

Citation for published version:
Padget, J 2013, Situating COIN in the cloud (Invited Paper). in Coordination, Organizations, Institutions, and
Norms in Agent Systems VIII: 14th International Workshop, COIN 2012 Held Co-located with AAMAS 2012
Valencia, Spain, June 5, 2012 Revised Selected Papers. vol. 7756, Lecture Notes in Computer Science,
Springer, pp. 1-16, 14th International Workshop on Coordination, Organizations, Institutions, and Norms in
Agent Systems VIII (COIN 2012), Valencia, Spain, 5/06/12. https://doi.org/10.1007/978-3-642-37756-3_1
DOI:
10.1007/978-3-642-37756-3_1

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

The final publication is available at http://dx.doi.org/10.1007/978-3-642-37756-3_1

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161912412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-37756-3_1
https://researchportal.bath.ac.uk/en/publications/situating-coin-in-the-cloud-invited-paper(8fb89e22-859b-404f-a546-bbff86656000).html

Padget, J. (2013) Situating COIN in the cloud (invited paper). In:
14th International Workshop on Coordination, Organizations,
Institutions, and Norms in Agent Systems VIII (COIN 2012), 2012-
06-05 - 2012-06-05, Valencia.

Link to official URL (if available): http://dx.doi.org/10.1007/978-3-
642-37756-3_1

Opus: University of Bath Online Publication Store

http://opus.bath.ac.uk/

This version is made available in accordance with publisher policies.
Please cite only the published version using the reference above.

See http://opus.bath.ac.uk/ for usage policies.

Please scroll down to view the document.

http://opus.bath.ac.uk/
http://opus.bath.ac.uk/

Situating COIN in the Cloud
(Invited Paper)

Julian Padget

University of Bath, Dept. of Computer Science
jap@cs.bath.ac.uk

Abstract. We start from the view that the central theme of the research at the
core of coordination, organization, institutions and norms, is whether the social
structures and mechanisms, that have emerged over time, can be adapted and ap-
plied to artificial societies of programs and perhaps more significantly, to mixed
societies of humans and programs –and how The means by which the social con-
straints that guide and regulate behaviour are acquired and represented remains
an open problem. If recent experiences in information retrieval and natural lan-
guage processing are plausible indicators, the statistical may yet oust the logical.
Technology aside, it is clear that for socio-technical systems, that integrate hu-
man and software components, we may expect the adoption of, or the illusion of
observation of, and support for human social conventions. The growing migration
to cloud computing of the services that make up current pervasive, social appli-
cations suggests near-term developments emerging from the same platform(s).
Thus, the question considered here is, what pathways, opportunities and chal-
lenges exist for the development, wider use and validation of COIN technologies
to help realize socio-technical systems that better meet human requirements. As
examples of specific enabling technologies, we review current developments in
resource-oriented architecture, complex event processing and stream reasoning
and observe how COIN technologies might integrate with them.

1 Introduction

At the first meeting of the COIN series in 2005, Noriega [36] spoke of “fencing the
open fields” as an analogy for the need to provide suitable regulation of participant
interactions in open systems governed by electronic institutions. However, the risk is
that designers, in their desire to ensure the “right” outcomes, may lock actors into a
protocol strait-jacket, simply because it is then possible to prove through brute-force
search that compliance is assured and only good results follow. In seeking to formalize
electronic institutions, this writer fell into the trap of over-specification, attempting to
use the π-calculus to describe elements of the FishMarket [19]. We may observe similar
trends in both policy- and law-making, where in some cases the political debate appears
to exhibit a strong desire to circumscribe individual actions for the sake of the goal of
achieving high levels of compliance. Paradoxically, such approaches would appear to
be counter to the underlying principles, at the formal end, of game theory, or at the
informal end, of economics and the notion of free markets and the ‘invisible hand’. In
each case, it is precisely freedom of action that imbues the arena with the flexibility to

adapt to changing circumstances and to provide the essential space – ‘wiggle room’, if
you will – to explore as well as exploit [30]. Thus, optimization – interpreted as a high-
level of compliance, regardless of cost – may be preferred to satisficing [45]. Costs here
may be reflected in a lack of agility to respond to change as much as in the actual cost
of policing [9].

We may also consider the freedom to move from a genuinely architectural perspec-
tive – a theme we pick up later with reference to patterns – by recalling that Alexan-
der [3] sought what he called “quality without a name” in the design of habitable spaces.
Effective, by some definition of the word, social institutions, whether they capture poli-
cies or laws, or even social conventions, can equally be viewed as habitable spaces:
desirable properties they may typically exhibit are flow, ease of use and low overheads
(action, cognition). There has inevitably been a reaction1 to the up-take of design pat-
terns and the consequences of it, because while Alexander’s vision was that inhabitants
would design and build their own environment, that is largely unrealistic for most users
of software. The situation is potentially different however in respect of normative frame-
works – if we are prepared to give participants – both human and software agents – the
power to change the rules that govern them and prepared to build the tools to accom-
modate that change while maintaining system integrity [7, 8].

The challenge is how to regulate loosely enough to provide sufficient autonomy and
flexibility, but tightly enough to meet system objectives, where most, rather than all,
participants behave correctly. Indeed, such a notion of optimization may be illusory,
in that all it ensures is behaviour as foreseen by the designer in advance of use. The
software engineering literature and the security literature provide many anecdotes on
the subject of how system integrity can be undermined by actual usage, not for any ma-
licious motive, but simply because practice discovers more efficient – again, by some
definition of the term – ways to achieve the same goals. This observation is central to
the argument that underpins process mining, which seeks to discover the so-called ‘de-
sire lines’ (also called more popularly elephant path, social trail, goat track or bootleg
trail) that indicate the sequences of events that occur in practice. This is in contrast to
the view of business process engineering, which sees such sequences as almost certainly
non-optimal from a business point of view (cost, speed, reliability) and sees instead me-
anderings of little consequence which they call ‘cow paths’ [1]. Thus, whether the path
is due to an elephant – and is worth preserving – or a cow – and should be eradicated –
seems to depend on point of view.

