-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Bath Research Portal

UNIVERSITY OF

D BATH

Citation for published version:

Pieters, W, Padget, J, Dechesne, F, Dignum, V & Aldewereld, H 2013, Obligations to enforce prohibitions: On
the adequacy of security policies. in SIN '13 Proceedings of the 6th International Conference on Security of
Information and Networks. Association for Computing Machinery, New York, NY, USA, pp. 54-61, 6th
International Conference on Security of Information and Networks (SIN 2013), Aksaray, Turkey, 26/11/13.
https://doi.org/10.1145/2523514.2523526

DOI:
10.1145/2523514.2523526

Publication date:
2013

Document Version _
Peer reviewed version

Link to publication

© ACM,2013. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in SIN '13 Proceedings of the 6th International
Conference on Security of Information and Networks, 2013 http://doi.acm.org/10.1145/2523514.2523526

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://core.ac.uk/display/161912409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2523514.2523526
https://researchportal.bath.ac.uk/en/publications/obligations-to-enforce-prohibitions(a184597c-0a1d-4fbe-b890-0bcfab047881).html

UNIVERSITY OF

)BATH

Pieters, W., Padget, J., Dechesne, F., Dighum, V. and Aldewereld,
H. (2013) Obligations to enforce prohibitions : on the adequacy
of security policies. In: 6th International Conference on Security
of Information and Networks (SIN 2013), 2013-11-26 - 2013-11-28,
Aksaray.

Link to official URL (if available):
http://dx.doi.org/10.1145/2523514.2523526

Opus: University of Bath Online Publication Store
http://opus.bath.ac.uk/

This version is made available in accordance with publisher policies.
Please cite only the published version using the reference above.

See http://opus.bath.ac.uk/ for usage policies.

Please scroll down to view the document.

http://opus.bath.ac.uk/
http://opus.bath.ac.uk/

Obligations to Enforce Prohibitions:
On the Adequacy of Security Policies

Wolter Pieters
Delft University of Technology
& University of Twente
The Netherlands
w.pieters@tudelft.nl

Virginia Dignum

Delft University of Technology

The Netherlands
m.v.dignum@tudelft.nl

ABSTRACT

Security policies in organisations typically take the form of obliga-
tions for the employees. However, it is often unclear what the pur-
pose of such obligations is, and how these can be integrated in the
operational processes of the organisation. This can result in policies
that may be either too strong or too weak, leading to unnecessary
productivity loss, or the possibility of becoming victim to attacks
that exploit the weaknesses, respectively. In this paper, we pro-
pose a framework in which the security obligations of employees
are linked directly to prohibitions that prevent external agents (at-
tackers) from reaching their goals. We use graph-based and logic-
based approaches to formalise and reason about such policies, and
show how the framework can be used to verify correctness of the
associated refinements. The framework can assist organisations in
aligning security policies with their threat model.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms

Human factors, Management, Security, Verification

Keywords

Graphs, logics, obligations, prohibitions, refinement, security poli-
cies

1. INTRODUCTION

Security policies in organisations typically take the form of obli-
gations for the employees. However, it is often unclear what the
purpose of such obligations is, and how these can be integrated in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIN’13, November 26-28, 2013, Aksaray, Turkey

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2498-4/00/10 ...$15.00.
http://dx.doi.org/10.1145/2523514.2523526.

Julian Padget
University of Bath
United Kingdom

jap@cs.bath.ac.uk

Francien Dechesne
Delft University of Technology
The Netherlands
f.dechesne@tudelft.nl

Huib Aldewereld

Delft University of Technology

The Netherlands

h.m.aldewereld@tudelft.nl

the operational processes of the organisation. This can result in
policies that may be either too strong or too weak, leading to un-
necessary productivity loss, or the possibility of becoming victim
to attacks that exploit the weaknesses, respectively.

The primary goal of any security policy is to specify means for
facing a given environment of threats. When organisations wish to
protect their information assets against malicious attacks, the first
step is stating what should be protected against what. For exam-
ple, an organisation may wish to prevent outsiders from gaining
access to sales data. In order to ensure that such constraints hold,
organisations then take concrete measures that actually reduce ac-
cess possibilities, such as locks on doors, access control on IT sys-
tems, and rules for employee behaviour. These security measures
again determine the possibility or impossibility of gaining access,
but at a more detailed level. The question then becomes how the
threat model and security measures can be aligned. In particular,
this holds for policies imposed on employees.

A first attempt to formalise the notion of security policy align-
ment, using a formalisation in first order predicate logic, is pre-
sented in [17]. The authors discuss consistency and completeness
of policies expressed at different levels in an organisation. For ex-
ample, the organisational policy that sales data should not leave the
organisation may be refined into policies on passwords, door locks,
and employee behaviour. In [17], the authors mainly focus on pre-
ventive controls (such as locks and passwords), but their framework
does not include the possibility of expressing obligation alongside
permission and prohibition. In order to deal with policies in the
form of obligations for employees, we need to adapt the approach.

