al. (2012)) are also possible in the DUNE
framework.

While the model equation and discretisation in this paper
is simplified, we also carried out tests with significantly
more realistic elliptic equations and implemented the
geometric multigrid solver for the full model equation of the
ENDGame dynamical core described in Wood et al. (2013).
All our results confirm that the conclusions presented in this
work carry over to more realistic and global model equation;
further results are described in a forthcoming publication
Dedner et al. (2014).

Structure. This paper is organised as follows: the idea of
semi-implicit semi-Lagrangian time stepping is introduced
in Section 2 and the most important features of the resulting
elliptic model equation are discussed in Section 3. Modern
methods for solving elliptic PDEs and their applications in
numerical weather- and climate-prediction are reviewed in
Section 4. The solver libraries which were used for this
work, and the implementation of the matrix-free Krylov
subspace solver and geometric multigrid algorithm tailored
towards the model problem are described in Section 6.
Results for the absolute performance as well as weak-

and strong- scaling tests are reported in Section 7, where
we also study the robustness of the multigrid solver. Our
conclusions are summarised in Section 8.

2. Semi-implicit semi-Lagrangian time stepping

As outlined in the introduction, in the semi-implicit semi-
Lagrangian (SISL) time stepping scheme the advection
terms in the Navier-Stokes equations are handled by
calculating the difference between the field at point x and
at time tj+1 = tj + ∆t and the field at the previous time
step tj, evaluated at the departure point xD (which can be
calculated from the velocity field). For a generic material
derivative

Dφ(x, t)

Dt
= N [φ(x, t)] +Rφ (3)

this amounts to

[φ− α∆t N [φ]]j+1(x) (4)

= [φ+ (1− α)∆t N [φ] +Rφ]j (xD)

where the off-centering parameter α describes the
“implicitness” with which the terms in N [φ] are treated
in the scheme (α = 1 corresponds to implicit Euler and
α = 0 to explicit Euler; for α = 1

2 it reduces to the scheme
described in Crank and Nicolson (1996)).

To illustrate the method, consider the (2D) shallow water
equations∗ for the velocity v and height perturbation η

Dv(x, t)

Dt
= −cg∇η(x, t), (5)

Dη(x, t)

Dt
= −cg(1 + η(x, t))∇ · v(x, t). (6)

The gravity wave velocity is cg =
√
gΦ. Following the

semi-implicit semi-Lagrangian time stepping scheme (4),
these equations can be semi-discretised in time as

[v + α∆t cg∇η]j+1 (x) = fv
j (xD), (7)

[η + α∆t cg(1 + η)∇ · v]j+1 (x) = fηj (xD) (8)

where all terms evaluated at the time step tj are collected in
fv
j (xD) and fηj (xD) on the right hand side. By taking the

divergence of (7) and inserting it into (8) it is easy to see
that (after linearisation) one arrives at the following elliptic
PDE for the height variation η at the next timestep[

−ω2
SW∆2dη + η

]
j+1

(x) = fSWj (xD) (9)

where the right hand side fSWj only depends on fields at the
current time step. Here ∆2d is the Laplace operator in two
dimensions. Note that the relative size of the second order
term ∆2dη is given by the parameter

ω2
SW = (αcg∆t)

2 (10)

which decreases quadratically with the time step ∆t.
The full equations of a three dimensional non-hydrostatic

model can be derived analogously (see Wood et al.
(2013)). The resulting elliptic problem is the following three

∗The dimensionless fields v and η are obtained from the physical fields by
rescaling with cg and the (constant) depth Φ.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

4 E. H. Müller, R. Scheichl

dimensional PDE for the Exner pressure correction π′:[
−ω2

3D

(
∆2d +D(z)

)
π′ + γπ′

]
j+1

(x) = fj(xD). (11)

where ω2
3D = (α∆t)2cpθ

∗0π∗0 and the second order
differential operator in the radial direction is

D(z)X =
1

(π∗0)
γ
cpθ∗0r2

∂

∂r

((
π∗0
)γ
cpθ
∗0r2

1 + (α∆t)2 (N∗0)
2

∂X

∂r

)
.

Here, ∆2d denotes the Laplacian in the horizontal direction
on the surface of the sphere and γ =

cp−Rd

Rd
, where cp

and Rd are the specific heat capacity and the specific gas
constant of dry air. The fields θ∗0 and π∗0 are background
profiles for the potential temperature and Exner pressure
which only depend on the vertical (radial) coordinate.

3. Elliptic model equation

For the scaling tests in this article we do not include the
vertical profiles but set them to a constant value of 1, since
(after rescaling of the problem) they only appear in the
zero-order term and in the vertical operator D(z) and we
believe that by construction all our solvers are robust to this
generalisation. In particular this will be true for the tensor-
product multigrid solver which treats all degrees of freedom
in one vertical column simultaneously and is robust to more
complicated vertical variations. Further tests are required to
confirm this and will be reported in Dedner et al. (2014). We
also rescale all dimensional quantities such that the radius
of the earth is 1. This leads to the following positive definite
elliptic model problem

− ω2

(
∆2du+ λ2

1

r2
∂

∂r

(
r2
∂u

∂r

))
+ u = f (12)

which is solved for u in the spherical shell defined by
1 ≤ r ≤ 1 +H . Here H = D/Rearth = 1

100 is the ratio
between the depth of the atmosphere and the radius of the
earth. The parameters ω2 and λ2 are

ω2 =

(
αch∆t

Rearth

)2

, λ2 =
1

1 + (α∆t)2 (N∗0)
2 , (13)

where ch = 550ms−1 is the velocity of the fastest waves in
the system. This velocity is related to the speed of horizontal
acoustic waves at ground level, cs ≈ 350ms−1, by a factor
or order one, i.e. c2h = γc2s with γ =

cp−Rd

Rd
= 2.506. The

buoyancy frequency in equation (13) is given by N∗0 =
0.018s−1. Rearth = 6371km is the radius of the earth
and we choose α = 0.5 for the off-centering parameter.
Homogeneous Neumann boundary conditions ∂u

∂r = 0 are
used at the bottom and top of the atmosphere.

Note that in contrast to the Poisson equation, the solution
of (12) is unique even if homogeneous Neumann boundary
conditions are used on all external surfaces. In particular,
if ξ denotes tangential coordinates on the surface of the
sphere, the solution can be written as

u(ξ, r) = u(ξ) + δu(ξ, r) (14)

where u(ξ) does not depend on the radial coordinate r, and
is referred to as a vertical zero mode as it is annihilated

by the vertical derivative, 1
r2

∂
∂r

(
r2 ∂u∂r

)
= 0. This mode is

absent if homogeneous Dirichlet boundary condition are
used, and, depending on the values of ω2 and λ2, this can
make the problem significantly better conditioned. It is for
this reason that we use homogeneous Neumann boundary
conditions in this work.

The right hand side f was chosen to be 1 for π
10 < Θ <

π
5 , 1 + 1

5H < r < 1 + 4
5H and set to zero in the rest of

the domain, where Θ denotes the azimuthal angle measured
from the centre of the cubed sphere panel.

3.1. Choice of grid and discretisation

A plethora of grids can be used to discretise the surface of
a sphere, and choosing the optimal grid for the dynamical
core of a global forecast model is a problem in itself,
see Staniforth and Thuburn (2012) for a review. As
discussed in detail in Buckeridge and Scheichl (2010) one
of the problems of a simple latitude-longitude grid is the
convergence of grid lines at the poles and the resulting
horizontal anisotropy which has a negative impact on the
performance of the solver. This grid has other problems for
parallelisation: near the pole large communication stencils
and large halos are necessary to account for the transport of
fields. To avoid these problems and to still use a relatively
simple grid we implemented the cubed sphere grid with
a (non-conformal) gnomonic mapping first discussed in
Sadourny (1972). For each of the six faces a point in the
spherical shell is constructed as follows:x(r, ξ1, ξ2)

y(r, ξ1, ξ2)
z(r, ξ1, ξ2)

 =

 r sin(θ(ξ1, ξ2))
r cos(θ(ξ1, ξ2)) sin(φ(ξ2))
r cos(θ(ξ1, ξ2)) cos(φ(ξ2))

 (15)

with

tan(φ(ξ2)) = ξ2, tan(θ(ξ1, ξ2)) = ξ1/
√

1 + ξ22 (16)

where ξ1, ξ2 ∈ [−1, 1] and r ∈ [1, 1 +H]. A uniform grid
with nx cells in each direction is then used for ξ1, ξ2, i.e.
the horizontal grid spacing in these coordinates is ∆ξ =
2/nx. For this projection the grid is non-orthogonal. Note,
however, that in contrast to the conformal projection in
Rančić et al. (1996), the ratio of the size of the largest and
smallest grid cell is bounded and no horizontal anisotropy
or pole singularities arise in the limit as nx →∞.

For simplicity the scaling runs reported in this article are
carried out on one of the faces of the cubed sphere grid.
Some runs on the entire sphere for both a cubed sphere grid
and an icosahedral grid are reported in Section 7.5.

In the vertical direction the grid is defined by a set of
levels rk such that 1 = r0 < r1, · · · < rnz = 1 +H . The
grid spacing increases linearly with height, i.e. we set

rk = 1 +H

(
k

nz

)2

for k = 0, . . . , nz. (17)

Having a smaller grid spacing near the earth surface is
desirable in numerical weather and climate prediction to
better resolve the flow in the lower layers of the atmosphere.

For the work in this paper we use a simple cell-centred
finite volume discretisation. This amounts to approximating
the fluxes through the surfaces of each cell in the grid by
finite differences. The obtained stencil only involves the

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 5

nearest neighbours and has a size of 7 for a rectangular grid.
The qualitative results of our scaling tests should not depend
on this special structure, but this would require further tests.

The following two properties of the model equation (12)
are crucial for the construction of an efficient solver.

3.1.1. Vertical anisotropy:

As the radius of the earth is much larger than the thickness
of the atmosphere, after discretisation the operator in (12)
contains a very strong anisotropy in the vertical direction.
The relative size of the vertical derivative relative to the
horizontal Laplacian can be estimated by

β ≈ λ2
(∆x

∆z

)2
. (18)

For not too small horizontal grid spacings the anisotropy
β is significantly larger than one, i.e. the problem is
highly anisotropic, and so vertical line relaxation (see
Section 4.2) is highly efficient, either as a preconditioner
in Krylov subspace methods or as a smoother in multigrid
iterations, as demonstrated for example in Skamarock et al.
(1997); Thomas et al. (1997); Börm and Hiptmair (1999);
Buckeridge and Scheichl (2010).

Note that due to the grading in (17) the vertical grid
spacing varies with height, so the relative strength of the
horizontal and vertical couplings can be different at the
bottom and the top of the atmosphere for very small ∆x. It
is, however, always grid aligned, so the theory in Börm and
Hiptmair (1999) can still be used to construct an efficient
geometric multigrid solver.

3.1.2. Horizontal coupling:

In addition to the second order derivative terms the operator
in (12) contains a zero order term. The importance of this
term has already been pointed out in Leslie and McAveney
(1973) and Hess and Joppich (1997), who study the
performance of multigrid solvers for the two dimensional
Helmholtz equation arising from implicit time stepping in a
hydrostatic model.

After discretisation the relative size of the horizontal
derivative and the zero order term is controlled by the ratio
of time step size and the spatial resolution, in particular it
can be shown that the strength of the horizontal coupling
(i.e. the size of the off-diagonal matrix entries†) is given by

Choriz ≈
ω2

∆ξ2
≈ α2

(
ch∆t

∆x

)2

. (19)

As the grid does not have any poles and the ratio between
the area of the largest and smallest grid cell is bounded, a
typical horizontal grid spacing can be estimated by

∆x =
2πRearth

4nx
, (20)

which for nx = 256 gives ∆x = 39km. On this grid we
use a time step of size ∆t = 10min, leading to a horizontal
coupling of Choriz ≈ 17.8.

†Off-diagonal matrix entries in the vertical direction can be ignored for this
argument if vertical line relaxation is used as a smoother or preconditioner.
However, this might not be the case for steep orography.