The consensus in normative systems research might now appear to be in favour of
regulation (good?) rather than regimentation (bad?). But even that may not be a perma-
nently tenable position, because while the balance between the two can be established
through a priori design choices, it may be desirable to adjust the degree of autonomy
subject to prevailing conditions. These conditions may be reflected in system metrics,
leading to a shift from regulation towards regimentation or vice versa, as circumstances
dictate.

Let us now consider some more pragmatic issues, such as: (i) where shall the
many software components execute that comprise such systems, (ii) how shall data
sent between them be represented, and (iii) how shall communications between them

1 There are many reports on, but no definitive link to, the Gang of Four trial at OOPSLA’99.

be achieved? These are not new questions for the agent community, although unfortu-
nately our attempts to reach a conclusion on at least the latter two have been unsuccess-
ful. These questions are not new, either, for the wider computer science community.
The momentum that is forming around cloud computing not only suggests an answer
to the first issue, but also that we should consider establishing common ground with the
accompanying technologies of web services, publish/subscribe communications proto-
cols and semantic annotation. Consequently, COIN technologies can be part of, rather
than apart from, the cloud environment.

To return to the issue cited at the opening of fencing the open fields, the challenge
left for the community then was “how to put the bell on the cat”. Put another way, if
we believe normative specifications and norm-aware actors are the answer, how are we
to get these features into open systems, the designers of which may well see no need
for such bells2. The purpose of this somewhat wide-ranging introduction has been to
make connections with a variety of research and practice, inside and outside computer
science to try to provide some form of backdrop for the current state of COIN technol-
ogy research. We review the state of COIN research in the next section and put forward
some of the significant tasks that we believe face us. Then in section 3, we examine the
features of cloud computing that together offer an excellent experimentation and eval-
uation environment. Using these we can show what COIN technologies might achieve,
so that we may indeed “bell the cat”. We conclude with some suggestions for actions
that the COIN community might take to initiate the transition to cloud computing and
at the same time create greater synergy across the community.

2 The state of COIN technologies

The aim of this section is to examine from a high level what has been achieved in COIN
technologies over the last decade and a half, but also to identify the various issues that
stand in the way of the wider recognition of the utility it offers and, more significantly,
what needs to be done to provide externally acceptable validation of the technologies.
Several factors are put forward as problems relating to COIN technologies, but the
overriding issues are connectivity – how to join our tools and components with the
wider software world – and usability – how to join our concepts and approaches with
the wider software community. The citations are intended as representative of relevant
work rather than as an exhaustive survey. A complete list of the COIN volumes can be
found at http://www.pcs.usp.br/˜coin/.

Over a period of more than 15 years, COIN technologies have evolved from static
normative frameworks, encoded implicitly in the control logic of software components,
through explicit representations regimenting agent behaviour in trading platforms [43]
or informing agent choices in agent-based simulation [34], to guiding agent and human
actions in complex mixed environments [35]. But while this progression demonstrates
real advances in norm representation and reasoning, those demonstrations are largely
limited to small, carefully constructed illustrative cases – not necessarily helped by the
publication format of the conferences and journals that the community uses, as well as

2 or whistles.

other academic environment factors – rather than showing impact on large scale systems
driven by real, rather than synthetic, data.

There is little originality in the following observations on the criticisms that can be
levelled at COIN technologies and could equally be applied to other areas of computer
science, or even science in general:

1. Plausibility: this is the first barrier to up-take. We have no demonstrators that make
the case in practice for COIN technologies; there is only the potential and the case
is not compelling because existing systems work – or appear to – on small and
carefully selected illustrative scenarios.

2. Scalability: part of the lack of plausibility stems from a lack of evidence either
in the form of deployed systems or from theoretical analysis of the capacity for
the technologies to scale; we need to demonstrate solutions at scale. But this is
a chicken-and-egg situation, because we also need host systems that can be aug-
mented post-facto by COIN technologies in order to be able to make that case.

3. Visibility: the benefits of the use of COIN technologies need to be clear and to offer
substantive improvement, possibly in several ways, over conventional technologies.
But, frustratingly, the best indicator of effective application of COIN technologies
may be that they are barely noticeable.

4. Packaging: a practical barrier to up-take depends upon how COIN technologies
are delivered. New technologies that either require re-training, new interfaces or
discarding (part of) the existing software base inevitably face greater resistance
to up-take than something that integrates by means of widely-used interfaces and
which enhance rather than replace. Not least, the capacity for turning enhancements
on and off may provide a valuable way to demonstrate their impact. We need to
deliver COIN technologies in packaging that not only helps us as a community to
integrate and evaluate what we do, but also to integrate with minimal overhead or
impact with legacy systems.