In this paper, we propose a framework in which the security obli-
gations of employees are linked directly to prohibitions that prevent
external agents (attackers) from reaching their goals. We show
why obligations are an essential addition to the framework when
trying to model complex organisations. We view the organisation
as a system, composed of agents that can perform some actions
on some objects, to be regulated by a security policy. A security
policy on such a system aims at defining what actions the agents
are permitted, obliged or forbidden to perform [4]. We use a for-
mal representation, which has the advantage of being able to define
precisely how to reason about a policy, and therefore to develop
analytical tools to study the consequences of a given policy. We
formalise the problem of verifying completeness, and show how
this can be addressed in both graph-based and logic-based analysis.
This provides answers to questions like “do these policies address
the threats” and “what if I remove this policy”, thereby determining

whether policies are too strong or too weak.

As a running example, we discuss stealing a laptop from an of-
fice [8]. An attacker may try to obtain a key to open the door, or
enter the room when it is unlocked. Stealing the laptop is not possi-
ble when the owner is in the office, even when the door is unlocked.
Locks are important in this case, but they do not work without the
obligation to lock the room when leaving the office. Note that,
although this case addresses physical features of information secu-
rity for illustration purposes, the framework is applicable to digital
controls and associated obligations as well.

In section 2, we discuss related approaches, and the differences
with the present framework. In section 3, we outline the basic con-
cepts for representation and analysis, which we formalise in section
4. In section 5, we outline a graph-based approach to policy anal-
ysis, and in section 6 a complementary logic-based approach. In
section 7, we evaluate the results of both approaches, and in section
8, we discuss applications of the framework and draw conclusions.

2. RELATED WORK

Our work builds on the notion of security policy alignment. Such
alignment of security policies can be discussed for policies in dif-
ferent domains, or at different levels of abstraction. In the first
case, one may for example wish to align policies for digital ac-
cess and physical access [15]. In the second case, one may wish to
investigate whether the digital and physical access policies match
the policy that sales data should stay within the organisation. The
former can be called horizontal alignment, and the latter vertical
alignment [7]. In the case of vertical alignment, it may be the case
that only the policies at a higher level of abstraction are known, and
that the policies at a lower level need to be designed. This consti-
tutes the activity of refinement: defining lower-level policies that
should correctly implement a higher-level policy.

Security policy refinement was already identified in [1], but not
formalised. Consistency and completeness of policies is discussed
in [21], including the notion of refinement. The question of align-
ment was taken to the socio-technical domain by Dimkov [7], who
aimed at integrating policies on digital assets, buildings, and em-
ployee behaviour. This approach was formalised in [17]. These
approaches focused on permission and prohibition in relation to
automated methods for attack path discovery (“attack navigators”),
but did not include the notion of obligation. Obligation and its re-
lation to responsibility is discussed in [5, 20].

In this paper, we primarily study the translation of prohibitions
into obligations, and the delegation of those obligations to agents
in the system. From a more philosophical perspective, such prob-
lems have been discussed from the framework of actor-network the-
ory, describing socio-technical systems with a symmetrical view on
people and things. In this context, Latour speaks of “programs” and
“antiprograms”, similar to our notions of agents under control and
agents outside control. Latour’s example is hotel keys, with the
security problem of guests not returning them (antiprogram). One
can then delegate the responsibility for seeing to it that guests re-
turn their keys (program) to, for example, signs or bulky key rings
[12, 13]. The refinement of security policies can be thought of as an
approach to include safety and security values in the design of sys-
tems. Therefore, the proposed methods can be used in approaches
such as value-sensitive design [9].

3. BASIC CONCEPTS

In this section, we define the basic concepts that form the foun-
dations of our approach.

3.1 System and Control

First of all, we make a distinction between the area (“system”)
that is under control of the agent defining the policies, and the area
that is outside her control. When defining and implementing poli-
cies, the focus is always on the area that is under one’s control.
The behaviour of attackers cannot be influenced, and the only way
to limit the behaviour of attackers is by indirect means, i.e. imple-
menting policies in the form of access control mechanisms, door
locks, and rules on the behaviour of employees. In this paper, the
focus is on how obligations for employees can enforce prohibitions
for attackers.

It must be noted that the attacker may actually be an “insider”
[18], i.e. someone from within the organisation. This does not in-
validate the assumption of control, as long as the boundaries are
properly defined. For example, one may assume that at most k em-
ployees collude in an attack, and that the others follow the imposed
policies.

3.2 Obligations as Refined Prohibitions

Whereas physical and digital security policies are mostly ex-
pressed as permission and prohibition, many organisational secu-
rity policies take the form of obligations. Prohibitions expressed
in high-level policies may be translated into obligations in lower-
level policies. Obligations, like prohibitions, can only be attributed
to those who are under one’s control. Attackers cannot be assumed
to follow any of their obligations, so it is not relevant to assume
they have any. So, prohibitions on the attacker translate into obli-
gations for the employees, and the obligations somehow enforce
the high-level prohibition.

Obligations are targeted at keeping the system in a “safe” state
(the obligation to see fo it that (STIT) nothing bad happens). In
particular, states in which an agent outside the control of the or-
ganisation can initiate an action that would violate a security policy
should be avoided. For the running example, we have at least three
possibilities to prevent theft of a laptop from a room (safe states),
assuming the attacker does not have the key:

e employee in room, laptop in room;
e nobody in room, laptop in room, room locked;
e 1o laptop in room.