Naively, this implies that the constant term in (12) is
not very important and the equation is very similar to
the Laplace or Poisson equation. If, however, a multigrid
solver is used to solve the equation, the grid spacing on the
coarser multigrid levels increases, which implies that Choriz

decreases. In fact, already after three coarsening steps it
is reduced by a factor of 64 and its magnitude is smaller
than one. Thus the coarse grid equation is well conditioned,
and even a simple iterative solver, such as SOR or Jacobi
will lead to rapid convergence. In a parallel implementation
of the multigrid algorithm the ratio between computation
and communication decreases on the coarser levels and
hence using a small number of multigrid levels can improve
the parallel scalability. This idea has been explored in the
numerical tests reported in Section 7.3.1.

Note that in our numerical experiments we adjust ∆t to
keep the Courant number and the ratio ∆t/∆x fixed as the
horizontal resolution increases. Hence in these runs Choriz

does not change and for this choice of ∆t the argument
above is independent of the horizontal resolution.

4. Iterative Solvers for elliptic PDEs

After discretisation the linear partial differential equation
(12) can be written as a sparse matrix equation

Au = f. (21)

The vector u ∈ Rn represents the discrete solution on the
grid such that ui is the value of the field in the ith grid cell.
Non-linear equations N [u] = f can be solved recursively
by a Newton iteration, which (with a good starting guess)
requires a (small) number of linear solves.

In the following, several methods for solving the
linear equation (21) are discussed and their application
in atmospheric models is reviewed. All efficient methods
exploit the sparsity of A. Some of them, such as geometric
multigrid, also use geometric information of the underlying
grid. Preconditioners accelerate the speed of convergence
by exploiting the structure of the matrix, such as strong
vertical coupling. Iterative methods (see e.g. Freund et al.
(1992); Barrett et al. (1994); Golub and Van Loan (1996);
Saad (2003) for a comprehensive treatment) approximate
the solution of the equation by a number of iterates u(k),
such that (in exact arithmetic) limk→∞ u(k) = u. The most
efficient iterative solvers only require a small number
of iterations k � n. In any case, due to the presence
of discretisation errors and other uncertainties in many
meteorological applications it is only necessary to know the
solution up to a reasonable tolerance.

Most iterative methods do not require the explicit
storage of the matrix A, it is sufficient to implement
the matrix vector operation y ← [Ax. The main reason
for not explicitly storing the matrix is that on modern
computer architectures loading a number from memory is
significantly more costly than a floating point operation.

4.1. Preconditioned Krylov subspace methods

Krylov subspace methods iteratively construct the approxi-
mation u(k) in a k-dimensional Krylov subspace

Kk = span
{
r,Ar,A2r, . . . , Ak−1r

}
⊂ Rn, (22)

where r is the initial residual r = b−Au(0). The simplest
(and in some sense the best) Krylov subspace method for

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

6 E. H. Müller, R. Scheichl

symmetric positive definite matrices A is the Conjugate
Gradient (CG) algorithm by Hestenes and Stiefel (1952). In
every step the approximate solution vector u(k) is updated
by adding a vector proportional to the search direction
p(k), such that the energy norm is minimised over Kk.
The search directions are chosen such that they are A-
orthogonal, i.e. 〈p(k), Ap(k′)〉 = 0 for k 6= k′. The closely
related Conjugate Residual (CR) algorithm is a variant
of the algorithm with a different orthogonality constraint,
which typically converges as fast as CG and can also be
applied to non-symmetric problems. It can be shown (see
e.g. Saad (2003)) that the convergence rate of CG depends
on the spectral properties of the matrix A, in particular
on the condition number κ, which is the ratio between
the largest and smallest eigenvalue. For finite volume
discretisations of the Poisson equation, κ grows rapidly
with the inverse grid spacing h−1. It can be shown that
the relative error reduction per iteration is 1− 2h+O(h2).
Hence the number of iterations required to reduce the error
by a factor ε is

k ∝ log ε

h
. (23)

For anisotropic systems, such as the one described above,
h is replaced by the smallest grid spacing in the problem,
i.e. ∆z. Usually the number of iterations can be reduced
significantly by preconditioning, as is discussed below.

As the dominant cost in each step is the matrix
application y ← [Ax, which is of O(n) computational
complexity, the total cost of the algorithm is

Cost(CG) ∝ n

h
log ε. (24)

To solve non-symmetric systems, more general Krylov
subspace methods such as GMRES, BCG, BiCGStab and
GCR can be used (cf. Barrett et al. (1994); Saad (2003)).

As already remarked above, the performance of Krylov
subspace methods depends on the spectral properties of the
matrix A. Equivalently, we can multiply the linear system
Au = f by a matrix M−1 and solve

M−1Au = M−1f . (25)

This is generally referred to as left preconditioning. M is a
matrix with the following properties:

• M approximates A well, so that the preconditioned
matrix M−1A is better conditioned than A.

• Inversion of M is computationally cheap (again,
avoiding explicit storage of M).

In general, these two requirements are mutually exclusive
and a tradeoff between them has to be found. Often a good
preconditioner can be constructed by using the physical
structure of the problem. As discussed in section 3.1.1
the operator arising from the discretisation of the pressure
correction PDE is highly anisotropic with predominantly
vertical couplings, i.e. the relevant grid spacing h in (24) is
∆z � ∆x and not ∆x. A candidate for the preconditioner
would thus be the matrix which only contains the dominant
vertical couplings. This matrix is block-diagonal and can
be inverted very easily. The result of this is that effectively
the number of iterations in (23) is set by the horizontal grid
spacing ∆x instead of the much smaller ∆z.

The explicit form of the preconditioned Conjugate
Gradient (PCG) algorithm can be found in Barrett et al.
(1994); Saad (2003). At each iteration the following
operations have to be carried out:

1x Application of discretised operator (or matrix-vector
product) y ←[Ax

2x BLAS‡ level 1 operations, e.g. y ←[ax+ y (usually
abbreviated as axpy for “a times x plus y”)

1x Preconditioner application x← [M−1y
3x Scalar products s←[〈x, y〉

Each application of the operator (and possibly also of the
preconditioner) requires a local halo-exchange, and global
communication is necessary in the scalar product. The
latter usually only accounts for a very small proportion of
runtime. For other Krylov subspace solvers such as GMRES
or BiCGStab the number of matrix-vector products, scalar
products, and intermediate vectors which need to be stored
is different, but the general structure is very similar. In
certain circumstances, when it is safe to carry out a fixed,
previously determined number of iterations, the residual
norm ||rK || in the stopping criterion is not required and the
number of scalar products can be reduced to two.

4.2. Typical Preconditioners

Stationary methods. Stationary methods were among the
first iterative methods to be used in NWP because of their
simplicity. For example in Leslie and McAveney (1973)
stationary methods are applied to two dimensional PDEs
arising from implicit time stepping in hydrostatic models.
A basic overview of the methods discussed below can be
found for example in Fulton et al. (1986). Even though
stationary methods converge slowly on their own, they
can provide efficient preconditioners for Krylov subspace
methods. They are also the main choice for smoothers in
multigrid algorithms (see below).

We describe only the successive overrelaxation (SOR)
iteration with red-black (RB) ordering of the degrees of
freedom in detail, since this method is inherently parallel
(in contrast to SOR with lexicographical ordering) and
converges faster than the Jacobi iteration. The grid is split
into two sets of ‘red’ and ‘black’ cells, such that the black
cells only depend on data in red cells and vice versa,
which is always possible for seven point stencils on the
lat-long grid or on one panel of the mapped cube grid. For
more general grids or discretisation schemes more than two
colours may be necessary. By splitting the matrix A into the
main diagonalD and upper and lower triangular partsU and
L, the following two-step recursion can be written down:

u(k+1)
r = (1− ρ)u(k)r + ρD−1

(
fr − (U + L)u

(k)
b

)
,

u
(k+1)
b = (1− ρ)u

(k)
b + ρD−1

(
fb − (U + L)u(k+1)

r

)
,

where subscripts r and b refer to degrees of freedom asso-
ciated with red and black cells (resp.). The overrelaxation
parameter ρ can be adjusted to improve convergence.

In parallel implementations, a communication step is
necessary after the update of each colour, hence the number
of communications is twice that of the Jacobi iteration§. On

‡BLAS=Basic Linear Algebra Subprograms
§This additional communication can be traded for redundant computations
by using a halo which is two grid cells wide.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 7

irregular grids with more than two colours more parallel
communication may be necessary. This has to be balanced
against the better convergence of the SOR method.

Although stationary methods are very easy to implement,
they converge in general very slowly, e.g. for the Poisson
equation the total computational cost of any pointwise
stationary method is

Cost(stationary) ∝ n

h2
log ε (26)

as opposed to the O(h−1) for Krylov methods in (24).
For anisotropic problem, the convergence can be

improved significantly by using block-versions of these
algorithms. If the matrix A has a block structure, the
solution vector can be split into nB blocks of size B,

u = (ũ1, ũ2, . . . , ũnB
)
T
. (27)

In our case, a good blocking is by vertical columns. The
matrix can be written as A = D̃ + Ũ + L̃ with

D̃ = diag
(
D̃1, D̃2, . . . , D̃nB

,
)
, (28)

where D̃i are B ×B block matrices, and with Ũ and L̃
block-upper and block-lower triangular, respectively. Then
for example the first step in the RBSOR iteration (above)
can be written for the ith red block as

ũ
(k+1)
r,i = (1− ρ)ũ

(k)
r,i (29)

+ ρD̃−1i

f̃r,i −∑
j

(Ũ + L̃)ij ũ
(k)
b,j

 .

This requires inversion of the B ×B matrix D̃i. In our
case, the matrices D̃i are tridiagonal and describe the
vertical coupling. They can be inverted in O(B) time with
the tridiagonal matrix-algorithm (also known as Thomas
algorithm, see e.g. Press et al. (2007)). It is also known
as line relaxation because all vertical degrees of freedom
in a vertical column are updated simultaneously. For
anisotropic problems with predominantly vertical coupling,
where ∆z � ∆x, the block version (29) will converge
substantially faster than the point-iteration because the
cost in (26) is proportional to ∆x−2 and not to ∆z−2.

Alternating Direction Implicit method. The idea of vertical
line relaxation can be extended to handle anisotropies in
multiple directions or anisotropies that change direction in
parts of the domain. These can for example arise due to the
convergence of gridlines near the poles on latitude/longitude
grids or due to vertical mesh grading. Assuming that we
can write A = Ax +Ay , where each of the two operators
contains only derivatives in one spatial direction (for
simplicity considering only two), each iteration of the
Alternating Direct Implicit (ADI) method of Peaceman and
Rachford (1955) consists of two steps. In the first step,
the term involving Ax is treated implicitly and the term
involving Ay is moved to the right hand side. This requires
the inversion of the tridiagonal matrix Ax + µI , where µ is
a parameter. In the second step Ay is treated implicitly and
the tridiagonal matrix Ay + µI has to be inverted.

Although each step requires only the inversion of a
tridiagonal matrix, it is impossible to store A in such a

way that both Ax and Ay are tridiagonal simultaneously. It
requires reordering some of the field vectors, which reduces
cache efficiency and leads to all-to-all communications in
a parallel implementation. Incomplete LU decomposition.

An alternative class of preconditioners is based on an
approximate factorisation of A into the product of two
sparse lower- and upper triangular matrices. Incomplete
LU decomposition (ILU) is a modification of the LU
decomposition algorithm, which constructs triangular
matrices L and U such that M = LU ≈ A. A description
of the algorithm can be found for example in Saad (2003).
The system LUu = f can then be solved in O(n) time
by backsubstitution. In its simplest form with zero fill-
in (ILU0), the only modification to the LU factorisation
algorithm is that throughout the factorisation process matrix
elements Lij and Uij are computed only if Aij 6= 0 in the
original matrix, i.e. L and U have the same sparsity pattern
as A. Of course this does not lead to an exact factorisation
of A. In other versions of the algorithm with higher fill-in
the sparsity pattern of L and U is augmented (ILU(p)), or
matrix entries are only dropped based on threshold criteria
(ILUT).

