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Abstract  
Published X-ray crystallographic structures for glycoside hydrolases (GHs) from 39 different 

families are surveyed according to some rigorous selection criteria and the distances separating 208 

pairs of catalytic carboxyl groups (20 -retaining, 87 -retaining, 38 -inverting and 63 -

inverting) are analysed. First, the average of all four inter-carboxyl O…O distances for each pair is 

determined; second, the mean of all the pair-averages within each GH family is determined; third, 

means are determined for groups of GH families. No significant differences are found for free 

structures as compared with those complexed with a ligand in the active site of the enzyme, nor for 

-GHs as compared with -GHs. The mean and standard deviation (1) of the unimodal 

distribution of average O…O distances for all families of inverting GHs is 8 ± 2 Å, with a very wide 

range from 5 Å (GH82) to nearly 13 Å (GH46). The distribution of average O…O distances for all 

families of retaining GHs appears to be bimodal: the means and standard deviations of the two 

groups are 4.8 ± 0.3 Å and 6.4 ± 0.6 Å. These average values are more representative, and more 

likely to be meaningful, than the often-quoted literature values, which are based on a very small 

sample of structures. The newly-updated average values proposed here may alter perceptions about 

what separations between catalytic residues are “normal” or “abnormal” for GHs. 

Key words: Glycoside hydrolases (GHs), structural analysis, inter-carboxyl separation 

 

 

 

 

 



 2

Introduction 
Glycoside hydrolases (GHs, or glycosidases) play a variety of vital roles in biological processes and 

are enzymes that catalyse the hydrolysis of glycosidic linkages between carbohydrate molecules. 

Their structures, functions and mechanisms have been the subject of several recent reviews.1-7 Most 

GHs use one or the other of two distinct mechanisms.8 Retaining glycosidases employ a double-

displacement mechanism, involving a covalent glycosyl-enzyme intermediate (Fig. 1), leading to 

net retention of the stereochemical configuration at the anomeric centre. Inverting glycosidases 

function through a direct displacement mechanism (Fig. 2) leading to net inversion of the 

stereochemical configuration at the anomeric centre. Both mechanisms operate via oxacarbenium-

ion-like transition states and both involve a pair of carboxylic acid functional groups (either aspartic 

acid or glutamic acid) as the catalytic residues. In retaining GHs one carboxyl group functions as an 

acid/base catalyst and the other as a nucleophile, whereas in inverting GHs one functions as a 

general acid and the other as a general base (Figs. 1 and 2). Some GHs employ completely different 

mechanisms including, for example, neighbouring-group participation,9 but these are not the 

primary subject of this survey. 

 

Figure 1.  
Proposed mechanism of retaining glycosidases: A/B refers to acid/base catalytic residue 
and Nu/Lg refers to nucleophile/leaving group residue. 
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Figure 2.  
Proposed mechanism of inverting glycosidases: A refers to catalytic acid residue and B 
refers to catalytic base residue.  

 

In their influential 1994 review, McCarter and Withers wrote:10 

‘Inverting enzymes have an active-site architecture superficially similar to that of retaining 

enzymes, with two essential carboxylic acids on opposite faces of the substrate binding cavity. 

Closer inspection, however, reveals that the distance between the catalytic residues (a general 

acid and a general base) is significantly greater than that between the catalytic carboxylates of 

retaining enzymes. Indeed, measurement of the separations between the carboxyl oxygens (the 

average of the four possible distances between the four oxygens) of ten structurally defined 

glycosidases yielded average distances of 4.8 and 5.3 Å for retaining - and -glycosidases, 

respectively, whereas the average for inverting - and -glycosidases was 9.0 and 9.5 Å, 

respectively. The greater separation for the inverting enzymes is significant and is presumably 

required for an inverting mechanism in which the nucleophilic water, as well as the substrate, 

must be positioned between the carboxyl groups.’10 

The primary source is a contemporaneous paper by Withers and co-workers which cites the actual 

enzymes considered: three each of -retaining, -retaining and -inverting GHs together with a 

single -inverting GH.11 In view of the very limited extent of their sample, the four average 

distances reported should have been regarded as indicative and preliminary rather than fully 

representative and definitive in nature. However, since then it has been quite common to read in the 