The assumptions are that an attacker cannot steal a laptop from
a room while somebody is there, that the attacker cannot break the
lock, and that the attacker cannot steal the laptop when it is not in
the room. Obviously, this also assumes that there is no other way
to get into the room except through the door with the lock. The
question in the running example is how to design obligations for
the employees that would be a suitable refinement of the prohibition
of attackers to take away the laptop. Or, a more modest question,
whether a particular set of obligations would be a valid refinement
of said prohibition.

In a generalised form, our question is thus how to refine a high-
level policy expressed as prohibition on agents outside control, into
lower-level policies, in the form of obligations, for people inside
control. Expressing such policies and refinements requires not only
a suitable logic, but also a suitable ontology (that provides an in-
ventory of what agents inside and outside the organisation can and
cannot do).

3.3 Obligations and Agency

In this paper, we assume that any agent can be assigned an obli-
gation, including non-human agents. For the sake of space, we ig-
nore here any philosophical questions concerning agency. In this

context, the door/room/laptop example may yield the following
obligations:

e The door is obliged not to let anyone in without a key when
locked;

e The employee is obliged to lock the door whenever leaving
the room;

e The employee is obliged not to let anyone she does not know
take something from the room while present.

4. FORMALISATION

4.1 The Formal Framework

Figure 1 gives an overview of the relationships between the dif-
ferent components in which we frame the security policy situation.
Solid arrows are translation steps, dotted arrows are verification
steps. We use X to refer to a member of the set of eXternal agents
X, and F for an agent under control (employees, in set £). A pro-
hibition on X's (upper left) is translated into a high level obligation
(STIT) on E's (upper right), which in turn is refined into policies for
individual agents E' (lower right). Agents conforming with these
policies enable or disable certain behaviours for agents X (lower
right), which may or may not completely realise the prohibition on
X (upper left).

Formalising the components, i.e. making structure explicit in for-
mal languages, allows us to make these relationships explicit and
more precise at the same time. Ultimately, the goal of formalisation
is to: (i) verify consistency and completeness between layers, and
(ii) assist in (automatically) generating refinements of the prohibi-
tions into policies (obligations).

At the higher level (also: higher abstraction level), security re-
quirements impose limitations on an attacker X: it is forbidden for
X to ¢ — where ¢(X) stands for some undesirable state of affairs
brought about by X. A policy holding for those subject to it (i.e.
the E’s, not the X's), dictates that the E's make sure that ¢(X) does
not come about: the E's should see ro it that —¢(X). For now, we
take the arrow on the top level to be a generic, yet informal rule:
from a security requirement forbidding an attacker X to ¢, fol-
lows the policy that those under control see to it that X does not ¢.
This approach suggests the application of a deontic logic of agency,
STIT-logic, which has ‘seeing to it that’ as primitive component.

4.2 Logics for Obligations and Prohibitions

In the top level of Figure 1, we use logical formalism to express
prohibitions, responsibilities and obligation. Deontic logic started
out with actions as primitives, but when it was discovered that a
logic of permission and obligation fitted with modal Kripke seman-
tics, actions were replaced by states of affairs, like our ¢(X) [22,
23]. The STIT-operator ([3]) constitutes a responsibility relation
between agents and states of affairs (conditions). So, the actions
that lead to a state of affairs (like ¢(X)) are left implicit, and no
distinction is made between different ways of bringing about the
same result.

Logics of agency like STIT need temporal order to be inter-
preted, in the form of a branching time semantics. This is neces-
sary to model the agent’s ability to choose (a certain action to bring
about a certain state of affairs). A choice by an agent at a certain
moment is a subset of futures; STIT g (1)) basically corresponds to
the possibility of £ choosing only futures in which 1 holds [19].
In this paper we focus only on the policies on the lower level, so
the semantics of the formulas on the top level remains informal. In

future work, we aim to formalise the higher level and connect it to
the lower level through formal semantics for the top-level formulas.

4.3 Formalising the Problem

In this section, we formalise the concepts outlined above. First
of all, we distinguish two disjoint sets of agents, where the organi-
sation is in control of its employees (E € &), but not in control of
externals X € X.

LENX=0

2. £JX = A (where A is the set of all agents)

3. control(E) foreach E € £

4. —control(X) foreach X € X
We postulate here that a prohibition F'x ¢(X) implies an obligation
and responsibility O STITE(—¢(X)) (translation from prohibi-
tion for X to ¢(X) into obligation on Es to maintain not ¢(X)).
Note that this is a postulate here: as the formulas have no formal
semantics yet, we cannot formally validate this implication. We
aim to do so in future work.

From the top level, we now need refinement of the general obli-
gation and responsibility of the employees into policies for each
agent. This may involve refining ¢ as a conjunction of multiple
states that would enable the outsider/attacker X to achieve ¢(X).

4.4 Analysis Workflow

Given the obligation of the agents E to see to it that agents X
do not achieve a certain state of affairs, this high-level obligation
needs to be refined into more detailed obligations, distributed over
all agents in £. Two types of analysis are possible using the mod-
els: a completeness analysis of proposed detailed obligations, and
an analysis providing suggestions on which actions should be pre-
vented by the obligations. The analysis requires the following in-
put:

1. The property of the world to be prevented, typically an agent
X having access to a certain asset;

2. A model of the world/system describing which actions by the

agents are possible;

3. The proposed obligations on the agents in £ to prevent agents

X from achieving the property under 1.
Obligations may take the form of limitations on certain possible
actions of the agents FE, either being obliged to abstain from the
action (don’t leave the room), being obliged to verify certain con-
ditions before taking the action (leave the room only when there are
no valuables), or doing the action only in combination with another
action (lock the room when leaving).