COIN technologies have the potential to contribute to the creation of systems that
are all of open, distributed, intelligent and adaptable – even if those terms might require
an essay each of their own to circumscribe expectations and establish the connections
between them. But the software we have built so far typically has limited interoperabil-
ity: a Java library can be a useful component and might with some effort be deployed
as a web service, but lack of systems experience means it is hard to say whether an
API is a suitable interface or whether a richer communication language is desirable.
A further artefact of the development process is the difficulty of re-usability: although
the technologies aim to be and often are quite general purpose in nature, the supporting
software can be quite sensitive to deployment environment and hard to maintain even
in the short to medium term. Performance is also often over-looked, not least because
the development scenarios that illustrate the properties we wish to demonstrate (for aca-
demic purposes) are quite small, but also because it is hard to identify useful metrics
and because the decision procedures in play do not, or cannot, have well-defined perfor-
mance profiles. Much COIN technology software is written to demonstrate that a par-
ticular behaviour or envelope of behaviours can be realized, but there is little culture as
yet in the practice of patterns for COIN technologies: this may percolate through from

the underlying software base, but that seems more likely to address how some func-
tion is realized, rather than the function itself. Finally in this tally of criticisms, there
is the matter of resilience: given that flexibility and adaptation in the face of changing
circumstances are among the benefits that should follow from COIN technologies, it
seems essential that it should be possible to demonstrate such properties in our own
software – that is, reflection – and not just in the systems to which it is applied.

2.1 The Agent View

Previously in intelligent agent research, agent architecture was a major topic from the
earliest days of agent-based simulation (ROSS, SWIRL and TWIRL [32]) and subse-
quently with the more complex layered architectures such as Touring Machines [20] and
InteRRap [33]. However, these are now largely forgotten and either regimented agents,
such as in e-Institutions [43] and MOISE+ [26], or BDI and variants appear to be the
common choices. In consequence, a number of those variants of BDI have sought to
address the matter of how an agent could and should avail itself of normative reasoning.
This has lead to a dichotomy between the internal approach, which further divides be-
tween full incorporation [4] and separation of BDI and normative knowledge [14] and
the external approach, where normative positions are communicated to agents in the
form of obligations [2], determined by normative reasoning components [13].

The convergence of architectural choice on BDI makes system comparison some-
what simpler, but has also had the effect of pushing processing into the agent that is
not necessarily so easily handled at that level. Specifically, complex trigger formulae
for BDI actions are both hard to test, inasmuch as BDI testing is feasible [48], and
to maintain. Furthermore, this hard-codes plan triggers into agents, reducing scope for
resilience, since they cannot easily be adjusted in response to changing circumstances.

2.2 The Organization View

In parallel with the evolution of agent architecture, the twin notions of institution and
organization have also undergone significant development. In the first instance, there
was the FishMarket [44], in which the agents cede control to a governor that directs
which actions they shall take in order that each agent be fully compliant with the rules
of the institution. Although the approach is somewhat different, MOISE+ achieves sim-
ilar goals, in which agents are constrained by the role they play within a group, so that
agents are in effect regimented. A second group of approaches to institutional specifi-
cation have favoured agent autonomy over guaranteed compliance, using a variety of
formalisms [22, 12, 13, 46], in which the common trait is an external entity that reasons
about agent actions in respect of the governing norms and identifies normative positions
and obligations acquired by agents in consequence.

Dignum and Padget [15] put forward a view that brings together organization and
institution. Here, the latter capture the regulations pertaining to specific contexts, and
the former expresses the combination of the many institutions that together describe
the processes that make up an organization together with the roles of the actors that
participate in those institutions.

3 COIN in the Cloud

The preceding sections have summarised a view on the current state of COIN tech-
nologies and also put forward some shortcomings that we believe must be addressed in
order to raise awareness of the technologies outside the immediate agent community.
The purpose of this section is to assess how COIN and cloud technologies might fit
together and what actions we might take as a community to bring that about.

The most significant and attractive feature of cloud computing is that it offers pro-
vision on demand. Furthermore, that provision can be configured through virtual ma-
chines to exactly the combination of operating system and resources that a particular
program requires, facilitating the deployment of legacy codes so they can be accessible
from anywhere. Cloud computing is also unavoidably distributed, which makes it es-
sential that we establish some conventions on how to interact with COIN deployments –
some approaches are discussed below. Distribution offers the opportunity not only for
the community to share software (as a service), but also to take advantage of the mecha-
nisms such as enterprise bus architectures, distributed messaging systems and different
forms of web services to connect our components with one another and with a huge
range of other services. This could potentially significantly reduce our development
burden by re-using rather than re-inventing.

Cloud computing can also be seen as the product of an evolutionary process in
computing systems. This began with closed systems in which all the components are
the product of a single team running on one computer, moved through the (re-)use of
libraries and components connected by CORBA running on several computers (on an
intranet) and now seeks the creation of increasingly open systems. In this last, compo-
nents may be replaced/upgraded in live deployments over a range of platforms and edge
devices across the internet.

Clearly, from a systems management perspective, the complexity increases signifi-
cantly in the transition from one computer, to many on a LAN, to many – where devices
join and leave the system over time – on a WAN/internet. The governance of such sys-
tems has to be distributed, with many components making decisions on the basis of
local circumstances, but also, crucially, informed by guidelines for the perceived cor-
rect running of the system, which is where COIN technologies are key. Recognition
that both much data is being created all the time and that its rapid interpretation is nec-
essary (until we establish what is actually worth collecting) forms the motivation for
the SHINE project3, which brings together sensors, social media and intelligent agents
to answer complex information retrieval requests in real-time. But not only are such
systems conduits for data and information for delivery to human users, they are also
huge data sources in their own right, as each component can be viewed as a monitoring
element that feeds into an over-arching process that can observe system health, identify
the early stages of anomalous or undesirable situations and alert system control agents
of the need to consider whether action need be taken and what it might be [16, 17].