GH literature statements along the lines of ‘the distance between the two catalytic residues is longer 

than the 5 Å usually observed in GHs with a retaining mechanism’ or ‘the catalytic residues could 

not be identified unequivocally on the basis of the distance criteria suggested for the inverting 

mechanism’ which appear to imply normative roles for these average distances. 

The purpose of this paper is to provide more reliable evaluations of the average distances between 

the catalytic carboxyl groups in retaining - and -GHs and inverting - and -GHs, based upon 
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critical consideration of high-resolution X-ray structural data for a wider range of GH families (as 

classified by Henrissat12) now available and including both free and ligand-bound enzymes. This 

survey should help to determine what ranges are “normal” for the several classes of GHs and thus 

how normative the previously published and frequently cited averages actually are. In turn this 

provides insight into whether or not these inter-carboxyl separations are indeed mechanistically 

determinative. 

METHODS 

The CAZY database13 and the CAZypedia website14 are valuable and (almost) comprehensive 

sources of curated information on all aspects of GH structure, function and mechanism, and they 

provided the starting points for this survey. The CAZY database points to 775 (or more) GH X-ray 

crystallographic structures in the Protein Data Bank15 now covering 132 GH families. For our 

present purposes, a total of 136 structures were selected (69 retaining, 67 inverting) subject to 

several criteria: 

 only GHs thought to function by means of the double-displacement (retaining) and direct 

displacement (inverting) mechanisms (cf. Figs 1 and 2) were considered; 

 only GHs containing a pair of catalytically functional carboxyl residues (general acid/base and 

nucleophile for retaining and general acid and general base for inverting) were considered; 

 only GHs in which the specific pair of catalytically functional carboxyl groups has been 

identified with at least a degree of certainty were considered; 

 only wild-type GHs were considered; 

 only X-ray structures of the highest resolution ( 2.0 Å for retaining and  2.5 Å for inverting 

GHs) were considered. 

The 136 selected structures include at least one example from each of 39 different GH families and, 

because some X-ray structures contain more than one sub-unit in the unit cell, the total number of 

carboxyl-group pairs in this survey is 211. In every case the original published paper has been 

consulted as the authoritative source of structural and mechanistic information, such as whether the 

enzyme is retaining or inverting, which carboxylic acid residues are the catalytically functional pair 

and which role is played by each member of the pair. In a few cases with three catalytic residues in 

the active site, the two most aligned carboxyl groups were selected. 

Additionally, a further 91 structures of retaining GHs employing neighbouring-group participation 

(NGP) mechanisms were considered for comparison. 

We have followed Withers10,11 by determining all interatomic distances involving either oxygen 

atom (O1 and O2 or O1 and O2 of the side chains of aspartic acid or glutamic acid, respectively) 
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of one carboxyl group with either oxygen of the other carboxyl group (Fig.3); distances between 

oxygen atoms in the same carboxyl group (O1
…O2 or O1

…O2) are not of interest here. These four 

distances (d11, d12, d21 and d22) were measured (using the selection tools in the VMD visualization 

program16) and the arithmetic mean DOO = ¼(d11 + d12 + d21 + d22) was determined.  
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Figure 3. 
Definition of inter-carboxyl group O…O distances and their inter-relationships for 
extreme cases of O atoms (a) at the vertices of an elongated tetrahedron (local D2d 
symmetry and (b) aligned in a collinear manner. 