For the completeness analysis, it needs to be clear which actions
are prevented by the defined obligations. For the analysis providing
suggestions for obligations, this link also needs to be available in
the other direction: given a certain action, can it be prevented by a
certain obligation? Actions can only be prevented by obligations if
an agent F is involved. Actions taken by an agent X on its own can
never be prevented by obligations on agents in £. The analysis aims
at proposing a minimal set of obligations that would be complete
with respect to the high-level obligation to prevent the attacker goal.
This amounts to blocking all paths in the attack tree by obligations
on the agents in £. In this paper, we assume that this is the only way
to prevent attacks, and we do not take technical countermeasures
into account (changing what is possible in the system).

4.5 Finding Counterexamples

In the running example, the high-level policy states that an at-
tacker should not get access to the laptop. Assuming that the em-
ployee residing in the office will always lock the door when leaving
with the laptop still in the room, one would assume that the system

control

Security: Fx¢(X) —_— Responsibility: O STITe(—~¢(X)) abstract
A
|
|
|
|
| validate refine
|
|
|
Limitations for X =---------- Policies for £/ concrete

Figure 1: Overview of the refinement of prohibitions into obligations. Solid arrows represent design steps, dotted arrows represent

verification steps.

would always be in a state where (i) the laptop is not in the room,
(ii) the employee is in the room, or (iii) the room is locked, and
that therefore the laptop is safe. However, depending on the system
model / ontology and the actions that it allows, there is a counterex-
ample. Consider the situation where the attacker enters the room
while the employee is still there with the laptop, and then the em-
ployee leaves without the laptop and locks the door. The attacker
will then have access to the laptop. Whether he can actually steal
it will depend on whether he can unlock the door from the inside
without the key.

5. THE EXAMPLE IN ANKH

The ANKH system model [16] represents security in socio-tech-
nical systems by means of hypergraphs, where nodes are entities
and hyperedges represent access relations. When somebody is in
a room, she will be a member of the hyperedge representing the
room. Entities that are members of more than one hyperedge, called
guardians, will have policies stating on which conditions they allow
entities to move between hyperedges. For example, the door is a
member of the hallway and the room, and will have policies stating
how somebody can enter (or exit), e.g. by possessing the right key.

For the purpose of modelling our running example, four exten-
sions are required to the original ANKH model:

1. We need actions that change policies: locking the door means
changing the policy of the door (it will now require a key).
In particular, actions can change the state of an entity, and
policies are associated with states;

2. We need asymmetric policies: entering a room may require
different credentials (e.g. a key) than leaving;

3. We need a notion of simultaneous action: the employee is re-

quired to lock the door at the same time as leaving the room;

4. We need policies that require the absence of something: the

attacker cannot take the laptop while the employee is there.

Here, we represent access policies as tuples (g, e, C, S, T'), mean-
ing that guardian g will give entity e access to target 1" if e has
access to all elements in C' (credentials), and the elements in S
(surveillers) have no access to e. Additionally, there are meta-
policies for changing the policies. The door has two policies for
granting access to the room, and someone with the key can make
the door switch policies. Thus, we represent such a meta-policy as
(P, C), with P a set of policies and C' a set of sets of credentials,
where each set of credentials in C' is sufficient to make the door
switch to a different active policy.

In the starting state, the room contains the door, the laptop, and
the employee, the employee’s possessions include the key, and the
hallway contains the door and the attacker (Figure 2). The door is
open at this stage, and having access to the hall is sufficient to gain
access to the room (no key is required). The active policy of the
door can be changed by (un)locking. We assume that the door never
requires a key to exit, or rather that anyone who has access to the
room can change the policy of the door (lock or unlock from the in-
side), without needing the key. Formally, C' = {{key}, {room}}.

The analysis of the example in ANKH forces us to make all poli-
cies explicit. For example, we need to state that the employee can
pick up or leave any object, and that anyone can exit the room
(without the key). We assume that the hallway is large enough
for the attacker to take an asset, even with the employee present in
the hallway. Based on this analysis, we can identify all possible
sequences of actions, and associated states of the system. We can
then provide an undesirable property of a state as the target of an
attack analysis, in this case the attacker having access to the laptop.
Tracing back the target to possible preconditions, the analysis then
builds an attack tree [14] (Figure 3).