Another inevitability concerns the relationship between the producer and consumer
of such data. Up to a certain level, a request-response communication model, as has
conventionally been used in agent systems. This follows the tradition of procedural

3 http://direct.tudelft.nl/shine-117.html

programming, through remote procedure call to SOAP-based web services – and can
work, as long as network latency is low enough. However, asynchronous communica-
tions in the form of event notifications, publish/subscribe and RESTful web services are
seeing increasing adoption as mechanisms that, while imposing constraints on the pro-
gramming model, manage to insulate components from the innate and unpredictable
latencies in operating across wide area networks. This perspective leads to a view of
software components – of all kinds – as a rich variety of event processors – both as
consumers and producers of events – connected together in loose and dynamic oppor-
tunistic networks.

Unfortunately, although by design, producers know nothing of the requirements or
capabilities of consumers and the data volumes can be hard to process and assimilate, if
they are not at the information level and frequency commensurate with the consumer’s
reasoning cycle. For example, a BDI reasoning cycle in one Jason application (driving
autonomous vehicles in simulation) [31] appears to be able to cope with percept updates
every few hundreds of milliseconds, although this frequency will depend upon number
of plans, the complexity of their triggers and the duration of their actions. The critical
issue here is the rate at which a consumer can process the event streams it is receiving
in order for it to be able to achieve its intended level of situational awareness. This in
turn can be exacerbated by the level of the event information being incompatible with
the plan triggers (for example) – typically by being at a lower level – so that patterns
comprising several events, and possibly several event sources must be recognized [41]
before a plan can be triggered. Such processing is typically difficult to develop, debug
and maintain within an agent framework and would be better out-sourced to a compo-
nent that can deliver a single percept covering a set of events that characterize a given
situation. This leads to the creation of more independent software components in an in-
creasingly complex communication network and a consequent need for further system
health monitoring and appropriate presentation of that data, if there is to be any chance
of identifying anomalous behaviours.

Looking back at the above, there appear to be several aspects of cloud computing
that have features that we need both to demonstrate the benefits of COIN technologies,
and also to provide the facilities we need to demonstrate those benefits, amongst which:

1. Sources of data both about the system and the application domain
2. The capacity to create (on demand) the computational facilities to interpret it
3. Means to deploy legacy code in bespoke environments through cloud-based VMs
4. On demand creation of new services to filter, aggregate and summarize data com-

prising multiple events, even from multiple sources.

3.1 Understanding the Situation

If all the above can be realized, it puts us on a path towards the creation of system that
can construct degrees of situational awareness, both about the state of their own system
(self-awareness) and awareness of situations as they evolve in the application domain
of the system. The outcome should be the means to monitor and to take action on both
system health and actor health. Eventually, it should even become feasible to discern
the desire lines [1] and, following some collective decision procedure, implement a
consistent revision of the governing norms [8].

We want to enable software agents to make good and timely action choices in a va-
riety of situations, thinking specifically about those created by: (i) virtual environments,
where there may be a mix of software- and human-controlled avatars and (ii) (imagined)
socio-technical systems, such as in search and rescue, military, emergency-response and
medical domains.

Intelligent behaviour, or behaviour that is perceived as intelligent, may be attributable
to many factors. The one of concern here is how an agent uses information about its sit-
uation to make choices of actions. The right choice may be regarded as intelligent. The
wrong choice and at worst the agent or its collaboration partners, or even the humans for
which it is working, may be exposed to some risk. The situation may not be as black-
and-white as just described, but rather there may be better choices, amongst which a
dominating choice may not be readily apparent, and worse choices. Optimisation is not
required, but satisficing is. Seemingly less serious, at first sight, is that by making a
worse choice, trust and plausibility is forfeited and the agent is seen as just another pro-
gram. However, this too can be critical, not because some pretence need be maintained,
but because the loss of reputation and believability induces distraction in a human par-
ticipant, since they are now looking for the next “mistake”, as well as everything else
they are doing. As a result, the whole collaborative activity may no longer achieve its
goals.

Although there are many factors affecting the effectiveness of such mixed system,
we highlight two that we believe have a significant influence on everything else: speed
of response and breadth of knowledge. A third aspect is a corollary to these two: the
matter the communication of data between components.

Speed of response Early agent architectures, such as those mentioned earlier [20, 33]
sought to reflect then current AI thinking, influenced by research in robotics, by propos-
ing a layered architecture comprising reactive, deliberative and generative components,
reflected in the apotheosis of this line of development by Soar [29]. Meanwhile, as
noted earlier, the agent community has largely converged on the BDI architecture to
fulfil the function of the deliberative and generative layers. In consequence, the reactive
layer is effectively subsumed into BDI as events lead to the addition of percepts that
in turn cause actions. This usefully simplifies the agent structure and programming be-
cause control is all expressed through some variant of the AgentSpeak language. How-
ever, the BDI architecture is not designed for the rapid assimilation and assessment of
high frequency data and even if higher performance implementations were available,
the relative sophistication of the architecture is at odds with the task asked of it. Since
the purpose of BDI is to support the deliberative component of an agent, this suggests
that: (i) high frequency data needs to be processed and somehow summarized to pro-
vide lower frequency data with an implied higher informational value, and (ii) such
processing must use a lower overhead computational model to accommodate the high
frequency data rate. Out-sourcing this task to a process situated between the data source
and the agent, therefore seems sensible. Connectivity can be addressed through some
of the distributed computing technologies identified earlier.