4.3. Multigrid methods

Stationary methods such as the Jacobi- or SOR iteration
reduce the high frequency components of the error first, as
they carry out local updates at each grid point. After a few
iterations, the error is very smooth and the convergence rate
deteriorates to the asymptotic value.

The multigrid method (see e.g. Briggs et al. (2000);
Trottenberg et al. (2001); Hackbusch (2003), a brief
overview can also be found in Fulton et al. (1986)) is
based on the following insight: whether an error component
is classified as being low- or high-frequency depends on
the underlying grid; a low frequency error on a fine grid
can be interpreted as a high frequency component on a
grid of larger grid spacing. By applying the smoother on
a hierarchy of coarser grids and using intergrid operators
to interpolate data between these levels, all frequency
components of the error are reduced simultaneously.

A simple two-grid method works as follows: a small
number of iterations of the smoother is applied to reduce
the high-frequency components of the error on the fine grid.
The smooth residual r = f −Au can be represented well
by restriction rc = Rr on a coarser grid. On the coarse grid
the residual equation Acec = rc is solved. This requires
substantially less work as the number of grid points is
reduced by a factor of eight (in three dimensions). Finally
the coarse grid error is interpolated (prolongated) back to
the fine grid e = Pec and added to the fine grid solution.
Usually a small number of smoothing steps is applied in the
end to reduce any high frequency errors introduced by the
interpolation.

This two-level method can be extended to a full
multilevel method by recursion on a hierarchy of grids with
grid spacing h, 2h, 4h, etc. The recursive implementation
of a multigrid V-cycle is shown in Algorithm 1. The fields
and system matrix are stored in the arrays {u(`)}, {A(`)}
etc. where ` is the multigrid level. The finest level is ` =
L, whereas the coarsest level corresponds to ` = 1. The
number of pre- and post-smoothing steps can be specified
with νpre and νpost.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

8 E. H. Müller, R. Scheichl

Algorithm 1 Multigrid V-cycle
MGVcycle(`, {A(`)}, {f (`)}, {u(`)}, {r(`)})

if ` > 1 then
Call Smooth(`, νpre, f (`), u(`)) {Presmoothing}
r(`) = f (`) −A(`)u(`) {Calculate residual}
f (`−1) ← [R`−1,`r(`) {Restrict residual}
u(`−1) ← [0 {Initialise solution}
Call MGVcycle(`− 1, {A(`)}, {u(`)}, {f (`)}, {r(`)})
{Recursion}
e(`) ← [P`,`−1u(`−1) {Prolongate solution}
u(`) ←[u(`) + e(`) {Add coarse grid correction}
Call Smooth(`, νpost, f (`), u(`)) {Postsmoothing}

else
u(1) =

(
A(1)

)−1
f (1) {Solve on coarsest level}

end if

In the three dimensions the cost on each level is usually
dominated by the smoother, which has a computational cost
ofO(n). With νpre and νpost pre- and post-smoothing steps,
the total cost of one V-cyle is thus approximately

Cost(V-cycle) ∝ (νpre + νpost)
(
n+

n

8
+
n

82
+ . . .

)
︸ ︷︷ ︸

≤ 8
7n

,

i.e. the additional computational cost due to the coarser
levels is almost negligible. Note, however, that care has to
be taken in the parallel implementation as the volume-to-
interface ratio decreases on coarser levels, as discussed in
Hülsemann et al. (2005). We will argue in section 6.2.3 that
this can be avoided for the problem considered in this article
without compromising the convergence rate by limiting the
number of multigrid levels.

To define the multigrid algorithm, the following
components have to be specified by the user:

• Smoother. This is usually a simple pointwise
relaxation method such as Jacobi or SOR, but
Incomplete LU factorisation methods can also be
used (see Section 4.2). However, if the problem has a
very strong anisotropy, using line- or plane-relaxation
is much more efficient.

• Coarsening strategy. Usually, the grid spacing is
doubled in all dimensions, but other approaches such
as semi-coarsening, where only one or two grid
dimensions are coarsened, are possible. As discussed
in detail in section 4.3.1, horizontal coarsening
together with vertical line relaxation is the most
robust approach for problems with strong grid
aligned anisotropies. In some cases, more aggressive
coarsening strategies can be used.

• Intergrid operators. Various choices exist for the
restriction and prolongation operators R and P , but
it is usually sufficient to use simple methods such as
cell-averages for restriction and linear interpolation
for prolongation.

• Coarse grid solver. This can be a direct solver on the
coarsest grid, but it doesn’t have to be. The coarse
grid equation does not need to be solved exactly and
so iterative methods can be used to solve the problem
approximately. In our case, where the problem is well
conditioned on the coarser levels, a small number of
iterations of the smoother turns out to be sufficient.

It can be shown that the total computational cost to reduce
the error by a factor ε with multigrid is given by

Cost(multigrid) ∝ n log ε. (30)

If the first guess for the solution is constructed starting at
the coarsest level (the full multigrid iteration) then multigrid
is algorithmically optimal, i.e. the cost to reduce the total
error to the size of the discretisation error is proportional to
the problem size n, independent of the grid spacing. This
should be compared to the costs of Krylov subspace and
stationary methods in (24), (26).

4.3.1. Tensor product multigrid

For grid aligned anisotropies it was shown in Börm and
Hiptmair (1999) that a tensor-product multigrid approach
with semi-coarsening and line smoothing is most robust and
efficient. This is particularly suitable for the strong vertical
anisotropy encountered for the elliptic PDEs in NWP, such
as the model equation (12) studied in this article.

The authors study an operator of the form −∇(α∇) for a
two dimensional model problem. To apply their approach it
is necessary that the coefficient α of the underlying operator
is separable, so that the resulting discretised matrix A can
be written as the sum of two tensor products

A = A(r) ⊗M (horiz) + M (r) ⊗A(horiz), (31)

where M (·) denotes the mass matrix and A(·) is a second
order derivative, either in the radial or horizontal direction.

They propose to use line relaxation in the radial direction
combined with coarsening only in the horizontal direction
(semi-coarsening). While this is more costly (but of the
same computational complexity) per iteration than the
simpler multigrid method with point-relaxation and uniform
coarsening, described in the previous section, it can be
shown to lead to an optimal multigrid iteration for any
grid aligned anisotropy. The convergence rate reduces to the
convergence rate for the horizontal operator.

This approach can be extended to three dimensions.
If the horizontal problem (which will now be two-
dimensional) is isotropic, as is the case for example for
the cubed sphere grid employed here, then the grid can be
uniformly coarsened in both horizontal directions. This is
the method we will use in our numerical tests below. Note
however, that the tensor product approach has already been
successfully applied to three dimensional problems in NWP
by Buckeridge and Scheichl (2010) and Buckeridge (2011)
on latitude-longitude grids, where the horizontal coarsening
strategy also needs to be suitably adapted.

4.3.2. Algebraic multigrid

The geometric multigrid algorithm described so far assumes
that the matrixA is based on the discretisation of a PDE on a
regular grid and the construction of coarse grid and intergrid
transfer operators can be based on geometric information
about the underlying grid.

By contrast, algebraic multigrid (see Brandt et al. (1984);
Stüben (1999)) can be used to solve more general problems
of the form Au = f with arbitrary sparse matrices A. It
is based on the idea that smoothness of the error does not
necessarily have to have a geometric meaning, instead the
error components which are not reduced by the smoother

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 9

can be called smooth. It then uses the strength of connection
between pairs of points to define a set of coarse grid points,
as well as matrix-dependent prolongation and restriction
matrices P and R. The coarse grid operator is constructed
using the Galerkin product Ac = PTAR. In the classical
approach the coarse grid consists of a subset of the fine
grid points. This should be compared to aggregation based
AMG algorithms, where the coarse grid points are obtained
by combining several find grid points into coarse grid
aggregates.

Algebraic multigrid (AMG) still works best for elliptic
PDEs, but it can be applied in circumstances where
geometric multigrid has difficulties, for example if the PDE
is discretised on an irregular mesh, or if the smoother works
only in some directions. Although a theoretical analysis
is more difficult, the reasons for the good performance of
AMG for heterogeneous and anisotropic elliptic PDEs are
fairly well-understood (see Vassilevski (2008) for details).
However, it has additional setup costs for the construction
of the coarse levels. Also, the matrix A has to be stored
explicitly on all levels, whereas for geometric multigrid
it can be recomputed at each iteration which can lead to
significant efficiency gains (see Section 6.2 below).

Note also that in contrast to geometric multigrid where
highly efficient line relaxation can improve convergence,
geometric information such as the strong coupling in
the vertical direction is not usually exploited directly in
AMG, although it is used indirectly in the construction
of the coarse grids. Another advantage of the geometric
multigrid approach is that the coarse grid operators can be
constructed directly by discretisation on the coarse grids,
which - for simple discretisations - can lead to a significant
smaller stencil than the Galerkin product required for AMG.
However, due to the matrix-dependent components, AMG
solvers are significantly more robust to coefficient variations
of parameters (Vassilevski (2008)).

Both geometric and algebraic multigrid can be used
as stand-alone solvers and preconditioners for a Krylov
subspace method. However, most AMG solvers, in
particular the aggregation based AMG algorithm in Blatt
(2010), are not convergent as stand-alone solvers and should
always be used as preconditioners for Krylov methods.

5. Applications in atmospheric modelling

5.1. Krylov subspace methods

Using ADI or stationary methods as preconditioners for
Krylov subspace methods has been very popular for
solving the pressure correction equation in atmospheric
models. In Skamarock et al. (1997) a CR solver with ADI
preconditioner is used for a local non-hydrostatic model.
The authors find that on strongly anisotropic grids it is
sufficient to only use the vertical part of the ADI iteration.
Thomas et al. (1997) discuss the use of GMRES(10) with
different preconditioners (SOR with lexicographic or red-
black ordering and ADI in the vertical direction only)
for the MC2 limited area model developed in Canada.
The most successful preconditioner (ADI in the vertical
direction only) requires O(60) iterations to reduce the
residual by four orders of magnitude for a problem of size
119× 119× 31, and the number of iterations only increases
to around 70 on a 511× 539× 31 grid. The diagonally
preconditioned GCR algorithm is used in Smolarkiewicz
and Margolin (1994) for density stratified potential flow past

a steep three dimensional isolated hill in a local domain.
The GCR algorithm is also applied to a semi-Lagrangian
Non-Hydrostatic local area model in Smolarkiewicz and
Margolin (1997) and the authors of Wu et al. (2010) test
preconditioners from the PETSc library with a GCR solver
for a global model. In Davies et al. (2005) the dynamical
core of a global forecast model is discretised on a latitude-
longitude grid. This introduces an additional horizontal
anisotropy due to the convergence of gridlines near the
poles. For this reason the elliptic PDE in the model is
preconditioned with ADI in the vertical and longitudinal
direction and solved with a restarted GCR iteration.

Incomplete LU factorisation preconditioners have been
used successfully for solving the pressure correction
equation in NWP models as well. The authors of Qaddouri
and Côté (2003) find that a modified ILU(0) preconditioner
for GMRES reduced the solution time in the GEM
(global) model relative to a direct solver based on Fourier
transformations. In Zhang et al. (2008) the performances
of PILUT and Euclid (ILU) solvers from the hypre library
were studied as preconditioners for GMRES. The solver
was used to solve the pressure correction equation in
the regional GRAPES model. Although in absolute solve
times the PILUT preconditioner was not as efficient as
BoomerAMG, the number of iterations was comparable for
both methods on 24 cores.

A review of iterative methods in meteorological problems
can also be found in Steppeler et al. (2003), which
highlights in particular the asymmetry in the Helmholtz
equation that terrain following coordinates can cause. As
demonstrated in Skamarock et al. (1997), neglecting these
terms can lead to instabilities in the solver.