 

RESULTS 
A complete compilation of the relevant data for the 136 selected structures and 208 carboxyl-group 

pairs included in this survey is presented as Table S1 of the Supplementary Information. This 

includes the GH family and its clan (where assigned), the PDB code, the resolution and R-factor of 

the X-ray crystal structure, the identity of the catalytic residues, whether the structure is free or 

complexed, together with the individual inter-carboxyl-group O…O distances (d11, d12, d21 and d22) 

and their average value DOO for each structure. Table I contains mean values DOO of these average 

distances and standard deviations (1) over the total number of structures included in the survey for 

each GH family. Table II combines these mean values DOO across the categories of - and -

retaining and - and -inverting GHs. 

Fig. 4 shows the mean value DOO determined for each of the structures within each of the GH 

families included in this survey: these are arranged in ascending order from left to right, and for 
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each GH family structures for free enzymes (lighter shading) and complexed (ligand-bound) 

enzymes (darker shading) are shown. For most GH families there is no significant difference 

between the mean values of DOO for free or complexed structures. In some families (e.g. GH35) it 

appears that DOO distances are longer for complexed structures than for free structures, but in others 

(e.g. GH6) it seems that the opposite is true. The magnitudes of the standard deviations (1, vertical 

black bars) of the averages DOO for structures within each GH family depend, of course, upon the 

structural variation within each family and the number of structures selected according to the 

stipulated criteria. Generally there are larger uncertainties associated with inverting GHs with 

longer inter-carboxyl O…O distances.  

 

Figure 4.  
Mean values DOO of the average inter-carboxyl O…O distances DOO determined for 
structures within each GH family included in this survey. Free enzymes are indicated by 
lighter shading; ligand-bound (complexed) enzymes are indicated by darker shading. 
Vertical black bars denote the standard deviation (1) of the averages for structures 
within each GH family. The histogram is arranged from left to right in ascending order 
of magnitude of DOO. 

Fig. 5 shows the mean value of DOO determined for each of the structures within each of the GH 

families, with both free and ligand-bound (complexed) enzymes combined. The colour-coding 

makes it very clear that the separation between the catalytic carboxyl groups is usually smaller for 

retaining GHs than for inverting GHs and that there is no systematic difference between - and -

retaining or - and -inverting GHs. The mean values DOO for retaining GHs vary over a wide 

range from as little as 4.2 Å (GH101) to as much as 7.5 Å (GH89); likewise, the DOO values for 

inverting GHs range between 5.0 Å (GH82) and 12.6 Å (GH46).  Clearly, these ranges for retaining 

and inverting enzymes overlap each other and there are some significant outliers, notably GHs 28, 

82 and 97. 
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Figure 5.  
Mean values DOO of the average inter-carboxyl O…O distances DOO determined for 
structures within each class of GH family: -retaining (yellow), -retaining (green), -
inverting (red) and -inverting (blue). The histogram is arranged from left to right in 
ascending order of magnitude of DOO. 

Fig. 6 shows the distributions of mean values DOO for both retaining and inverting enzymes. The 

distribution for all inverting GHs is unimodal with a median very close to the overall mean value 

(8.0 Å) and also to the means of the -inverting and -inverting GHs treated separately. However, 

the distribution for retaining GHs is bimodal. There is no significant difference between the means 

of the -retaining and -retaining GHs treated separately, but the overall mean value (5.6 Å) falls 

between the two modes. Closer inspection of Fig. 4 suggests one cluster of retaining GH families 

(1, 5, 13, 26, 30, 35, 42, 44, 51 and 53) with values of DOO close to 5 Å and another cluster (7, 10, 

11, 16, 27, 32, 36, 68 and 93) with means close to 6.5 Å. 

 

Figure 6.  
Frequency distribution of mean values DOO of O…O distances across GH families. 
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The value (5.6 Å, Table 1) of DOO for the retaining NGP GHs in families 18, 20, 25, 56 and 84 is 

similar to that of the retaining GHs considered above, but the distribution of DOO means has a larger 

standard deviation and a greater range between minimum and maximum values. (See Table S1 of 

the Supplementary Information for more details.) 