Breadth of Knowledge Understanding the situation should allow us to choose an ap-
propriate action both for the situation and with respect to individual and group goals.
Programming an agent to be prepared for any and every situation is clearly infeasible.
Thus, while decision-making must remain the responsibility of the agent, the informa-
tion upon which that decision is the result of the assessment of sensed data from a
variety of sources across a range of time frames and representations. Again, it is likely
to be infeasible and undesirable to integrate all such assessment processes within an
agent. Thus, although the BDI agent has the capacity for deliberation, not all deliber-
ations are within its capabilities and in common with both software engineering and
societal structures, such deliberation could be delegated, leading to recommendations
from which to choose. From this, again two conclusions follow: (i) specialized domains
may be better reasoned about externally, producing summary recommendations for the
agent to choose between and (ii) such processing can use representations and resources
appropriate to the domain, or indeed re-use existing reasoning systems. Once again, the
conclusion from this is the desirability of out-sourcing the task to a process that may
function more like a service, collecting inputs from several sources and publishing re-
sults either when ready or on request. A particular case in point are the institutions that
comprise an organization, for example, where it is the institutions that act as repositi-
tories of social state(context) and provide the function of social reasoning to identify
violations and obligations. It nonetheless remains the responsibility of agents to decide
what actions to take, in the light of information received from the institutions.

Making Connections There are two issues to address under the heading of connec-
tivity: (i) how to pass data between the components – representation and protocol –
and (ii) how to package existing software to operate in such an environment, and each
will affect the other. Our aim is for a low overhead, low maintenance connection fab-
ric, preferably that can be relied upon for support in the wider internet community for
some time. Network speeds continue to increase, but latency, as a relative factor, does
not change significantly as a proportion of the delay. Thus, although it is traditional
to speak of synchronous and asynchronous systems, the practice reflecting the physi-
cal constraints of the internet, is either for loosely synchronizing systems, where one
side may pause or continue working while waiting for a response from the other side,
or asynchronous systems in which components push out data without concern for the
receiver, while other components pull in data as it suits them.

Much effort has been expended in the agent community on trying to reach agree-
ment on what and how to communicate between agents. The results have been inconclu-
sive and furthermore are unlikely to see up-take, or indeed support, outside the agents
community. Therefore, we suggest that the pragmatic solution is to adopt widely used,
maintained and developed standards, so that the task for the community is just to track
those standards and build components that utilise them. Specifically, for protocols, this
suggests something based on HTTP, to ensure traffic across firewalls, such as the eX-
tended Messaging and Presence Protocol (XMPP) and for content, something based on
RDF, but possibly defined in terms of OWL in order to put constraints on the RDF.

Having discussed broadly the form of some requirements, the following two sec-
tions present brief introductions and some indicative references to technologies that

may offer some solutions. These are resource-oriented architecture and event process-
ing. The rationale for highlighting these two is firstly, their fit with the intrinsic com-
putational properties of the internet as a distributed computing environment and sec-
ondly, as emerging maturing technologies and frameworks, into which we can embed
and package COIN technologies, in order to deliver reach beyond individual research
groups and beyond the COIN community.

4 Resource Oriented Architecture

It is perhaps an oversimplification to say that ROA is for RESTful web services [47]
what Service Oriented Architecture (SOA) is for RPC-style (SOAP) web services, but
it does capture the sense of the relationship, in that REST should be seen as one way
of achieving resource orientation [38]. In practice, ROA, as do events, enables decou-
pling of components based on stateless message exchange. Stateless however does not
mean state cannot be modelled, but rather that each state, if so required, is a new re-
source, identified by a new, unique URI. Furthermore, message exchange does not mean
request-response in the RPC sense, rather an operation (the request) typically results in
a new resource, identified by URI (the response). From this perspective, it has much in
common with functional programming.

Although Resource Oriented Architecture denotes a general purpose set of princi-
ples in respect of web application design, it is fair to say that its synthesis has been
driven by the concrete aspects of RESTful web services and the principles of address-
ability, statelessness, connectedness, and a uniform interface [42]. Consequently,

1. Resources can be universally identified by unique addresses (addressability),
2. Every request to a resource should contain all the information needed for further

processing (statelessness),
3. A resource representation should contain the addresses of all related resources (con-

nectedness) and
4. All resources can be manipulated through uniform methods (uniform interface).

REST-compliant Web services differ from RPC-style Web services in the protocol
employed between client and server, in that the latter requires each application designer
to define a new and arbitrary protocol comprising vocabulary of nouns and verbs that
is usually overlaid on the HTTP protocol[39]. In contrast, REST services work directly
with the HTTP verbs of POST, PUT, GET and DELETE which map to the four basic
functions of data storage, namely Create, Update, Retrieve and Delete.

As with adopting a purely event-oriented approach, ROA/REST puts constraints on
design (and implementation), which can initially be tiresome. But, as with functional,
or perhaps a better analogy would be with dataflow/single assignment languages, there
are potentially significant benefits, when operating in a distributed environment and es-
pecially one with unpredictable levels of latency. Specifically cited benefits [21] include
simpler protocols, better synergy with underlying web components, and lower applica-
tion design costs, but it is hard to find studies that substantiate these largely qualitative
claims.

5 Event Processors

This section discusses how to carry out data analysis on behalf of agents, based on
the twin criteria of speed of response and breadth of knowledge, identified above. We
review some of the work in this area over the past few decades and evaluate its suitability
for incorporation into the connection fabric outlined earlier.

5.1 Real-time expert systems

The 1970s and 80s saw the development and refinement of expert systems and the shells
used to author them. Two directions emerged from this activity that are still in use today:
(i) rule-based systems utilising the RETE algorithm, and (ii) the Prolog language, which
although not solely used for building expert systems, nevertheless provides a concep-
tually similar environment, where facts drive inferencing, expressed through rules. A
handful of tools now represent the first group, with some commercial (Ilog Rules) and
a few free/open-source (JBoss Rules, JESS) examples. Most recent publications are
domain-oriented, focussing on how an expert system has been applied in a particular
control context. This underlines the maturity and stability of the underlying technology,
which is either RETE (the net algorithm) or Selective Linear Definite clause resolution
(logic languages).