5.2. Multigrid

Multigrid solvers have also already been applied success-
fully to elliptic PDEs in atmospheric modelling. In Bates
et al. (1990), the multigrid method is used to solve the
Helmholtz equation for the geopotential in a shallow water
model on the entire sphere. As described in Barros (1989),
λ-line relaxation is used to deal with the anisotropy near
the poles, but depending on the relative grid spacing in
the latitudinal and longitudinal direction, line relaxation
in both directions may be necessary in different regions.
Bowman and Huang (1991) use a multigrid solver to solve
the two-dimensional Helmholtz equation on a sphere. The
horizontal anisotropy on the latitude-longitude grid is dealt
with by reducing the number of points in the longitudinal
direction near the poles on the coarser grids, which makes
convergence of the method slightly worse than second order.
They find that the time per iteration increases linearly
with the number of grid points, as is typical for multigrid
methods and a convergence rate per multigrid V-cycle of
0.44, which is worse than the rate that can be achieved on a
regular grid. However, by modern standards the finest grid
in their numerical studies is relatively coarse with 128× 64
grid points. However, in contrast to the two dimensional
applications described above and in Hess and Joppich
(1997), we solve a strongly anisotropic elliptic PDE in a
(flat) three dimensional domain.

In Chen and Sun (2001) the multigrid solvers from
the mud3cr package Adams and Smolarkiewicz (2001)
are used for solving the Helmholtz equation in a three-
dimensional non-hydrostatic model, as in Skamarock et al.
(1997) mixed derivatives are retained in the Helmholtz

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

10 E. H. Müller, R. Scheichl

operator. A set of three realistic local model problems
with 256× 256× 160 and 512× 512× 320 grid points are
solved. The authors find that to achieve good agreement
with the known analytical solution it is sufficient to solve the
Helmholtz equation to relatively low accuracy ||r|| < 0.1,
and that only one or two V-cycles with a point smoother
are sufficient to achieve this. For higher accuracies ||r|| <
0.001 convergence is achieved in less than 10 iterations,
and the use of a line smoother approximately halves the
number of iterations (but requires more CPU time). The
good performance of the line smoother is reported even for
very anisotropic problems with ∆z/∆x� 1.

A set of Fortran77 subroutines, developed at NCAR,
for solving partial differential equations in a two or three
dimensional rectangular domain with multigrid methods is
described in Adams (1989, 1991) (see also references cited
there for further applications). Finite differences are used in
the discretisation and the package can handle anisotropies
by using both point-, line- and plane smoothers.

While the problems studied in Adams (1991) are
idealised, the performance of the multigrid solvers in the
MudPack package is tested on a set of realistic problems in
atmospheric physics in Adams et al. (1992). In particular a
three dimensional model for the (static) flow over orography
is studied in a local area model. On a grid of size 65×
33× 33 the multigrid solver, which uses line relaxation in
all three spatial directions, converges within 9 iterations,
whereas the smoother alone takes more than 3000 iterations
to achieve the same amount of accuracy.

The unique feature of our geometric tensor-product
multigrid solver is the combination of semi-coarsening in
the horizontal direction with line relaxation in the vertical
direction. This should be compared to, for example, the
approach in Adams (1991); Adams et al. (1992); Chen
and Sun (2001) where uniform coarsening in all three
directions is combined with different smoothers, such as
point- and line- and plane relaxation. In particular, for
the strongly anisotropic operator described in example 6
in Adams (1991), the authors achieve fastest convergence
with the more expensive plane relaxation method, which
is difficult to parallelise. The application of the tensor-
product multigrid approach for full global models on
latitude-longitude grids are discussed in Buckeridge and
Scheichl (2010), where the authors use the method together
with selective semi-coarsening near the pole, which can
be shown to be optimal. Currently a new dynamical
core (codenamed “ENDGame”) is under development
for the Unified Model Wood et al. (2013). In its first
implementation this uses a BiCGStab solver preconditioned
with vertical line SOR, but the implementation of the
multigrid method in Buckeridge and Scheichl (2010) is
also currently being explored. Numerical experiments in
ENDGame by the authors (in collaboration with the Met
Office) on an operational global problem with 2048×
1536× 70 degrees of freedom show that, compared to the
BiCGStab iteration, using the multigrid solver can reduce
the number of iterations significantly and leads to a smaller
total solution time on 3000 processors. More detailled
results will be reported in a forthcoming publication Gross
et al. (2014).

5.3. Direct solvers and spectral methods

Direct methods can usually only be applied for relatively
small systems or on grids that have a particular structure

and size. However, some more advanced direct methods,
such as block methods and cyclic reduction are discussed
in Leslie and McAveney (1973) and applied to small two
dimensional problems, arising for example from semi-
implicit discretisations in hydrostatic models. The authors
compare direct and iterative methods for solving problems
of the Poisson- and Helmholtz type.

Alternatively, if the operator has a tensor-product
structure, one can use eigenmode expansions. This is done
for two-dimensional problems, which arise from a vertical
mode decomposition in Qaddouri and Lee (2010) where the
performance of direct and iterative solvers in the Canadian
Limited Area Forecasting Model GEM-LAM are compared.
A similar comparison for a global model is reported in
Qaddouri and Côté (2003). Expanding the right hand side
in the eigenmodes in one direction results in a set of
tridiagonal systems (one for each mode) of size n′, which
can be solved by the Thomas algorithm. On regular grids
with a suitable number of of points, one can use fast-Fourier
transformations for the projection on eigenmodes, which
have a cost that grows with O(n log n).

Not surprisingly, Qaddouri and Côté (2003) find that
for larger problem sizes the performance of the iterative
conjugate gradient solver preconditioned with variants of
incomplete LU outperforms the direct solver unless fast
Fourier decomposition can be used. However, Hess and
Joppich (1997) demonstrate that the fast Fourier transform
method is not as fast as a multigrid algorithm. The
authors stress that the small timestep and resulting large
constant term in the Helmholtz equation will improve the
convergence of the iterative method, but has no impact on
the performance of the direct method, similar observations
are reported in Leslie and McAveney (1973). One of the
other disadvantages of direct methods is that they are hard
to parallelise as they require global communications in the
Fourier transformation.

Spectral methods are also used by the global forecast
model of the European Centre of Medium Range
Weather Forecasts (ECMWF). Recently, a fast Legendre
transformation methods has been implemented which
improves the performance and scalability of the model (see
Wedi et al. (2013)).

5.4. Scalability

The parallel performance of the multigrid solver in Adams
(1991) is demonstrated for a set of test problems, including
a three dimensional Helmholtz problem on (part of) a
latitude/longitude spherical grid (π/4 ≤ θ ≤ 3/4π; thus
avoiding the pole problem). These tests were carried
out with up to 193× 65× 129 grid points on a CRAY
Y-MP8/864 vector machine. Solving up to an error of
0.25 · 10−4 (discretisation error) takes 1.91s, but there
is an additional overhead of 51.61s for initialisation
(which includes discretisation and (tridiagonal) matrix
factorisation). Line relaxation is used in the radial direction
for this problem.

The multigrid solver studied in Hess and Joppich (1997)
shows very good strong scalability with parallel efficiencies
exceeding 70% on up to 32 processors on the CM-5 and
Cenju-3 systems used in the study; a 2d problem of size
1025× 1025 was solved. On a problem of this size the
iterative solver outperforms the FFT-based direct solver due
to its lower complexity of O(n) instead of O(n log n).

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 11

In Thomas et al. (1997) strong scaling tests for the entire
dynamical core (including the solver, but also other model
components) have been carried out both on a Cray-TE3
system and NEC SX-4 supercomputer. For a local problem
size of at least 321× 321× 31 points the model shows
good scaling up to 70 cores on the Cray-TE3 machine: the
performance is around 30 MFlops/s per processing unit (5%
of the theoretical peak performance). Problem of sizes up to
502× 1936× 10 were run on one node of the NEC SX-4,
and here it was found that the performance only drops by
around 10% when going from one to 32 processes.

Scaling tests with a 3d multigrid solver on the Cray
Jaguar XT5 machine have been presented in Nyberg (2010).
The solver is part of a global cloud resolving model on
a geodesic grid, developed by David Randall at Colorado
State University. The multigrid solver scaled to 80,000 cores
on a Jaguar XT5 machine; the largest considered system
had 8.6 · 1010 degrees of freedom and was solved with 20
V-cycles in 17.166s on 81,920 cores. Strong scaling from
20,480 to 81,920 cores was good for the same system.

In Zhang et al. (2008) various preconditioners for the
Helmholtz equation encountered in the GRAPES non-
hydrostatic local area model are investigated. The PETSc
environment is used with preconditioners from the hypre
library. The four preconditioners that were tested are
BoomerAMG, SAI (Parasails), PILUT and Euclid (ILU),
in addition to the Jacobi preconditioner in PETSc. The
solvers were used to solve a (sign-positive) Helmholtz
problem from a regional scenario of size 37× 31×
17. The best serial performance is achieved with the
BoomerAMG preconditioner, which requires 9 iterations
to convergence. On 16 cores the number of iterations for
the BoomerAMG preconditioner doubles relative to the
sequential run. In contrast, the number of iterations for the
PILUT preconditioner decreases significantly on larger core
counts and is less than that for BoomerAMG on 24 cores.
In terms of absolute times Parasail, which has a constant
number of iterations, independent of the number of cores,
gives the best performance on 16 cores.

The solver for the Helmholtz equation in the GRAPES-
global model is discussed in Wu et al. (2010). The three
dimensional equation is solved with a preconditioned GCR
solver as well as with a Krylov subspace solver in PETSc
with a hypre preconditioner. The GCR preconditioner is
constructed by only retaining the largest elements of the
discretisation matrix. Strong scaling tests from 64 to 256
processors are shown, and the solution time could be
reduced by using PETSc.

A preconditioned GCR solver is also used for solving the
pressure correction equation in the non-hydrostatic EULAG
model. In Prusa et al. (2008) authors demonstrate the
good weak and strong scalability of the model for a Held-
Suarez testcase in which the pressure solver accounts for
80% of the runtime; the largest system solved on 2048
processors has 1024× 2048× 41 = 8.6 · 107 degrees of
freedom, achieving a performance of 150 GFLOPs.

The authors of Qaddouri and Lee (2010) and Qaddouri
and Côté (2003) study the parallel scaling of two direct
methods and an iterative solver (GMRES, preconditioned
with the direct solver on each domain) on up to 1600 cores.
They find that the slow Fourier transformation method
scales very poorly and is significantly slower than the
iterative method. The runs are carried out on an IBM
p575+ cluster with 121 compute nodes, where each node

contains 16 processors. It is found that while the FFT solver
outperforms the iterative solver in absolute times, the latter
shows better scalability. For the largest problem size the
iterative solver takes around 2 seconds to solve a problem
with 1.2 · 109 degrees of freedom. The number of iterations
is stable and does not exceed 5. However, the FFT solver can
only be used for certain grid sizes and the authors find that if
the “slow” Fourier transformation is used, the direct solver
is outperformed by the iterative solver on larger problem
sizes. A series of weak scaling tests with problem sizes of
up to 3852× 3852 horizontal degrees of freedom and 80
vertical levels on up to 1600 processors are presented.

6. Implementation

In this work we implemented a range of algorithms for
solving the model equation (12) on a gnomonic cubed
sphere grid. To evaluate the performance of existing solver
packages we tested and optimised the algebraic multigrid
solvers in the DUNE and hypre libraries. In addition
we implemented a matrix-free Conjugate Gradient solver,
which uses vertical line relaxation as a preconditioner and
wrote a bespoke geometric multigrid algorithm following
the tensor product idea in Börm and Hiptmair (1999).