6. THE EXAMPLE IN INSTAL

Whereas ANKH uses a graph-based approach to policy analysis,
logic-based approaches can serve a similar purpose, using an ex-
haustive analysis of the reachable states, given an initial state and
an ontology of actions available to the actors. InstAL is an action
language, following in the tradition of .4 [10] and the Event Calcu-
lus [11]. InstAL is implemented in Answer Set Programming [2]
and was originally developed to support institutional modelling [6].
Informally, InstAL is a simple set-theoretic model for event-based
systems, such that an event brings about a change in a state that
models the situation of interest. The apparent compatibility of the
underlying formal models of ANKH and InstAL suggested the idea
of capturing the movements of entities subject to policy as events
that modify a representation of the states arising from the possible
enactments of policies. Answer set semantics conceptually grounds
the input program over all the values that the variables can take, ef-
fectively constructing a proof tree, in which the paths from root
to leaf constitute the answer sets for the model under considera-
tion. Consequently, it is possible to explore all possible sequences
of events entailed by some starting state, reflecting the intuition
expressed in section 4.2. Of course, as described, this leads to ex-
ponential blow-up; however, many event orderings are either mean-

1
2
3

/ \ / \
\\ \ “/' \
attacker attack- | | [| room || [emplo- | employee \
) \ | hallway | | room \ | ; |
possessions er | \ door | \ yee /possessions |
/ / ‘\\ /e‘
\ / \ /
\ \. / laptop \\/ key /
~— _ P - \\\ — - \\\\ e -
x/ \ c/({(door, any person,\\ «/ \
({(attacker, any {key}, {}, room), .
object, {}, {employee} (door, any person, {}, ({(any objec;, ¢
any group)},) {3, room)}, {key}) any group)}, {})
“\ / ({(door, any person, \\; /
_{ { hallway)},))/
Figure 2: The initial state of the example as an ANKH hypergraph.
\ CEEpIy) w Attacker in \
| attacker | \ room /
\\Poss / A 4
S 1
[1
L | [A
Key in ‘
’ \ attacker |
e YN VN N p 5 4
2\ £ 3\ /6 L7\ T
Laptopin | | Attacker in | | Laptopin | | Employee | N
. hallway / . hallway / _ room / \\not in room/ (|
N 4 9 4 A A P J— [‘ P .
~ — — — Ve N) N
it ’ ‘ [12 ‘ ‘ [1380\
| Keyin | \ Attacker in \
‘ P l l _ ‘\hallway //‘ \\ hallway /
— | € ya N [. N\ ~___ ~_~
[N 9. \ [) T
£ { Door | N
o L (= | Door locked | \ unlocked / P / \ -
VAVTRN PN 8 N4 N4 VN VAETIRN
[EEEDin ‘Emplo;/ee in — — \“’Empl::}/‘ee in—1 4{/ Key in \‘\
‘employee / _ hallway \ hallway / | GTHETER
_poss. / A / \\ / \\poss. J/

Figure 3: The attack tree of the example as developed by the ANKH analysis. AND-nodes have a flat basis (all children need to be
satisfied), and OR-nodes are curved (only one child needs to be satisfied). Nodes 9 and 10 represent a time / sequence constraint, as

they cannot both be realised at the same time.

ingless or just not of interest, so constraints expressing properties
over paths that are not wanted can be used to prune the proof tree,
reducing the number of answer sets significantly.

The way we have used InstAL here is as a means to specify how
significant events change the state of the model vis-a-vis the se-
curity of certain entities. Hence, by specifying a range of initial
conditions, it is possible to derive traces that capture the effects
of all the event orderings considered interesting and thus whether
undesired states are reachable or not. In this sense, modelling the
example in InstAL is similar to the ANKH analysis, but using logic
rather than graphs. The basic concepts are expressed as predicates
that can be derived from properties of the state. In particular, we re-
gard the protection mechanisms to have failed when the attacker
gains possession of the laptop:

failed when holds(A,0),

attacker (a),
laptop (O)

QNN BN =

failedis an institutional fact, whose presence in the institutional
state indicates that the resource — in this case the laptop — is now
held by a non employee. Throughout the program fragments, we
use A to denote an Agent (either an employee or an attacker), O an
Object (either a key or a laptop) and L a Location (either an office
or a hallway). What matters is how holds (A, O) is achieved;
that is what was the sequence of events that brought about the state
containing failed? The fact that an attacker holds the resource
is brought about by the attacker t akeing the resource when it is in
avulnerable situation:

take(A,0) initiates holds(A,0)

if alocation(A,L), olocation(O,L),
vulnerable (O), attacker(d);
take (A,0) initiates holds (A, O0)

if alocation(A,L), olocation(O,L),
not holds (A,0), employee (A);

This rule applies to any resource, not just a laptop and hence also

L N S o =

L N S

N=lieBEN e R R O S

covers the case of the key to the office being vulnerable. A resource
is vulnerable when an attacker can take it. This is reflected
by defining vulnerable as the disjunction of several situations:

vulnerable (O) when situationl (O);
vulnerable (O) when situation2 (0);
vulnerable (O) when situation3(0);
vulnerable (O) when situation4 (O);

Situation 1 arises when an employee leaves a resource unat-
tended in an unlocked office. Hence, the attacker can enter the
office and t ake the resource.

situationl (O) when
olocation(O, L),
not employeeIn(L),
alocation(A,L),
unlocked (L)

Situation 2 allows an attacker to be alone in a locked office with
the resource, so the attacker can t ake the resource.
situation2 (0) when
olocation(O,L),
not employeeIn(L),

alocation(A, L),
locked (L)

It is clear that the flaw in the security policy here is in locking the
office with an attacker inside, but it is a situation that is not speci-
fied by the initial form of the policy resulting in a failed state in
the analysis and a trace that identifies how the situation arose. Con-
sequently, the designer may specify an additional obligation for the
employee to ensure this situation is prevented (see section 7)

In situation 3, the laptop has been left in the hallway. This makes
it vulnerable because anyone may take it.

situation3(0) when

olocation(0,L), laptop(0O), hallway (L)

In situation 4, the key has been left in the hallway. If the attacker
can take the key, then they can enter the (locked) office and t ake
the laptop.

situation4 (O) when

olocation(0O,L), key(0), hallway (L)

The above characterise several situations of concern. What mat-
ters from a security analysis point of view is how any one of these
situations may be arrived at from an initially secure situation; that
is to say, what is the trace of events that takes the system situation
from secure to insecure? Consequently, by analysing those traces,
the policy can be refined to oblige employees to take or not to take
certain actions in order to avoid bringing about a failed state.