A naive implementation of a rule selection process is linear in the number of rules.
Any given rule set is finite and so has an upper bound on the matching time required, but
is not an adequate guarantee of real-time response, because it means that the number of
rules and the complexity of the rule conditions that determine which are applicable must
be constrained in order to meet performance requirements. RETE effectively compiles
the left hand sides of the rules to build a decision network that identifies the conflict
set (of rules that match the current state). While, this and subsequent improvements,
are better than the naive approach, complexity is still O(n). The story is broadly the
same in logic languages, but with semantic changes (committed choice) and the use of
parallel resolution algorithms helping to improve performance.

The key requirement is to be able to know how long the match process will take.
This in turn can be affected by placing limitations on the left-hand side conditions
resulting in the network having particular time-based properties. The need for real-time
response was recognized decades ago and some of the issues surrounding the delivery
of such performance are addressed in [28], while a notable contemporary example of
the application of the technology was IBMs YES/MVS system [18]. A current example
is GENSYMs G24, which appears to have significant up-take in process control settings.

RTES provide general programmability through a declarative framework as well as
the means to accumulate data over arbitrary long time windows. The programmability
also affects how real-time a particular system can be in practice. Prediction of match
time can be computed off-line (static analysis of the rules). However, apart from pro-
viding an upper bound on the cycle time, there appears to be no way either to guide
or to constrain the programmer to produce a match procedure with guaranteed perfor-
mance. It may be possible to apply syntactic restrictions to the rules so that the (RETE)

4 Retrieved from http://www.gensym.com/, 20130111

networks generated are of limited propagation depth. But either way – syntactic restric-
tion or cycle time bound – is not a solution if it means expressing the reasoning logic
becomes either contorted, creating a maintenance problem, or it is just impossible to
express what is wanted. Furthermore, the match procedure is very fragile in respect of
the system as a whole, because it can be pushed outside its performance envelope either
by accommodating new requirements or by an increase in the data rate of one of its
subscription feeds.

5.2 Complex event processing (CEP)

Like many concepts in Computer Science, event processing is not new and could, termi-
nologically, be traced back to the earliest operating systems and soon after with the de-
velopment of discrete event simulation frameworks such as GPSS [24] and Simula [37].
But there, events were the drivers (of simulation), rather than the subject of analysis
themselves. The emergence of the topic of verification as a topic within the design pro-
cess of various kinds of systems, at both hardware and software levels, focussed on the
scrutiny of event traces to detect desirable or undesirable patterns of behaviour. Model
checking languages and the tools associated with the various calculi of concurrent sys-
tems are some of the computational approaches that have resulted from the objective
of understanding large collections of traces in their entirety. Such systems analyse all
possible systems states – and the paths between them – in pursuit of the establishment
of system invariants. In contrast, ad-hoc solutions to analysing such things as packets
on networks, transactions in distributed systems and intrusion detection systems laid
the foundations for looking at fragments of traces for significant or anomalous activ-
ity. Financial markets were early adopters of the conceptual model, using it to process
real-time market feeds for events of significance.

The languages for expressing CEP have become more sophisticated and now offer
functions to filter, correlate and aggregate data. The practical question remains however,
of how quickly can or must such operations be carried out. Esper 5 and Drools Fusion6

are typical examples of event processing engines – which notably have a strong com-
mercial orientation, coupled with up-take in the financial sector. The conceptual model
is that the user registers queries with the event processor, which will then invoke the
query when its conditions match. In Esper, the matching conditions can express dura-
tions, the composition of several different streams, filtering, aggregation and sorting. An
important abstraction feature is the means to glue together statements using “followed
by” conditions. The summary of features that follows is abstracted from the Esper tu-
torial7. Espers programming language shares some syntactic features with Structured
Query Language (SQL) for accessing relational databases, in particular in its select
and where clauses, but the operations are carried out on views – finite length frag-
ments – over streams rather than tables. Views can represent windows over a stream

5 Retrieved from http://esper.codehaus.org, 20130111.
6 Retreieved from http://www.jboss.org/drools/drools-fusion.html,

20130111
7 Retrieved http://esper.codehaus.org/tutorials/tutorial/tutorial.
html 20130110

of events, specified by time or count. Views can also sort events, derive statistics from
event properties, group events or handle unique event property values. Furthermore, a
window can be used to preserve data, in effect by defining an internal table that can be
used for input or output by other queries. It is not clear how performance is guaranteed,
but the finiteness of the windows and the relative simplicity of the queries that can be
performed would certainly limit demand for processing time.

5.3 Stream Reasoning

The term ‘stream reasoning’ has emerged in the last few years. Initially, this has applied
to the means to process streams of RDF triples, using SPARQL extended with concepts
similar to those discussed above [10].From a technical point of view, there would appear
to be very little difference between the two, since both rely upon finite state machines to
recognise patterns in the input stream in order to trigger some action. The important ad-
vance offered by C-SPARQL, however, is that the event data may also contain reference
to ontologies, and not just literals. As a result, data from different sources may be as-
sociated semantically, rather than through the syntactic structure of the stream records,
thus reducing the coupling (in the software engineering sense) between producer and
consumer.

Alternative, but different, logic-based approaches are put forward by Gebser et al [23]
and Anicic-et-al [5]. The difference is that the former is based on answer set semantics,
while that latter uses Prolog, but both have to face technical challenges to ensure that
the tree synthesis approach both works efficiently and does not consume unbounded
resources. The essential idea is that the head of a logic programming term denotes the
recognition of a complex event, subject to the satisfaction of the right hand side of the
clause. As such, the programmer is presented with a language that has much in common
with real-time expert systems, but the implementations must provide temporal perfor-
mance guarantees as well as a means to ‘forget’ facts in order to recover memory. As a
result, both approaches incorporate a substantial amount of theoretical work that estab-
lishes the correctness of their mechanisms to recover memory and to compute results
under real-time constraints.