6.1. AMG solvers in DUNE and hypre

The Distributed and Unified Numerics Environment
(DUNE) is a modular C++ library for the solution of
PDEs with grid based methods. The DUNE-Grid library
Bastian et al. (2008a,b) provides interfaces to various
parallel grid implementations such as ALUGrid Dedner
et al. (2004); Burri et al. (2005), but also implements
its own grids. To implement the cubed sphere grid,
we used the GeometryGrid class, which describes a
mapping from a simple unit cube to curved coordinates.
Several discretisation packages, such as DUNE-PDELab
can be used to translate a local operator into a mapping
on a grid function space and finally into a sparse
matrix in compressed sparse row storage (CSR) format.
The Iterative Solver Template Library (ISTL) Blatt and
Bastian (2007, 2008) provides (parallel) solvers for solving
the sparse matrix equation Au = f , including various
Krylov subspace methods such as Conjugate Gradient and
BiCGStab, as well as basic iterative methods such as Jacobi
or SOR, and preconditioners such as ILU0. In particular, it
includes an aggregation-based parallel algebraic multigrid
algorithm, described in Blatt (2010).

6.1.1. Optimisation

The default parameter settings in the ISTL AMG solver
are for isotropic problems and had to be adapted for our
case. We varied the parameters maxDistance (default: 4),
which controls the maximal distance between points in an
aggregate, and prolDampFactor (default: 1.6) which is
the factor by which the coarse grid correction is multiplied
before it is added to the fine grid solution. In general, the
time per iteration scaled very well for any parameter setting,
but the number of iterations could be reduced significantly
by changing the two parameters mentioned above. The
optimal value for maxDistance turned out to be 3. As can
be seen in Fig. 1, the number of iterations is very sensitive to
prolDampFactor, and we found that the optimal value
is actually 1.0.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

12 E. H. Müller, R. Scheichl

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

scaling factor

SSOR
ILU0

Figure 1. Number of iterations of the DUNE ISTL AMG solver for
different values of the prolongation damping factor and two smoothers.
The runs were carried out with 64 cores on a 512× 512× 128 grid.

We also implemented an interface to the BoomerAMG
solver from the hypre library Falgout and Yang (2002);
Falgout et al. (2006) within DUNE. Again the default
BoomerAMG parameters had to be adapted for our
problem, in particular for large processor counts. In general,
this improved the scalability of the code at the cost of
a small increase in the number of iterations. We found
that the following parameters gave the best results (see the
hypre reference manual for more detailed explanations of
the parameters):

• Algebraic coarsening strategy (coarsentype):
HMIS coarsening (default: Falgout coarsening)

• Maximal number of matrix elements per row
(pmaxelmts): 4 (default: 0, i.e. not limited)

• Number of aggressive coarsening steps
(aggnumlevels): 2 (default: 0)

In both cases the AMG solvers were used as
preconditioners for a Conjugate Gradient solver. To use
BoomerAMG as a preconditioner within CG, the order of
relaxation (relaxorder) had to be changed from the
default (CF ordering) to lexicographic ordering. Finally, we
also used ILU0 as a preconditioner for the CG solver.

6.2. Bespoke matrix-free solvers

6.2.1. Geometric multigrid

Although they can be applied in very general circumstances,
a small draw-back with algebraic multigrid solvers is the
setup costs associated with the construction of the multigrid
hierarchy and the larger storage requirements due to the
explicit storage of the matrix A, as well as of the coarse
grid hierarchy. To avoid this we implemented a matrix-free
geometric multigrid code based on the tensor product idea
described in section 4.3.1. Line relaxation in the vertical
direction is combined with semicoarsening in the horizontal
direction. For simplicity the code was implemented on a
regular three dimensional grid with n = nx × nx × nz grid
cells which represents the atmosphere on one panel (i.e.
1/6th) of the surface of a cubed sphere grid (but see also
section 7.5 where we report results for a global grid). The
mapping from the unit square to the surface of the sphere is
implemented by including the appropriate geometric factors
in the matrix stencil.

In the numerical tests we used a block-RB SOR smoother
as described in Section 4.2. The blocks correspond to data
in vertical columns and columns are labelled as red (black)
if the sum of their horizontal indices is even (odd). Data
was restricted to coarser levels using a simple cell average
in the horizontal direction and linear interpolation was used
for prolongation to finer grids. In most cases one iteration
of the smoother was used to solve the coarse grid equation
(see Section 7.3.2).

For cache efficiency it is essential that data in a
vertical column is stored consecutively in memory. This
can be achieved by storing three dimensional fields uijk
lexicographically in an array U of length n, such that

Um = uijk with m = nz(nx · i+ j) + k (32)

where (i, j) are the horizontal indices and k is the vertical
index. Then for each (i, j) the solution of the tridiagonal
system in the block smoother only requires operating on the
consecutive data Unz(nx·i+j)+1, . . . , Unz(nx·i+j)+nz

. Note
that we never store the matrix entries explicitly, they are
recalculated whenever they are used in the algorithm. In
particular we exploit the tensor product structure of the
operator as already described in Mueller et al. (2013): while
the vertical derivative and mass matrices, which do not
vary from column to column and can hence be kept in
cache, are stored explicitly, the horizontal discretisation is
recalculated from the geometric factors. The latter has to be
done only once per column and will hence lead to a very
small overhead.

As already mentioned in Section 3.1.2, the Helmholtz
equation is better conditioned on the coarser multigrid
levels. In particular, the relative strength of the horizontal
coupling, i.e. the size of the off-diagonal matrix entries, is
given on level ` by

Choriz(`) = Choriz × 2−2` (33)

with

Choriz = α2

(
ch∆t

∆x

)2

≈ 17.8 ≈ 22·2.077 (34)

as in (19). Hence already on the third coarse multigrid
level (` = 3) the matrix is very well conditioned and
line relaxation will be very efficient as a stand-alone
solver. Additional multigrid levels will not improve the
convergence of the V-cycle significantly.

The robustness of the algorithm with respect to the
number of multigrid levels is studied in Section 7.3.2.

6.2.2. Conjugate Gradient

To compare to the performance of a typical one-level
method, we also implemented a Conjugate Gradient solver
preconditioned with vertical line relaxation (block RB
SOR). As for the tensor-product multigrid solver, the
matrix is not stored explicitly and the matrix elements are
recalculated whenever they are needed. Note that in addition
to the local halo exchanges in the multigrid algorithm the
CG solver requires global communication to evaluate global
sums due to dot products.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 13

������ ��� ���

Figure 2. Parallel collect and distribute operations. All processors store
data for ` = L. Only the gray and black processors store data at level
` = L− 1 and only the black processors store data at level L− 2. Collect
and distribute operations between processors on level L− 1 are indicated
by thin arrows, operations on level L− 2 are shown by thick arrows.

6.2.3. Parallelisation

In all cases the domain was partitioned in the horizontal
direction only, as is common in atmospheric models; the
number of processor is 22p. The horizontal partitioning
implies that vertical columns are always kept on one
processor, which facilitates the use of the Thomas algorithm
for the inversion of the tridiagonal matrices in the line
relaxation. Piotrowski et al. (2011) have applied parallel
tridiagonal solvers to atmospheric models before, but we do
not pursue this any further here.

Details on the parallelisation of the DUNE and hypre
libraries can be found in Bastian et al. (2008a,b); Blatt
and Bastian (2008); Blatt (2010) and in Falgout and Yang
(2002); Falgout et al. (2006), respectively.

Parallelisation of the matrix-free Conjugate Gradient
solver is straightforward: a halo exchange is required after
each smoothing step in the preconditioner application and
global sums need to be evaluated with the appropriate
MPI_reduce() calls.

To parallelise the multigrid V-cycle in Algorithm 1 in
Section 4.3 we proceed as follow: assuming that on entry
the solution vector u is consistent on the halo cells (i.e.
the entries in each physical grid cell agree on neighbouring
processors), we have to add Nhalo = 1 + s(νpre + νpost)
halo exchanges on each level, where s = 2 for RB ordering
and s = 1 otherwise, i.e. one halo exchange after each
relaxation step (two in the case of RB ordering) and
one after the prolongation. Typically we use one pre-
and post-smoothing step for RB Line SOR relaxation,
resulting in 5 halo exchanges on each multigrid level.
The code was optimised by overlapping calculations and
communications for the halo exchanges. To do this, the
columns at the boundary of the domain were relaxed first
and an asynchronous send and receive was posted for the
halo data before relaxing the interior columns. The same
mechanism was used for the prolongation operation.

On the coarser levels the number of horizontal columns
can be smaller than the number of processors. Then data
is only stored on a subset of processors of size 22q , with
0 ≤ q < p. All other processors are idle, see Fig. 2. In
addition to the total number of levels L we define a level
Lsplit, where we start reducing the number of processors by
pulling together data with the Collect() subroutine (the
opposite operation is Distribute()). This reduction
will then be done on every successive level until all data is
stored on one processor or until the coarsest level is reached,
see Figs. 2 and 3.

As the problem we solve is very well conditioned on the
coarser levels, it might be sufficient to only use a small
number of multigrid levels. If we only coarsen until one
or more columns per processor are left, it is not necessary

�����

�����

����� �����

�	��� �	�
�

���
�

�����

�
���

�����

���
�

�	�
� �	���

����� �����

�����

�����

�	
� 	 �	
�

�������������������

	

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

��
��
��

��
�
!
�
�

��"���������

#

�����

���
� ����� �����
� �

Figure 3. Parallel multigrid V-cycle. The multigrid level decreases from
top to bottom. The number of processors is shown along the horizontal
axis. Each box symbolises a grid denoted by (`, q), defining the multigrid
level and the number of processors 22q . The arrows indicate restriction
(R), prolongation (P), collect (C) and distribute (D). In this example, the
coarsest grid is set up on one processor.

to collect and distribute data on the coarser levels. As
demonstrated in our numerical experiments below, this does
indeed help to improve the scalability of the algorithm
without any negative impact on the convergence rate.

While potentially further performance gains (in particular
in the strong scaling limit) can be achieved with a hybrid
MPI/OpenMP approach, all our implementations are based
on a pure MPI parallelisation.

7. Numerical results

For simplicity, most runs were carried out on a single
panel of a cubed sphere grid. However, the results directly
carry over to the full global grid and this is confirmed
numerically by the results in Section 7.5 which describes the
performance of a bespoke geometric multigrid solver on the
entire sphere, and which will be the topic of a forthcoming
publication Dedner et al. (2014).

In the following we demonstrate the scalability and
robustness of the solvers described above. All runs
were carried out on the Phase 3 configuration of the
HECToR supercomputer (see www.hector.ac.uk),
which consists of 2816 compute nodes. Each node contains
two 16-core AMD Opteron 2.3GHz Interlagos chips; in total
this amounts to 90,112 cores. Each 16 core processor shares
16GB of memory, which amounts to 1GB per core. The
nodes are connected via a Cray Gemini interconnect and
organised in a 3D torus. The MPI point-to-point bandwidth
is quoted as 5GB/s and the latency between two nodes as
around 1.0− 1.5µs. The code was compiled with the gnu
c++/gfortran compiler and the MPICH2 library.

7.1. Weak scaling assumptions

For all runs we kept the vertical grid size fixed at nz = 128
(but the runs were also repeated with nz = 256). In the
weak scaling runs the number of grid cells per processor
is kept constant, the total number of grid cells increases
up to 3.4 · 1010 on the finest grid, which is run on 65536
processors.

As the number of cells nx in one horizontal direction
is increased, the physical grid spacing ∆x = ∆y ∝ 1/nx
decreases. To keep the acoustic Courant number
ch∆t/∆x ≈ 8.4 fixed, the time step size ∆t is reduced
accordingly on finer grids. Note that, as discussed above,
the size of the horizontal couplings relative to the zero

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

14 E. H. Müller, R. Scheichl

nx × nx × nz # dof ∆x [km] ∆t [s] ω2 λ2 βbottom βmiddle βtop

256× 256× 128 8.3 · 106 39.1 600.0 6.71 · 10−4 3.32 · 10−2 3.35 · 106 201.4 51.5
512× 512× 128 3.4 · 107 19.5 300.0 1.68 · 10−4 1.21 · 10−1 3.05 · 106 183.1 4.69

1024× 1024× 128 1.3 · 108 9.8 150.0 4.19 · 10−5 3.54 · 10−1 2.24 · 106 134.5 34.4
2048× 2048× 128 5.4 · 108 4.9 75.0 1.05 · 10−5 6.87 · 10−1 1.09 · 106 65.2 16.7
4096× 4096× 128 2.1 · 109 2.4 37.5 2.62 · 10−6 8.98 · 10−1 3.54 · 105 21.3 5.45
8192× 8192× 128 8.6 · 109 1.2 18.8 6.55 · 10−7 9.72 · 10−1 9.60 · 104 5.77 1.48

16384× 16384× 128 3.4 · 1010 0.6 9.4 1.64 · 10−7 9.93 · 10−1 2.45 · 104 1.47 0.38

Table 1. Parameter space. The last three columns show the anisotropy β = λ2(∆x/∆z)2 at the bottom, middle and top of the atmosphere.

order term remains constant at around 17.8. The ratio
λ2 tends to the limiting value of 1 as ∆t→ 0. The
parameter space is shown in Tab. 1, where we also list
the anisotropy β = λ2(∆x/∆z)2 at the bottom, middle
(k = nz/2) and top of the atmosphere. The horizontal grid
is subdivided into P = 22p subdomains of equal size, each
assigned to one processor. Weak scaling then amounts to a
fourfold increase of the number of processors whenever the
horizontal grid resolution is doubled.