DISCUSSION 
It is instructive to compare the means and standard deviations of DOO (Table II) considered in this 

survey with the averages proposed by Withers.10,11 Our mean values for retaining GHs are higher 

than theirs (5.8 vs. 4.8 Å for  and 5.6 vs. 5.3 Å for ), but we have already noted the existence of a 

bimodal distribution in our survey. The retaining GHs may be split into two groups on the basis of 

the left-to-right ranking shown in Fig. 4:  

 families 1, 5, 13, 26, 30, 35, 42, 44, 51, 53, 101 and 113 together have an overall mean value of 

DOO equal to 4.8 ± 0.3 Å;  

 families 2, 3, 7, 10, 11, 16, 22, 27, 31, 32, 36, 68, 89 and 93 together have an overall mean value 

of DOO equal to 6.5 ± 0.5 Å. 

These two groups each comprise both - and -GHs, so the similarity of our mean value for the 

first group with that of Withers and coworkers for -GHs is merely coincidental. More noteworthy 

is that the standard deviation (1) for each group is much smaller than for all the retaining GHs 

taken together or grouped as - and -GHs. The question naturally arises as to what is responsible 

for the difference between these two groups of retaining GHs? One possibility is that there might be 

some relationship with the syn-anti proton donor concept17 elaborated by Nerinckx et al.;18 

however, no correspondence is apparent between the GH families in the two groups and their syn- 

or anti-donor character. 

However, there is another way by which to separate the retaining GHs into two groups: this is on 

the basis of their clans.19 

 Clan A (or none): families 1, 2, 5, 10, 26, 30, 35, 42, 44, 51, 53, 101 and 113, which together 

have a mean value of DOO equal to 5.0 ± 0.6 Å; 

 Clans B, C, D, E, J (or none): 3, 7, 11, 13, 16, 22, 27, 31, 32, 36, 68, 89 and 93, which together 

have a mean value of DOO equal to 6.4 ± 0.6 Å. 

Although the standard deviations of the means for these groups are a little greater than for the 

ranking-based groups above, there is perhaps a rational basis for this separation: all of the GH 

families in the first group belong to clan A. The (/)8 fold of GHs in clan A is also shared by other 

clans, so it is not the protein fold itself that is the determining factor, but presumably some other 

structural characteristic that gives rise to generally shorter inter-carboxyl O…O distances DOO. We 
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will not speculate upon this here, but we do note that the notion that clan A is associated with 

generally shorter DOO distances is a testable hypothesis: structures for other members of this clan 

(GHs 17, 39 and 50) not included in this survey should also show shorter distances between their 

catalytic carboxyl groups. 

One clear result from our survey is that the retaining GHs taken altogether tend to have significantly 

longer DOO distances than was originally suggested by Withers10,11 on the basis of a much smaller 

sample of structures.  

Within the quite large single standard deviations for the DOO distances found in our survey for 

retaining GHs, there is no significant difference between - and -inverting GHs. The overall mean 

we find for all inverting GHs taken together (8.0 Å) is markedly lower than either of the values (9.0 

or 9.5 Å) suggested by Withers and co-workers for - and -GHs, respectively. This certainly arises 

out of the much larger numbers of GH families and of individual enzyme structures considered in 

the present study: from Fig. 4 it is evident that there is a much wider range of DOO distances 

manifested in inverting GHs than has perhaps been commonly recognized. 

It has been specifically noted for inverting GHs of family 6 that, while the identity of the catalytic 

general acid seems to be well established, the identity of the catalytic base is currently far less 

clear.20 When there is no obvious carboxylate group to serve as a base within hydrogen-bonding 

distance of a water molecule that could act as the nucleophile in the inverting mechanism, it is 

possible that proton transfer might occur through a chain of water molecules.  