6 Closing remarks

We have put forward a personal survey of the situation in COIN and how its strengths
and weaknesses fit with cloud computing. In particular, we believe that the resource-
oriented architecture and stream processing have much to offer in conjunction with
COIN technologies. In conclusion, we make some suggestions for next steps:

1. Make our components deployable as Software as a Service (SaaS), possibly through
RESTful [39] interfaces and informed by a ROA perspective,

2. Out-source complex situation analysis to software built for the purposezip, rather
than trying to embed it in an agent architecture that was not designed for the task,

3. Collect datasets from cloud systems for testing and training of decision-making
components, but not forgetting the value of synthetic datasets as a means to test
boundary conditions,

4. Utilise communication protocols and data representations that enable interoperabil-
ity, such as enterprise bus architectures [6, 27, 40] or distributed communication ar-
chitectures [11] with semantically-annotated messaging for further decoupling of
producer and consumer, and

5. Take advantage of free cloud services to prototype and share ideas and services.

Acknowledgements

I am grateful to the organizers of COIN 2012 at AAMAS for inviting me to speak at the
meeting and to have the opportunity to follow that up with this invited paper. Some of
ideas presented here have been developed in part with the support of The Royal Society
(UK), the University of Otago and the COST action on Agreement Technologies.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011), ISBN: 978-3-642-19344-6

2. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: van der Hoek
et al. [25], pp. 1057–1064

3. Alexander, C.: A Timeless Way of Building. Center for Environmental Structure, Oxford
University Press Inc, USA (1980), ISBN-13: 978-0195024029

4. Andrighetto, G., Villatoro, D., Conte, R.: Norm internalization in artificial societies. AI Com-
munications 23(4), 325–339 (2010)

5. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A rule-based
language for complex event processing and reasoning. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR. Lecture Notes in Computer Science, vol. 6333, pp. 42–57. Springer (2010)

6. Apache Camel. Website, retrieved from http://camel.apache.org/, 20130104
7. Artikis, A.: Dynamic protocols for open agent systems. In: Sierra, C., Castelfranchi, C.,

Decker, K.S., Sichman, J.S. (eds.) AAMAS (1). pp. 97–104. IFAAMAS (2009)
8. Athakravi, D., Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Handling change in

normative specifications. In: van der Hoek et al. [25], pp. 1369–1370
9. Balke, T., Vos, M.D., Padget, J.: Normative run-time reasoning for institutionally-situated

BDI agents. In: Coordination, Organizations, Institutions, and Norms in Agent Systems VI -
COIN 2012 International Workshop, COIN@AAMAS 2012, Valencia, Spain, June 2012, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. This volume, p. tbd. Springer
(2013)

10. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams
with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)

11. Bernstein, D., Vij, D.: Using XMPP as a transport in intercloud protocols. In: CloudComp,
2010 the 2nd International Conference on Cloud Computing (2010)

12. Cardoso, H.L., Oliveira, E.C.: Institutional reality and norms: Specifying and monitoring
agent organizations. Int. J. Cooperative Inf. Syst. 16(1), 67–95 (2007)

13. Cliffe, O., De Vos, M., Padget, J.: Modelling normative frameworks using answer set pro-
graming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR. Lecture Notes in Computer Sci-
ence, vol. 5753, pp. 548–553. Springer (2009)

14. Criado, N., Argente, E., Botti, V.: A BDI architecture for normative decision making. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1. pp. 1383–1384. International Foundation for Autonomous
Agents and Multiagent Systems (2010)

15. Dignum, V., Padget, J.: Multiagent organizations. In: Weiss, G. (ed.) Multiagent Systems.
MIT Press, 2nd edn. (2012), in press

16. El-Akehal, E.E.D., Padget, J.A.: Pan-supplier stock control in a virtual warehouse. In:
Berger, M., Burg, B., Nishiyama, S. (eds.) AAMAS (Industry Track). pp. 11–18. IFAAMAS
(2008)

17. Elakehal, E.E., Padget, J.: Market intelligence and price adaptation. In: Proceedings of the
14th Annual International Conference on Electronic Commerce. pp. 9–16. ICEC ’12, ACM,
New York, NY, USA (2012), http://doi.acm.org/10.1145/2346536.2346538

18. Ennis, R.L., Griesmer, J.H., Hong, S.J., Karnaugh, M., Kastner, J.K., Klein, D.A., Milliken,
K.R., Schor, M.I., Van Woerkom, H.M.: A continuous real-time expert system for com-
puter operations. IBM J. Res. Dev. 30(1), 14–28 (Jan 1986), http://dx.doi.org/10.
1147/rd.301.0014

19. Esteva, M., Padget, J.: Auctions without auctioneers: distributed auction protocols. In:
Moukas, A., Sierra, C., Ygge, F. (eds.) Agent-mediated Electronic Commerce II. Lecture
Notes in Artificial Intelligence, vol. 1788, pp. 20–38. Springer Verlag (2000), available via
http://dx.doi.org/10.1007/10720026_12

20. Ferguson, I.A.: Touring machines: Autonomous agents with attitudes. Computer 25(5), 51–
55 (May 1992), http://dx.doi.org/10.1109/2.144395

21. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. Ph.D. thesis, University of California, Irvine, Irvine, California (2000)

22. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of
institutional reality for open multiagent systems. Artif. Intell. Law 16(1), 89–105 (2008)

23. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Preliminary report. In: Brewka, G., Eiter, T., McIlraith,
S.A. (eds.) KR. AAAI Press (2012)

24. Gordon, G.: The development of the general purpose simulation system (gpss). In: Wexelblat,
R.L. (ed.) History of programming languages I, pp. 403–426. ACM, New York, NY, USA
(1981), http://doi.acm.org/10.1145/800025.1198386

25. van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.): International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 4-8,
2012 (3 Volumes). IFAAMAS (2012)

26. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.
(eds.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 2507,
pp. 118–128. Springer Berlin Heidelberg (2002), http://dx.doi.org/10.1007/
3-540-36127-8_12

27. Ibsen, C., Anstey, J.: Camel in Action. Manning (2010), iSBN-13: 978-1935182368
28. Laffey, T.J., Cox, P.A., Schmidt, J.L., Kao, S.M., Read, J.Y.: Real-time knowledge-based

systems. AI Mag. 9(1), 27–45 (Mar 1988), http://dl.acm.org/citation.cfm?
id=44132.44133

29. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence.
Artificial Intelligence 33(1), 1 – 64 (1987), http://www.sciencedirect.com/
science/article/pii/0004370287900506

30. Lazer, D., Friedman, A.: The dark side of the small world: how efficient information dif-
fusion drives out diversity and lowers collective problem solving ability. Program on Net-
worked Governance (PNG) Working paper 06-001, Harvard University (2006), retrieved
from http://www.hks.harvard.edu/netgov/files/png_workingpaper_
series/PNG06-001_WorkingPaper_LazerFriedman.pdf, 20130106

31. Lee, J., Baines, V., Padget, J.: Decoupling cognitive agents and virtual environments. In:
Dignum, F., Beer, M., Brom, C., Hindriks, K., Richards, D. (eds.) First International Work-

shop on Cognitive Agents for Virtual Environments. LNAI, vol. 7764, pp. 17–36. Springer
(2013)

32. McFall, M.E., Klahr, P.: Simulation with rules and objects. In: Proceedings of the 18th con-
ference on Winter simulation. pp. 470–473. WSC ’86, ACM, New York, NY, USA (1986),
http://doi.acm.org/10.1145/318242.318479

33. Müller, J.: The Design of Intelligent Agents: A Layered Approach, LNCS, vol. 1177.
Springer (1996), DOI 10.1007/BFb0017806

34. Neville, B., Pitt, J.: Presage: A programming environment for the simulation of agent soci-
eties. In: Hindriks, K.V., Pokahr, A., Sardiña, S. (eds.) ProMAS. Lecture Notes in Computer
Science, vol. 5442, pp. 88–103. Springer (2008)

35. Nieves, J.C., Padget, J., Vasconcelos, W., Staikopoulos, A., Cliffe, O., Dignum, F., Vázquez-
Salceda, J., Clarke, S., Reed, C.: Coordination, organisation and model driven approaches for
dynamic, flexible, robust software and services engineering. In: Schahram, D., Li, F. (eds.)
Service Engineering, pp. 85–115. Springer (2011), http://dx.doi.org/10.1007/
978-3-7091-0415-6_4, ISBN: 978-3-7091-0414-9

36. Noriega, P.: Fencing the open fields: Empirical concerns on electronic institutions (invited
paper). In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson, E.T., Ossowski,
S., Sichman, J.S., Vázquez-Salceda, J. (eds.) AAMAS Workshops. Lecture Notes in Com-
puter Science, vol. 3913, pp. 81–98. Springer (2005)

37. Nygaard, K., Dahl, O.J.: The development of the simula languages. In: Wexelblat, R.L. (ed.)
History of programming languages I, pp. 439–480. ACM, New York, NY, USA (1981),
http://doi.acm.org/10.1145/800025.1198392

38. Overdick, H.: The Resource-Oriented Architecture. 2007 IEEE Congress on Ser-
vices Services 2007 0, 340–347 (2007), http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4278816

39. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web Services:
Making the Right Architectural Decision. In: 17th International World Wide Web Conference
(WWW2008). pp. 805–814. Beijing, China (April 2008 2008), http://www2008.org/

40. Ranathunga, S., Cranefield, S.: Embedding BDI agents in business applications using enter-
prise integration patterns (extended abstract). In: Ito, Jonker, Gini, Shehory (eds.) Proceed-
ings of the 12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013). IFAAMAS (2013), to appear.

41. Ranathunga, S., Cranefield, S., Purvis, M.K.: Identifying events taking place in second life
virtual environments. Applied Artificial Intelligence 26(1-2), 137–181 (2012)

42. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., 1 edn. (May 2007)
43. Rodriguez, J.: On the design and construction of agent-mediated electronic institutions. IIIA

Monographs 14 (2001)
44. Rodrı́guez, J.A., Noriega, P., Sierra, C., Padget, J.: FM96.5 A Java-based Electronic

Auction House. In: Proceedings of 2nd Conference on Practical Applications of Intelli-
gent Agents and MultiAgent Technology (PAAM’97). pp. 207–224. London, UK (Apr
1997), http://www.iiia.csic.es/Projects/fishmarket/PAAM97.ps.gz,
iSBN 0-9525554-6-8

45. Simon, H.A.: Rational choice and the structure of the environment. Psychological Review
63(2), 129–138 (1956)

46. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

47. Web Services Architecture. http://www.w3.org/TR/ws-arch/\#relwwwrest,
http://www.w3.org/TR/ws-arch/\#relwwwrest, retrieved 20110808

48. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. Information Science
Discussion Papers Series 2008/03, University of Otago (2008), retrieved from http://
hdl.handle.net/10523/1063, 20130104