In all cases we initialised the solution with zero and
iterated until the residual was reduced by a factor of 10−5.

7.2. Preconditioned Krylov subspace methods

We used two different implementations of the Conjugate
Gradient (CG) algorithm with two different precondition-
ers: (i) the CG solver in the DUNE-ISTL framework with
ILU0 preconditioner, where the matrix was set up with
DUNE-PDELab (introducing additional matrix setup costs),
and (ii) a separate Fortran code which avoids explicit
storage of the matrix and uses a vertical line relaxation
preconditioner (RB block SSOR). As the matrix stencil is
recalculated ‘on-the-fly’ whenever it is needed, there are no
additional matrix setup costs in the second case.

In Tab. 2 the number of iterations, time per iteration and
total solution time for both methods are shown as a function
of the problem size n and of the number of cores P . In
addition, we calculate the scaled parallel efficiency for the
time per iteration (relative to a run on P0 cores) as follows:

ES(P) =
titer(P0;n = P0 ∗ nloc)

titer(P;n = P ∗ nloc)
(35)

Here, nloc is the number of degrees of freedom per
subdomain/processor.

The two solvers perform similarly in terms of the
number of iterations, which is expected due to the strong
vertical coupling. However, the parallel scaling of the ILU0
preconditioner deteriorates beyond 1024 cores and then
stays roughly constant. We have no explanation for this.

While the numerical results presented here are for a
Conjugate Gradient solver, which can only be applied to
symmetric systems, we expect similar results for other more
general Krylov subspace methods as these contain the same
type of operations in the inner loop. For example, the
BiCGStab algorithm requires exactly twice the number of
sparse matrix-vector products, preconditioner solves, axpy
operations and global reductions as the Conjugate Gradient
algorithm.

7.3. Multigrid methods

The number of iterations can be reduced by using multilevel
methods. Results for the weak scaling of the geometric
and algebraic multigrid solvers are shown in Tab. 3 and
the total solution times are listed in Tab. 4 (split up
into solve time and coarse grid setup time for the AMG
preconditioners). For the DUNE AMG solver ILU0 was
used as a smoother (we also carried out runs with an
SSOR smoother, but that lead to an increase in the
number of iterations by roughly a factor of 2), whereas
SSOR relaxation was used in BoomerAMG. Both AMG
solvers were used as preconditioners for the DUNE-ISTL
Conjugate Gradient algorithm; the geometric multigrid
code was used as a standalone solver. All solvers used
1 pre- and 1 post-smoothing step, and RB-(block-)SOR
with an overrelaxation parameter of ρ = 1 was used for the
geometric multigrid smoother. In addition, the two AMG
preconditioners also require the setup of the matrix A.
However, we did not quantify or include this here, since
DUNE-PDELab is not optimised for our simple finite
volume discretisation and thus the matrix setup time would
be vastly overestimated. It is an additional factor in favour
of the geometric multigrid code though.

For both AMG preconditioners the number of iterations
is stable at around 9− 13. The time per iteration scales
very well for the AMG preconditioners, in particular
for the DUNE AMG solver. The parallel efficiency for
BoomerAMG drops on 65536 cores. Further experiments
with different problem sizes (not shown here) indicate
that this is not an intrinsic problem of BoomerAMG
(which has been shown to scale to larger core counts for
different problems), but rather due to the fact that the
ratio of horizontal to vertical grid spacing for the larger
problem sizes becomes smaller in our scaling tests. As a
consequence, the direction of the anisotropy changes within
one vertical column, as can be seen by comparing βbottom
and βtop in Tab. 1, leading to a vastly different coarsening
strategy and a higher cost per iteration.

Note that this is not a problem for the geometric
multigrid solver as the anisotropy is still grid-aligned. For
the geometric multigrid solver the number of iterations is
smaller than for either of the AMG methods and it is stable
at 6 for all problem sizes, as can be seen from Tab. 3.
The time per iteration is also reduced by a factor of two
relative to the AMG solvers. Taking into account the coarse
grid setup times, the geometric multigrid solver is roughly
a factor 10-20 faster than then the DUNE-ISTL and hypre
solvers (see Tab. 4). The geometric multigrid solver is also
more than 5 times faster than the one level method, since it
requires about 7 times less iterations and each iteration is
only 30-50% more expensive.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 15

CG + ILU0 CG + line relaxation
cores (P) # dof # iter titer ES(P) tsolve # iter titer ES(P) tsolve

16 8.3 · 106 74 0.235 — 17.41 44 0.109 — 4.78
64 3.4 · 107 71 0.273 86% 19.37 43 0.113 96% 4.88

256 1.3 · 108 67 0.774 30% 51.86 41 0.114 96% 4.66
1024 5.4 · 108 54 1.272 18% 68.68 41 0.116 94% 4.75
4096 2.1 · 109 56 1.419 17% 79.47 41 0.117 93% 4.81

16384 8.6 · 109 50 1.382 17% 69.12 40 0.115 94% 4.73
65536 3.4 · 1010 40 0.115 94% 4.73

Table 2. Weak scaling results for the one-level method. Number of iterations, time per iteration and scaled parallel efficiency ES(P) for two
different preconditioned conjugate gradient implementations with nloc = 219 and P0 = 16. All times are given in seconds.

AMG (DUNE) BoomerAMG (hypre) geometric MG
cores (P) # dof # iter titer ES(P) # iter titer ES(P) # iter titer ES(P)

16 8.3 · 106 12 0.56 — 12 0.73 — 6 0.143 —
64 3.4 · 107 13 0.56 100% 13 0.73 100% 6 0.148 97%

256 1.3 · 108 12 0.59 96% 12 0.75 97% 6 0.152 94%
1024 5.4 · 108 14 0.60 95% 12 0.75 97% 6 0.155 93%
4096 2.1 · 109 14 0.59 96% 12 0.75 97% 6 0.159 90%

16384 8.6 · 109 14 0.60 94% 11 0.86 84% 6 0.161 89%
65536 3.4 · 1010 11 0.62 91% 9 2.24 32% 6 0.177 81%

Table 3. Number of iterations, time per iteration and scaled parallel efficiency for different multigrid solvers (nloc = 219, P0 = 16). The AMG
algorithms were used as preconditioners for CG, whereas the geometric multigrid algorithm was used as a stand-alone solver. All times are given
in seconds.

16 64 256 102
4

409
6

163
84

655
36

cores

1

10

100

To
ta
l t
im

e
[s
]

CG + ILU0
CG + line relaxation
Geometric MG

AMG (DUNE ISTL)
BoomerAMG (Hypre)

Figure 4. Weak scaling of the total solution times for the CG and multigrid
solvers. In the case of AMG, the coarse grid setup time is included.

The total solution times of all solvers are compared in
Fig. 4. All methods show good weak scaling. The geometric
multigrid solver gives the best overall performance.

7.3.1. Reduced number of multigrid levels

As remarked in sections 3.1.2 and 6.2.1, the conditioning
of the problem improves with every coarsening step and
reducing the total number of multigrid levels is expected to
improve the parallel scalability. To confirm this we carried
out weak scaling tests with reduced numbers of levels using
the following setup:

• Shallow multigrid. The grid is coarsened until only
one vertical column per core is left. In our case, this
corresponds to 7 multigrid levels. One application of
the smoother is used on the coarsest level.

• Very shallow multigrid. The grid is coarsened only
three times. In contrast to the Standard and Shallow
multigrid variant, the smoother is applied five times
on the coarsest level.

While for the standard multigrid (i.e. coarsening until one
global column is left) it is necessary to pull data together on
the coarser processors, this is not necessary for the shallow
or the very shallow multigrid setup.

The results are shown in Tab. 5. They should be compared
to those from the standard multigrid solver in Tab. 3 and
for the preconditioned CG algorithm in Tab. 2. Reducing
the number of multigrid levels to four does not increase the
number of iterations and improves the parallel scalability.

7.3.2. Robustness.

Reducing the number of levels can, however, have an
impact on the robustness of the method. To quantify this
we investigate the dependency of the number of iterations
for the geometric multigrid code under variations of the two
model parameters ω2 and λ2. We increase ω2 by a factor of
fω2 = 10 and 100 relative to the reference value, and vary
λ2 by a factor of fλ2 = 102 and 10−2. The results are shown
in Tab. 6, both for a relatively small problem and for a large
problem (the same number of processors was used as for the
runs in 5).

For all solvers, the rate of convergence is independent of
the vertical coupling parameter λ2, as one would expect
from the tensor product multigrid theory in Börm and

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

16 E. H. Müller, R. Scheichl

AMG (DUNE) BoomerAMG (hypre) geometric MG
cores # dof tsolve + tsetup = ttotal tsolve + tsetup = ttotal ttotal

16 8.3 · 106 6.78 + 3.26 = 10.04 8.72 + 2.59 = 11.31 0.86
64 3.4 · 107 7.30 + 3.80 = 11.10 9.52 + 2.74 = 12.26 0.89

256 1.3 · 108 7.02 + 4.53 = 11.55 8.98 + 2.82 = 11.80 0.91
1024 5.4 · 108 8.36 + 4.92 = 13.28 9.04 + 3.18 = 12.22 0.91
4096 2.1 · 109 8.23 + 5.00 = 13.23 8.99 + 3.56 = 12.55 0.93

16384 8.6 · 109 8.44 + 6.32 = 14.76 9.43 + 5.75 = 15.18 0.95
65536 3.4 · 1010 6.80 + 9.76 = 16.56 20.20 + 7.09 = 27.29 1.06

Table 4. Total solution times for the multigrid solvers in the DUNE and hypre libraries and for the geometric multigrid code. The AMG algorithms
were used as preconditioners for CG, whereas the geometric multigrid algorithm was used as a stand-alone solver. All times are given in seconds.

shallow multigrid very shallow multigrid
cores (P) # dof # iter titer ES(P) # iter titer ES(P)

16 8.3 · 106 6 0.143 — 6 0.143 —
64 3.4 · 107 6 0.147 97% 6 0.146 97%

256 1.3 · 108 6 0.150 95% 6 0.150 95%
1024 5.4 · 108 6 0.151 94% 5 0.151 94%
4096 2.1 · 109 6 0.155 92% 5 0.154 93%

16384 8.6 · 109 6 0.156 92% 5 0.156 91%
65536 3.4 · 1010 6 0.167 86% 5 0.157 93%

Table 5. Number of iterations, time per iteration and scaled parallel efficiency for different numbers of multigrid levels L in the geometric multigrid
solver (nloc = 219, P0 = 16).

Hiptmair (1999). However, the multigrid variants with
limited numbers of levels are affected by an increase in the
time step size (and thus in ω2). While the standard multigrid
seems to be largely unaffected, the number of iterations
increases as the total number of levels is reduced. This is
particularly pronounced for the very shallow multigrid code
and for the one-level method.

7.4. Strong scaling.

For the geometric multigrid code we also investigated
strong scaling for different problem sizes, i.e. parallel
speedup for a fixed problem size. The time per iteration for
different problem sizes is plotted in Fig. 5.