We start from the initial facts:

initially
olocation (laptopl,officel),
alocation (agentl,officel),
alocation (agent2,hallwayl),
hallway (hallwayl),
office(officel),
unlocked (officel),
holds (agentl, keyl),
key (keyl),
laptop (laptopl),
employee (agentl),
attacker (agent2)

In this situation, the laptop is in the office, with an employee who
also has the key to the office, while the attacker is in the corridor.
By running the answer set solver with the rules shown in figure 4
and the above initial conditions, we can discover all the traces that
have failed in the final state. Without any constraints the num-
ber of answer sets increases by 2% (for this problem, because the

O 00NN BN~

enter (A,L) initiates unlocked(L),alocation (A,L)
if office(L),holds (A,K), key (K);
enter (A,L) initiates alocation(A,L)
if unlocked(L),office (L) ;
enter (A,Ll) terminates locked(Ll),alocation (A,L2)
if locked(Ll),office(L1),
holds (A,K),key (K),hallway (L2) ;
enter (A,Ll) terminates alocation (A,L2)
if unlocked(Ll),office(Ll),hallway(L2);

exit (A,Ll) initiates alocation (A, L2)
if unlocked(Ll),office(Ll),hallway (L2);
exit (A,Ll) initiates alocation(A,L2),locked(Ll)
if office(Ll),hallway(L2),holds (A,K), key (K);
exit (A,L) terminates alocation (A, L)
if unlocked(L),office(L),alocation(A,L);
exit (A,L) terminates alocation(A,L),unlocked (L)
if unlocked(L),office (L),
holds (A,K) ,key (K),alocation(A,L);

take (A,0) initiates holds (A,0Q)
if alocation(A,L), olocation(O,L),
vulnerable (0), attacker(Ad);
take (A,0) initiates holds (A, 0)
if alocation(A,L), olocation(O,L),
not holds (A,0), employee (A);
take (A,0) terminates olocation (0O, L)
if alocation(A,L), olocation(O,L);

leave (A,0) initiates olocation (O, L)
if holds(A,0), alocation(A,L);
leave (A,0) terminates holds (A, 0)
if holds(A,0);

Figure 4: Behavioural rules

maximum number of variables in any right hand side of a rule is
happens to be 4) with each increment in the trace length, so a trace
of length n has 24("=1) answer sets. However, as noted earlier,
not all sequences of events make sense and so we define several
constraints to discard the corresponding answer sets (or rather, to
ensure they are not constructed in the first place).

The events that trigger the initiation or termination of institu-
tional facts in the model have no semantic import for the answer
set solver: they are just names of terms and it constructs answers
sets based on all the possible orderings of those names. However,
it makes no sense, for example, to enter the same place in succes-
sive time instants', or to enter a location if already there. Similar
common sense constraints apply to the action of exiting a location
and taking and leaving objects. Here we consider traces of length
6, since this happens to be the number of events required to illus-
trate the scenario of the attacker taking the key that the employee
leaves in the hallway and entering the office containing the laptop
(see Figure 5: a + prefix identifies a fluent that is initiated in a given
instant, conversely a - prefix denotes termination, while bold iden-
tifies a non-inertial fluent when it is added to the state). Shorter and
longer scenarios are equally possible: it is a matter of both the total
number of different kinds of events that are specified and lengths
of the sequences of interest to the designer. Traces of length 6 give
rise to 229 answer sets, but the common-sense filters reduce this to
30.

7. ANALYSIS RESULTS

In the preceding sections, we have shown how both graph-based
and logic-based approaches can be used to analyse the complete-
ness of the obligations with respect to enforcing the prohibition

"Time necessarily advances, but there is no notion of real time,
rather events are associated with an identified instant and instants
are ordered.

exit(agent1,officel)

leave(agentl keyl)

take(agent2 keyl)

enter(agent2,officel)

take(agent2,laptopl)

®

Sy

S

®

Sa

:

— alocation(agent1,officel)
— unlocked(office1)

~ holds(agent1 keyl)

— olocation(key1 hallway1)

live(insecureObject)
attacker(agent2)
employee(agent1)
laptop(laptopl)

key(keyl)
holds(agent1,keyl)
office(officel)
hallway(hallway1)
alocation(agent2,hallway1)
olocation(laptopl,officel)
employeeln(officel)

Answer set 1, stdin

olocation(laptopl officel)
alocation(agent2,hallway1)
hallway(hallway1)
office(officel)

key(key1)

laptop(laptop1)
employee(agent1)
attacker(agent2)
live(insecureObject)
alocation(agent1,hallway1)
employeeln(hallwayl)
locked(officel)

-+ alocation(agent1,hallway1)
+ locked(officel)