However, it has been noted that nucleophilic attack by water and protonation of the leaving group 

oxygen by a general acid may occur from the same side of the glycosidic bond in α-linked 

carbohydrates, rather than from opposite sides of the active site.21 Consequently, Benen and co-

workers observed22 that GH28 polygalacturonases diverge with respect to their active site 

configuration from the generally observed active site architecture found in inverting enzymes, by 

virtue of an unusually short distance between the catalytic acid group and the putative catalytic 

base. Similar exceptions to the general rule of longer DOO distances between the catalytic acid and 

base groups for inverting GHs have also been noted for GH49 dextranases,23 GH91 

endorhamnosidases24 as well as the GH82 ι-carrageenases25 included in this survey. 

Retaining GHs that employ NGP mechanisms have similar mean DOO distances to those that use the 

double-displacement mechanism shown in Fig.1 but for a different reason: although one 

carboxylate residue does serve as a general acid/base, the other does not act as a nucleophile. A few 

of these NGP GHs from families 18, 20, 25, 56 and 84 have longer-than-usual DOO distances but 

this should not be taken as evidence for an inverting mechanism by comparison to that shown in 
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Fig.2. Despite some early suggestions to the contrary, GHs from family 25 are now thought to adopt 

a retaining mechanism similar to that of other NGP GHs.26 

The motivation for conducting this critical survey arose during the course of hybrid QM/MM 

molecular dynamics investigations of substrate conformation,27 mechanism and reactivity28 in wild-

type and mutant GH11 -retaining xylanases, for which the distance between the two catalytic 

residues was shown to play a crucial role. Withers and co-workers reported appropriate mutations 

and chemical modifications in order to shorten (Glu  Asp) or lengthen (Glu  

carboxymethylated Cys) the side-chains of either the nucleophilic residue Glu7829 of the endo--1, 

4-xylanase from Bacillus circulans or the general acid residue Glu172:30 from the concomitant 

changes in kcat/Km values for different substrates it was shown that the positional requirements for 

proton transfer from the general acid to the glycosidic oxygen were less demanding than those for 

nucleophilic attack at the anomeric centre. Furthermore, the Withers group showed that a Glu  

Ala mutation of the nucleophilic residue in a -glucosidase from Agrobacterium faecalis changed 

the reaction mechanism from retaining to inverting by virtue of shortening the side-chain and 

creating space to be occupied a different nucleophile (azide in this case rather than water).11 In our 

opinion, elegant experimental studies such as these should be complemented by careful 

computational simulations which have the capability to shed light upon mechanistic details at the 

atomic level,31 for example, by investigating the nature of thermal fluctuations in the positions of 

catalytic residues and the free-energy changes associated with conformational interconversions and 

reactive events. Thus, as part of a wider programme of investigation of unconventional catalytic 

mechanisms (e.g. ref. 32), it would in our view be of considerable interest to study the reaction 

mechanisms of inverting GHs with anomalously short separations between catalytic residues by 

means of appropriate QM/MM molecular dynamics simulations; detailed analysis of water structure 

within the active site could provide insight unobtainable by experiment. Furthermore, in order to 

obtain deeper insight into the underlying structural similarities and differences between groupings 

of GHs identifiable within the distribution of average inter-carboxyl separations between catalytic 

residues, it would be advisable to employ the methods of computational modeling to complement 

and to extend experimental tools. By these means it is possible to investigate the dynamics of 

enzyme structure in the presence of actual substrates rather than of inhibitors or other ligands 

which, in observed X-ray crystal structures, are often seen not to bind in the vicinity of the catalytic 

residues in orientations relevant for the reaction mechanism. 