For each strong scaling experiment the parallel efficiency
is defined as

E(P) =
titer(P0;n) ∗ P0

titer(P;n) ∗ P (36)

where in each case P0 is the smallest number of processors
used for solving a problem with n degrees of freedom.
This quantity is plotted in Fig. 6. For all problem sizes
parallel efficiency drops below 50% for problems which
have 8× 8 = 64 or less vertical columns per processor. The
latency of HECToR internode communications is around
1µs and the theoretical peak performance of the 90,112
machine is quoted as 800 TFLOPs. This implies that
communication costs can only be “hidden” by overlapping
them with calculations if at least around 10000 floating
point operations are carried out per halo exchange. In
particular strong scaling will start to break down once
the number of operations per halo exchange drops below
this limit. Assuming that around 10-100 floating point
operations are required per grid cell, we expect this to be

16 64 25
6

10
24

40
96

16
38

4

65
53

6

cores

10−2

10−1

1

tim
e

pe
ri

te
ra

tio
n

[s
]

8.4 · 106
3.4 · 107

1.3 · 108
5.4 · 108

2.1 · 109
8.6 · 109

3.4 · 1010
1.4 · 1011

Figure 5. Strong scaling of the geometric multigrid code for different
problem sizes. The time per iteration is shown as a function of the number
of cores. The horizontal gray lines correspond to weak scaling experiments
with different local problem sizes.

the case on the finest multigrid level once the problem size
is reduced to 100-1000 cells (1-10 vertical columns). On
the coarser multigrid levels, which account for a smaller
fraction of the total runtime, this will occur earlier, so for
the multigrid algorithm we expect strong scaling to break
down for slightly larger problem sizes, as observed in our
numerical results. In addition it should be kept in mind
that in practice the latency will be much larger, especially
for runs with a large number of cores, so that this number
should only be regarded as a theoretical lower limit.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 17

3.4 · 107 dof standard multigrid shallow multigrid very shallow multigrid CG with line relaxation
fω2 fλ2 # iter titer # iter titer # iter titer # iter titer

1 1 6 0.147 6 0.148 6 0.147 43 0.113
1 102 6 0.148 6 0.147 6 0.167 42 0.113
1 10−2 6 0.148 6 0.146 6 0.147 42 0.113

10 1 6 0.147 6 0.148 15 0.147 140 0.112
100 1 8 0.147 10 0.147 100 0.146 300 0.112

8.6 · 109 dof standard multigrid shallow multigrid very shallow multigrid CG with line relaxation
fω2 fλ2 # iter titer # iter titer # iter titer # iter titer

1 1 6 0.159 6 0.155 5 0.152 40 0.117
1 102 6 0.159 6 0.153 5 0.152 39 0.117
1 10−2 6 0.159 6 0.154 5 0.152 37 0.118

10 1 6 0.159 6 0.154 14 0.173 131 0.120
100 1 6 0.161 12 0.153 129 0.226 438 0.142

Table 6. Number of iterations and time per iteration for different parameter settings and solvers. For each problem size the reference values for ω2

and λ2 in Tab. 1 were multiplied by the factors fω2 and fλ2 . The runs with 3.4 · 107 degrees (top) of freedom were carried out on 64 processors
and the runs with 8.6 · 109 degrees of freedom (bottom) on 16384 processors.

16 64 25
6

10
24

40
96

16
38

4

65
53

6

cores

25

50

75

90

100

pa
ra

lle
le

ffi
ci

en
cy

8.4 · 106
3.4 · 107
1.3 · 108
5.4 · 108

2.1 · 109
8.6 · 109
3.4 · 1010
1.4 · 1011

Figure 6. Strong scaling of the geometric multigrid code for different
problem sizes. The parallel efficiency E(P) is shown as a function of the
number of cores P .

7.5. Implementation on the entire sphere

We also implemented a geometric multigrid solver on
a grid covering the entire sphere by using the DUNE
interface to the UGGrid Bastian et al. (1997) library.
For this, a two dimensional host grid is created for
the surface of the sphere and partitioned between the
processors as before. On each two-dimensional grid element
a vector of length nz representing the vertical degrees
of freedom, is stored. While data is addressed indirectly
in the horizontal direction, it is stored consecutively in
memory and addressed directly in the vertical direction.
Weak scaling results obtained on a full cubed sphere grid
with the same parameters as used for the previous numerical
experiments are shown in Tab. 7 (for a given row the
increase in the number of degrees of freedom is purely due
to the six-fold increase in the horizontal domain size on the
full sphere). The number of multigrid levels is 6 in each
case and one iteration of block-SOR line relaxation is used
for pre- and post-smoothing. The number of iterations is the
same as reported for the code on one panel of the cubed
sphere grid in the previous section.

cores (P) # dof # iter titer ES(P)

24 1.3 · 107 6 0.269 —
96 5.0 · 107 6 0.309 87%

384 2.0 · 108 6 0.323 83%
1536 8.0 · 108 6 0.351 77%
6144 3.2 · 109 6 0.380 71%

24576 1.3 · 1010 6 0.501 54%

Table 7. Number of iterations, time per iteration and scaled parallel
efficiency for the geometric multigrid solver on a full cubed sphere
grid, implemented in DUNE, based on UGGrid with nloc = 219 and
P0 = 24. Block-SOR smoothing was used with 1 pre- and 1 post-
smoothing step and the number of multigrid levels was 6 in all runs.
The parameters ∆x, ∆t, ω2 and λ2 used in each row of the table can be
read off from the corresponding row in Table. 1.

8. Conclusions

In this article we discussed efficient and scalable solvers
for the elliptic PDE arising from semi-implicit semi-
Lagrangian time stepping in the dynamical core of
numerical weather- and climate- prediction models.

After reviewing modern iterative solvers, in particular
suitably preconditioned Krylov subspace and multigrid
methods, as well as the existing literature on their
application and parallel scaling in NWP applications, we
reported on the results of massively parallel scaling tests
for a model equation. An important characteristic of this
equation is the strong coupling in the vertical direction and
the presence of a zero order term, which leads to a well
conditioned problem on coarser multigrid levels.

We tested and optimised algebraic multigrid solvers
in existing libraries (DUNE and hypre) and developed a
bespoke geometric multigrid algorithm based on the tensor
product idea in Börm and Hiptmair (1999) that is well-
suited to the strong vertical anisotropy. The bespoke solver
avoids matrix- and coarse level setup costs by recalculating
the matrix stencil on the fly. We compared the multigrid
solvers to various implementations of preconditioned CG.
All solvers show good weak scaling on up to 65536 cores of
the HECToR supercomputer. In comparison to the one-level

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

18 E. H. Müller, R. Scheichl

Krylov subspace methods, the number of iterations and
the overall computational time can be reduced significantly
with the use of multigrid methods. Here, we find that the
geometric multigrid method is superior to the AMG solvers
both in terms of the time per iteration and the number of
iterations and it is possible to solve the model equation
with 3.4 · 1010 degrees of freedom in around one second
on 65536 processors. In contrast to one-level methods,
the multigrid solvers are robust with respect to variations
of the model parameters. Finally, as the problem is well
conditioned on coarser levels, it is not necessary to coarsen
the problem down to one global column. Using a reduced
number of coarse levels can improve the parallel scalability,
but it also affects the robustness with respect to the time step
size. For time step sizes typically encountered in operational
runs this does not appear to be a problem though.

We conclude that in contrast to common misconceptions,
the elliptic solve in each time step does not limit the
scalability of implicit or semi-implicit methods in NWP.
Relative to explicit (or vertically-implicit) methods, semi-
implicit time stepping is considered to be more robust and
it allows for a larger model time step, which is why several
of the current operational forecasting centres (such as the
UK Met Office or the ECMWF) use it. The current paper
was intended to show that these advantages do not have to
be forfeit for better parallel scalability on future, massively
parallel architectures. It remains to be seen, however, which
of the two methods (semi-implicit or explicit) leads to the
shortest total runtime in a real simulation. This is beyond
the scope of this article and requires further investigations
for a particular model implementation.

There are several ways of further improving on the
current work: while the strong scaling results reported
here look promising, there is room for improvement, for
example by using a hybrid MPI/OpenMP implementation.
Furthermore, the runs reported here were carried out on
1/6th of a cubed sphere grid, but we also implemented
a geometric multigrid code for more general (semi-)
structured grids on the sphere. This and the extension to
more realistic pressure correction equations is the subject
of a forthcoming publication Dedner et al. (2014). There
we also show that if the number of grid cells in the vertical
direction is large enough, it is possible to “hide” any
overhead of indirect addressing in the horizontal direction
as suggested in MacDonald et al. (2011).

9. Acknowledgements

This work was funded as part of the NERC project on “Next
Generation Weather and Climate Prediction” (NGWCP),
grant number NE/J005576/1. We would like to thank the
dynamics research group at the Met Office and all members
of the GungHo! project for useful discussions. We thank the
DUNE developers and in particular Dr. Andreas Dedner and
the group of Prof. Peter Bastian in Heidelberg for help with
DUNE related questions and for their hospitality during
EM’s stay in Heidelberg in December 2012. Similarly we
are grateful for the support of the hypre developers, in
particular Dr. Robert Falgout and Dr. Ulrike Maier-Yang,
with optimising the BoomerAMG solver, as well as their
hospitality during RS and EM’s stay at LLNL in July
2012. This work made use of the facilities of HECToR,
the UK’s national high-performance computing service,
which is provided by UoE HPCx Ltd at the University of
Edinburgh, Cray Inc and NAG Ltd, and funded by the Office

of Science and Technology through EPSRC’s High End
Computing Programme.

References

Adams JC. 1989. MUDPACK – multigrid portable Fortran software for
the efficient solution of linear elliptic partial differential equations.
Appl. Math. Comput. 34(2): 113–146.

Adams JC. 1991. MUltigriD software for elliptic partial differential
equations : MUDPACK. Technical Report NCAR/TN-357+STR,
National Center for Atmospheric Research.

Adams JC, Garcia R, Gross B, Hack J, Haidvogel D, Pizzo V. 1992.
Applications of multigrid software in the atmospheric sciences. Mon.
Weather Rev. 120: 1447.

Adams JC, Smolarkiewicz P. 2001. Modified multigrid for 3D elliptic
equations with cross-derivatives. Appl. Math. Comput. 121: 301–312.

Baker AH, Falgout RD, Gamblin T, Kolev TV, Schulz M, Yang UM.
2012a. Scaling algebraic multigrid solvers: On the road to exascale.
In: Competence in High Performance Computing 2010, Bischof C,
Hegering HG, Nagel W, Wittum G (eds), Springer, pp. 215–226.

Baker AH, Falgout RD, Kolev TV, Yang UM. 2012b. Scaling hypres
multigrid solvers to 100,000 cores. In: High-Performance Scientific
Computing, Berry M, Gallivan K, Gallopoulos E, Grama A, Philippe
B, Saad Y, Saied F (eds), Springer, pp. 261–279.

Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout
V, Pozo R, Romine C, der Vorst HV. 1994. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. SIAM: Philadelphia, PA.

Barros SRM. 1989. Optimierte Mehrgitterverfahren für zwei- und drei-
dimensionale elliptische Randwertaufgaben in Kugelkoordinaten.
Berichte der Gesellschaft für Mathematik und Datenverarbeitung, R.
Oldenbourg Verlag.

Bastian P, Birken K, Johannsen K, Lang S, Neu N, Rentz-Reichert H,
Wieners C. 1997. UG A flexible software toolbox for solving partial
differential equations. Computing and Visualization in Science 1(1):
27–40.

Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R,
Ohlberger M, Sander O. 2008a. A generic grid interface for parallel
and adaptive scientific computing. part II: implementation and tests
in DUNE. Computing 82(2-3): 121–138.

Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M,
Sander O. 2008b. A generic grid interface for parallel and adaptive
scientific computing. part I: abstract framework. Computing 82(2-3):
103–119.

Bastian P, Blatt M, Scheichl R. 2012. Algebraic multigrid for
discontinuous Galerkin discretizations. Numer. Linear Algebr. 19(2):
367–388.