T olocation(keyl hallway1)

Tive(insecureObject)
attacker(agent2)
employee(agentl)
laptop(laptop1)

key(key1)

office(officel)
hallway(hallway1)
alocation(agent2, hallway1)
olocation(laptopl,officel)
vulnerable(keyl)
alocation(agent1,hallway1)
employeeln(hallway1)
situationd(key1)
locked(officel)

~alocation(agent2, hallway1)
— locked(officel)

— olocation(laptopl,officel)

olocation(laptop1,officel)
hallway(hallway1)
office(officel)

key(key1)
laptop(laptop1)
employee(agent1)
attacker(agent2)
live(insecureObject)
alocation(agent1,hallway1)
employeeln(hallway1)
holds(agent2 key1)

-+ alocation(agent2,officel)
+ unlocked(officel)

Tive(insecureObject)
attacker(agent2)
employee(agent1)
laptop(laptopl)
key(keyl)
unlocked(officel)
office(officel)

hallway (hallway1)
situation1(laptop1)
vulnerable(laptop1)
alocation(agent1,hallway1)
employeeln(hallway1)
holds(agent2 key1)
alocation(agent?2,officel)

hallway(hallwayl)
office(officel)
unlocked(officel)
key(keyl)
laptop(laptop1)
employee(agent1)
attacker(agent2)
live(insecureObject)
alocation(agent]1,hallway1)
employeeln(hallway1)
holds(agent2,laptopl)
holds(agent2,key1)
failed
alocation(agent2,officel)

+ holds(agent2,keyl)

+ holds(agent2,laptopl)

Figure 5: Trace shows employee leaving key in hallway, attacker taking key, entering office and taking laptop.

on the external agents. Although the graph-based and logic-based
approaches have different notations, both have representations of
policies and actions, which together provide the possibility to find
problematic sequences of actions. In ANKH, this result is repre-
sented in an attack tree (Figure 3), in InstAL in the form of traces
(Figure 5). Examination of, respectively, the attack tree and the
traces that lead to a failed state reveals three policy oversights: the
one that we already discussed and two additional ones:

e attacker enters office, employee leaves and locks door; at-
tacker takes laptop (assuming he can unlock from the inside);

e employee leaves laptop in hallway; attacker takes laptop;

e employee leaves key in hallway; attacker takes key, enters
room while employee is away, and takes laptop.

Thus, in order to make the STIT predicate true, and enforce the
prohibition on the attackers, three additional obligations need to be
assigned to the employee:

e Don’t leave the room when someone else is there. In InstAL ,
this can be expressed by adding a condition to the exit rule:
exit (A,0) terminates alocation (A,0),unlocked (0)
if unlocked(0),office (0),

1
2
3 holds (A, K), key (K) ,alocation (A,0),
4 not attackerIn(O);
5
6

attackerIn (L) when alocation(X,L), attacker (X);

Taking the same initial conditions as before and the same
common-sense filter rules, the number of traces with failed
in the final state now reduces to 3.

e Don’t leave the key in the hallway. In InstAL , this can be
expressed by adding a condition to the leave rule:

leave (A,0) initiates olocation (0, L)
if holds(a,0),
alocation(A,L), not hallway(L);
leave (A,0) terminates holds (A, Q)
if holds(a,0),
alocation(A,L), not hallway(L);

o R e S

Adding this rule results in no answer sets with failed in the
final state (in traces of length 6).

e Don’t leave the laptop in the hallway. This is covered by the
above rules because they apply to any object.

The usefulness of this process in uncovering incompleteness of
the original policy is evidenced by the revelation of another failure
case: when the employee leaves the key in the office and so cannot

lock the office when she leaves as she is obliged to do. Conse-
quently, the attacker can enter the office and take the laptop. This
scenario can be resolved by obliging the employee not to leave the
key anywhere.

In the ANKH analysis, these additional obligations are added
to the policies of the hypergraph entities. This prevents the corre-
sponding actions (graph transformations) from occurring, and thus
removes the corresponding branches from the attack tree (Figure 3).
For the first additional obligation, node 7 gets an additional child
“attacker not in room”. This adds an additional time constraint, re-
quiring the employee to leave before the attacker enters. The latter
is only possible if the attacker acquires the key, as the employee
is obliged to lock the door. Adding the second additional obliga-
tion would remove nodes 2 and 12, removing the possibility that
either the key or the laptop is left outside. Similarly to the InstAL
analysis, adding both obligations thereby blocks all paths.

8. CONCLUSIONS AND DISCUSSION

In this paper, we have outlined a framework for systematic de-
scription and analysis of obligation policies on employees that re-
sult from the desire to prohibit actions of agents that are outside of
the control of the organisation. This prohibition is translated into
obligations on the agents that are indeed under control, and we can
verify the completeness of such a refinement with tool support. We
have shown that both graph-based and logic-based approaches can
be used to execute the analysis. The framework can be applied in
different settings. As we have shown above, it can be employed
to check the completeness of obligation policies put on employees,
with respect to the goal of preventing undesired states. Similarly, it
could be used to verify whether a policy set would still be complete
when removing one entry, thereby identifying superfluous policies.

Based on this verification approach, a method could be devel-
oped that would assist policy developers in step-wise design of
complete policies. As we have shown above, the gap analysis pro-
vided by the framework can be used to adjust or add policies, and
then the analysis can be re-run to check whether the problems have
been solved, or whether new problems might appear. In this way,
policy designers can use the framework to develop better policies.
Also, if there is discussion on certain policy, for example when
employees complain about the burden it brings, or when it is sys-
tematically ignored, the framework can be used to show what could
go wrong if the policy would not be there. Assuming that certain
employees (in agent set £) would not comply with their obliga-
tions, one could analyse the possible traces to undesirable states
that would be enabled. This would for example be relevant in the
analysis of insider threat. The analysis could be part of a general

pro-active approach to identify what could happen if any of the
employees would not comply, or it could be part of an investigation
when a concrete suspicion about insider threat would exist.

In future work, we focus on including support for step-wise re-
finement of the prohibitions into obligations for employees. We
also aim at investigating the use of more advanced logics with se-
mantics for obligation and responsibility, in order to explore the
translation arrow on the top level of Figure 1. Can we character-
ize the kind of prohibitions on X that are formally translatable into
obligations on E? This could give insight in limitations of what
can be solved with security policies.

9. ACKNOWLEDGMENTS

The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreements number SEC-261696 (SESAME)
and ICT-318003 (TREsPASS). This publication reflects only the
authors’ views and the Union is not liable for any use that may
be made of the information contained herein. The research also
received funding from the Dutch Next Generation Infrastructures
Foundation under project 09.08.KID.

10. REFERENCES

[1] M. Abrams and D. Bailey. Abstraction and refinement of
layered security policy. In Information Security: An
Integrated Collection of Essays, pages 126-136. IEEE
Computer Society Press, 1995.

[2] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

[3] N. Belnap, M. Perloff, and M. Xu. Facing the Future: Agents
and Choices in our Indeterminist World. Oxford University
Press, 2001.

[4] L. Cholvy and E. Cuppens. Analyzing consistency of security
policies. In Security and Privacy, 1997 IEEE Symposium on,
pages 103-112, 1997.

[5] L. Cholvy, E. Cuppens, and C. Saurel. Towards a logical
formalization of responsibility. In Proc. of the 6th int. conf.
on Artificial intelligence and law, ICAIL "97, pages
233-242, New York, NY, USA, 1997. ACM.

[6] O. Cliffe, M. De Vos, and J. Padget. Answer set
programming for representing and reasoning about virtual
institutions. In CLIMA VII, volume 4371 of LNCS, pages
60-79. Springer, 2006.

[7]1 T. Dimkov. Alignment of Organizational Security Policies —
Theory and Practice. PhD thesis, University of Twente,
Enschede, February 2012.

[8] T. Dimkov, W. Pieters, and P. Hartel. Effectiveness of
physical, social and digital mechanisms against laptop theft
in open organizations. In GreenCom, IEEE/ACM Int’l
Conference on Cyber, Physical and Social
Computing(CPSCom), pages 727 —732, dec. 2010.

B. Friedman. Value-sensitive design. Interactions,

3(6):16-23, 1996.

[10] M. Gelfond and V. Lifschitz. Action languages. Electron.
Trans. Artif. Intell., 2:193-210, 1998.

[11] R. Kowalski and M. Sergot. A logic-based calculus of events.
New Gen. Comput., 4(1):67-95, 1986.

[12] B. Latour. Where are the missing masses? the sociology of a
few mundane artifacts. In Shaping technology/building
society: Studies in sociotechnical change, pages 225-258.
Cambridge MA: MIT Press, 1992.

[13] B. Latour, P. Mauguin, and G. Teil. A note on socio-technical
graphs. Social Studies of Science, 22(1):33-57, 1992.

[14] S. Mauw and M. Oostdijk. Foundations of attack trees. In
Information Security and Cryptology - ICISC 2005, volume
3935 of LNCS, pages 186—198. Springer, 2006.

[15] V. Nunes Leal Franqueira and P. A. T. van Eck. Towards
alignment of architectural domains in security policy
specifications. In J. M. P. et al., editor, Proc. 8th Int. Symp.
System and Information Security. Fundacao Casimiro
Montenegro Filho - CTA/ITA, 2006.

[16] W. Pieters. Representing humans in system security models:
An actor-network approach. Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable
Applications, 2(1):75-92, 2011.

[17] W. Pieters, T. Dimkov, and D. Pavlovic. Security policy
alignment: A formal approach. Systems Journal, IEEE,
7(2):275-287, 2013.

[18] C. W. Probst, R. R. Hansen, and F. Nielson. Where can an
insider attack? In Formal Aspects in Security and Trust,
volume 4691 of LNCS, pages 127-142. Springer, 2007.

[19] K. Segerberg, J.-J. Meyer, and M. Kracht. The logic of
action. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Summer 2012 edition, 2012.

[20] M. Sloman. Policy driven management for distributed
systems. Journal of network and Systems Management,
2(4):333-360, 1994.

[21] M. Sloman and E. Lupu. Security and management policy
specification. Network, IEEE, 16(2):10 —-19, 2002.

[22] G. von Wright. Norm and Action: A Logical Enquiry.
Routledge & Keegan, 1963.

[23] J. Wolenski. Deontic logic and possible worlds semantics: A
historical sketch. Studia Logica, 49(2):273-282, 1990.

[9

—