Bates JR, Semazzi FHM, Higgins RW, Barros SRM. 1990. Integration
of the shallow-water equations on the sphere using a vector semi-
lagrangian scheme with a multigrid solver. Mon. Weather Rev.
118(8): 1615–1627.

Blatt M. 2010. A Parallel Algebraic Multigrid Method for Elliptic
Problems with Highly Discontinuous Coefficients (PhD thesis).
Heidelberg .

Blatt M, Bastian P. 2007. The iterative solver template library. In:
Lecture Notes in Computer Science, vol. 4699. pp. 666–675.

Blatt M, Bastian P. 2008. On the generic parallelisation of iterative
solvers for the finite element method. Int. J. Computat. Sci. Eng. 4(1):
56–69.

Börm S, Hiptmair R. 1999. Analysis of tensor product multigrid. Numer.
Algorithms 26: 200–1.

Bowman KP, Huang J. 1991. A multigrid solver for the Helmholtz-
equation on a semiregular grid on the sphere. Mon. Weather Rev.
119(3): 769–775.

Brandt A, McCormick SF, Ruge JW. 1984. Algebraic multigrid (AMG)
for sparse matrix equations. In: Sparsity And Its Applications, Evans
DJ (ed). pp. 258–283.

Briggs WL, Henson VE, McCormick SF. 2000. A Multigrid Tutorial.
Society for Industrial and Applied Mathematics: Philadelphia.

Buckeridge S. 2011. A robust numerical method for the potential
vorticity based control variable transform in variational data
assimilation. Q. J. Roy. Meteor. Soc. 137(657): 1083.

Buckeridge S, Scheichl R. 2010. Parallel geometric multigrid for global
weather prediction. Numer. Linear Algebr. 17(2-3): 325–342.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

Scalability of Elliptic Solvers in NWP 19

Burri A, Dedner A, Klöfkorn R, Ohlberger M. 2005. An efficient
implementation of an adaptive and parallel grid in DUNE.
Proceedings of 2nd Russian-German Advanced Research Workshop
on Computational Science and High Performance Computing,
Stuttgart.

Chen SH, Sun WY. 2001. Application of the multigrid method and a
flexible hybrid coordinate in a nonhydrostatic model. Mon. Weather
Rev. 129(11): 2660–2676.

Crank J, Nicolson P. 1996. A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction
type. Adv. Comput. Math. 6: 207–226.

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White
AA, Wood N. 2005. A new dynamical core for the Met Office’s
global and regional modelling of the atmosphere. Q. J. Roy. Meteor.
Soc. 131(608): 1759–1782.

Dedner A, Mueller E, Scheichl R. 2014. Efficient multigrid
preconditioners for anisotropic elliptic PDEs in geophysical
modelling. in preparation .

Dedner A, Rohde C, Schupp B, Wesenberg M. 2004. A parallel, load-
balanced mhd code on locally-adapted, unstructured grids in 3d.
Comput. Visual. Sci. 7: 79–96.

Falgout RD, Jones JE, Yang UM. 2006. The design and implementation
of hypre, a library of parallel high performance preconditioners.
In: Numerical Solution of Partial Differential Equations on Parallel
Computers, vol. 51, Bruaset AM, Tveito A (eds), Springer, pp. 267–
294.

Falgout RD, Yang UM. 2002. hypre: a library of high performance
preconditioners. In: Lecture Notes in Computer Science, vol. 2331,
Sloot P, Tan C, Dongarra J, Hoekstra A (eds). Springer, pp. 632–641.

Freund RW, Golub GH, Nachtigal NM. 1992. Iterative solution of linear
systems. In: Acta Numerica, vol. 1, Prentice Hall, pp. 57–100.

Fulton SR, Ciesielski PE, Schubert WH. 1986. Multigrid methods for
elliptic problems – a review. Mon. Weather Rev. 114(5): 943–959.

Golub GH, Van Loan CF. 1996. Matrix Computations, 3rd Edition.
Johns Hopkins University Press.

Hackbusch W. 2003. Multi-Grid Methods and Applications. Springer.
Hess R, Joppich W. 1997. A comparison of parallel multigrid and a

fast Fourier transform algorithm for the solution of the Helmholtz
equation in numerical weather prediction. Parallel Comput. 22.

Hestenes MR, Stiefel E. 1952. Methods of conjugate gradients for
solving linear systems. J. Res. Nat. Bur. Stand. 49(6): 409–436.

Hülsemann F, Kowarschik M, Mohr M, Rüde U. 2005. Parallel
Geometric Multigrid. In: Numerical Solution of Partial Differential
Equations on Parallel Computers, Bruaset AM, Tveito A (eds),
no. 51 in: Lect. Notes Comput. Sci. Engin. Springer, pp. 165–208.

Ippisch O, Blatt M. 2011. Scalability test of µϕ and the parallel
algebraic multigrid solver of DUNE-ISTL. In: Jülich Blue Gene/P
Extreme Scaling Workshop 2011, Technical Report FZJ-JSC-IB-
2011-02, Mohr B, Frings W (eds).

Kwizak M, Robert AJ. 1971. A semi-implicit scheme for grid point
atmospheric models of the primitive equations. Mon. Weather Rev.
99: 32.

Leslie LM, McAveney BJ. 1973. Comparative test of direct and iterative
methods for solving Helmholtz type equations. Mon. Weather Rev.
101(3): 235–239.

MacDonald AE, Middlecoff J, Henderson T, Lee JL. 2011. A general
method for modeling on irregular grids. Int. J. High. Perform. C.
25(4): 392–403.

Mueller E, Gross M, Maynard C, Scheichl R. 2014. Multigrid
Implementation of the Pressure Correction Solver in the ENDGame
Dynamical Core. in preparation .

Mueller E, Guo X, Scheichl R, Shi S. 2013. Matrix-free GPU
implementation of a preconditioned conjugate gradient solver for
anisotropic elliptic PDEs. submitted to submitted to Computing and
Visualisation in Science (special issue EMG 2012) .

Nyberg P. 2010. Petascale opportunities and challenges for earth
system modeling (presentation). 14th Workshop on Use of High
Performance Computing in Meteorology, ECMWF, Reading.

Peaceman DW, Rachford HHJ. 1955. The numerical solution of
parabolic and elliptic differential equations. J. Soc. Industr. Appl.
Math. 3(1): 28–41.

Piotrowski Z, Wyszogrodzki A, Smolarkiewicz P. 2011. Towards
petascale simulation of atmospheric circulations with soundproof

equations. Acta Geophysica 59: 1294–1311.
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 2007. Numerical

Recipes: The Art of Scientific Computing, 3rd Edition. Cambridge
University Press: New York.

Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA. 2008. EULAG, a
computational model for multiscale flows. Computers and Fluids
37(9): 1193 – 1207.

Qaddouri A, Côté J. 2003. Preconditioning for an iterative elliptic
solver on a vector processor. In: High Performance Computing for
Computational Science VECPAR 2002, Lecture Notes in Computer
Science, vol. 2565, Palma J, Sousa A, Dongarra J, Hernndez V (eds).
Springer, Berlin, pp. 451–455.

Qaddouri A, Lee V. 2010. The elliptic solvers in the Canadian
limited area forecasting model GEM-LAM. In: Modeling Simulation
& Optimization – Tolerance & Optimal Control, Cakaj S (ed).
InTech.org, pp. 1–17.

Rančić M, Purser RJ, Mesinger F. 1996. A global shallow-water model
using an expanded spherical cube: Gnomonic versus conformal
coordinates. Q. J. Roy. Meteor. Soc. 122(532): 959–982.

Robert A. 1981. A stable numerical integration scheme for the primitive
meteorological equations. Atmos. Ocean 19(1): 35–46.

Saad Y. 2003. Iterative Methods for Sparse Linear Systems, Second
Edition. Society for Industrial and Applied Mathematics.

Sadourny R. 1972. Conservative finite-difference approximations of the
primitive equations on quasi-uniform spherical grids. Mon. Weather
Rev. 100(2): 136–144.

Skamarock WC, Smolarkiewicz PK, Klemp JB. 1997. Preconditioned
conjugate-residual solvers for Helmholtz equations in nonhydrostatic
models. Mon. Weather Rev. 125(4): 587–599.

Smolarkiewicz PK, Margolin LG. 1994. Variational solver for elliptic
problems in atmospheric flows. Appl. Math. Comp. Sci. 4: 101–125.

Smolarkiewicz PK, Margolin LG. 1997. On forward-in-time differenc-
ing in fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for
stratified flows. Atmos. Ocean 35(1): 127–152.

Staniforth A, Thuburn J. 2012. Horizontal grids for global weather
and climate prediction models: A review. Q. J. Roy. Meteor. Soc.
138(662): 1–26.

Steppeler J, Hess R, Schattler U, Bonaventura L. 2003. Review of
numerical methods for nonhydrostatic weather prediction models.
Meteorol. Atmos. Phys. 82(1-4): 287–301.

Stüben K. 1999. Algebraic multigrid (AMG). an introduction with
applications. GMD Forschungszentrum Informationstechnik, Sankt
Augustin, Germany.

Tanguay M, Robert A, Laprise R. 1990. A semi-implicit semi-
Lagrangian fully compressible regional forecast model. Mon.
Weather Rev. 118(10): 1970–1980.

Thomas S, Malevsky A, Desgagn M, Benoit R, Pellerin P, Valin
M. 1997. Massively parallel implementation of the mesoscale
compressible community model. Parallel Comput. 23: 2143 – 2160.

Trottenberg U, Oosterlee CW, Schüller A. 2001. Multigrid. Academic
Press.

Vassilevski PS. 2008. Multilevel Block Factorization Preconditioners.
Matrix-Based Analysis and Algorithms for Solving Finite Element
Equations. Springer: New York.

Wedi NP, Hamrud M, Mozdzynski G. 2013. A fast spherical harmonics
transform for global NWP and climate models. Monthly Weather
Review 141(10): 3450–3461.

Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross
M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J. 2013.
An inherently mass-conserving semi-implicit semi-Lagrangian dis-
cretisation of the deep-atmosphere global nonhydrostatic equations.
accepted for publication in Q. J. Roy. Meteor. Soc. .

Wu X, Zhang L, Song J, Chen D. 2010. Preliminary results of GRAPES
Helmholtz solver using GCR and PETSctools (presentation). 14th
Workshop on Use of High Performance Computing in Meteorology,
ECMWF, Reading.

Zhang L, Gong X, Song J, Hu J. 2008. Parallel preconditioned GMRES
solvers for 3-D helmholtz equations in regional non-hydrostatic
atmosphere model. In: Internat. Conf. on Computer Science and
Software Engineering. IEEE Computer Society, pp. 287–290.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–19 (0000)
Prepared using qjrms4.cls

	1 Introduction
	2 Semi-implicit semi-Lagrangian time stepping
	3 Elliptic model equation
	3.1 Choice of grid and discretisation
	3.1.1 Vertical anisotropy:
	3.1.2 Horizontal coupling:

	4 Iterative Solvers for elliptic PDEs
	4.1 Preconditioned Krylov subspace methods
	4.2 Typical Preconditioners
	4.3 Multigrid methods
	4.3.1 Tensor product multigrid
	4.3.2 Algebraic multigrid

	5 Applications in atmospheric modelling
	5.1 Krylov subspace methods
	5.2 Multigrid
	5.3 Direct solvers and spectral methods
	5.4 Scalability

	6 Implementation
	6.1 AMG solvers in DUNE and hypre
	6.1.1 Optimisation

	6.2 Bespoke matrix-free solvers
	6.2.1 Geometric multigrid
	6.2.2 Conjugate Gradient
	6.2.3 Parallelisation

	7 Numerical results
	7.1 Weak scaling assumptions
	7.2 Preconditioned Krylov subspace methods
	7.3 Multigrid methods
	7.3.1 Reduced number of multigrid levels
	7.3.2 Robustness.

	7.4 Strong scaling.
	7.5 Implementation on the entire sphere

	8 Conclusions
	9 Acknowledgements