It is appropriate to comment upon some statistical aspects of the present survey. We have 

performed our analysis upon a finite and relatively small number of structures (even though this 

number is much larger than the ten considered originally by Withers and co-workers10,11); therefore 

care must be taken to treat the data appropriately. If the DOO values for all the individual structures 
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(Table S1) were divided into bins according to increments of distance, and a histogram were plotted 

of the number of structures in each bin, then each of the four distributions (- and - retaining and 

inverting) would apparently be bimodal. However, these histograms would be biased by the varying 

numbers of structures included in this survey for each of the GH families. Certainly the "double-

hump" that would be seen in each of these histograms for inverting enzymes would reflect more on 

the availability of structural data satisfying our criteria than it would on structural or mechanistic 

detail. It is better instead to obtain the arithmetic mean DOO for each GH family, as reported in 

Table I, the resulting histogram (Fig. 5) is no longer bimodal for inverting GHs: the biasing effect 

of having relatively large numbers of structures for GHs 9 and 14 (with relatively shorter DOO 

distances) and for GHs 6 and 15 (with relatively longer DOO distances) but only a small number of 

structures for GHs 8 and 37 (with intermediate DOO distances) is eliminated. However, as discussed 

above, the distribution for retaining GHs is still bimodal even after this biasing effect is eliminated: 

the presence of two groups, as proposed above, is not an obvious artefact. 

We do not have a distribution of distances from an infinite population, which might be represented 

by a smooth and continuous mathematical function; therefore the histogram shown in Fig. 5 is 

necessarily a bar chart with discrete values. In a sense, because we are applying our selection 

criteria to the PDB files for all GHs containing a pair of carboxyl groups as the catalytic residues, 

we are sampling a larger population of GHs (many of which have crystal structures that do not 

satisfy our criteria, and many of which have not yet had their 3D structure determined). We would 

like to know the mean and variance of the distribution of distances for the whole population, but we 

are necessarily restricted to estimating these quantities from the properties of our limited sample. It 

is not even certain that the average distances considered here represent truly random variables over 

the whole population, so that the assumption of a normal distribution would be correct. It is all the 

more important, therefore, to ensure that we do not include any obvious biases within our sample of 

structures. 

Finally, we note that for every value of the separation between the carbon atoms of the two 

carboxyl groups, there is an infinite number of relative orientations of the two groups. Each of these 

relative orientations could be described by six Euler angles, and for each one there are 

trigonometrical relationships between the four distances d11, d12, d21 and d22. Clearly, all four 

distances would be equal if the two carboxyl groups were orientated such that the oxygen atoms 

were located at the vertices of an elongated tetrahedron (local D2d symmetry, Fig.3a). At the other 

extreme, if the four oxygen atoms were aligned in a collinear manner (Fig. 3b), two of the distances 

(d12 = d21) would be equal essentially to the inter-group C…C distance and the other two inter-group 

O…O distances would be larger and smaller by the value of the intra-group distance (O1
…O2 or 

O1
…O2) ~2.2 Å. Therefore the range between the lowest and the highest of the four distances d11, 



 12

d12, d21 and d22 can vary between 0 and ~4.4 Å: these distances are not independent and it would be 

completely meaningless and inappropriate to determine and report standard deviations along with 

the mean values. 

CONCLUSIONS 

The present survey includes a total of 136 structures and 208 pairs of catalytic carboxyl groups (20 

-retaining, 87 -retaining, 38 -inverting and 63 -inverting) satisfying the stated selection criteria 

and providing samples from 39 of the GH families. First, the average of all four inter-carboxyl 

O…O distances for each pair is determined; second, the mean of all DOO of all four inter-carboxyl 

O…O distances for each pair is determined; second, the mean DOO of all the pair-averages DOO 

within each GH family is determined; third, means are determined for groups of GH families. No 

sensible differences are found for free structures as compared with those complexed with a ligand in 

the active site of the enzyme. Also, no significant difference is found for -GHs as compared with 

-GHs. The mean and standard deviation (1) of the unimodal distribution of DOO distances for 

all families of inverting GHs is 8 ± 2 Å. The distribution of DOO distances for all families of 

retaining GHs appears to be bimodal: the means and standard deviations of the two groups are 4.8 ± 

0.3 Å and 6.4 ± 0.6 Å. We suggest that these average values are more representative, and possibly 

meaningful, than the often-quoted values originally proposed by Withers and co-workers.10,11 The 

newly-updated average values proposed here may alter perceptions about what separations between 

catalytic residues are “normal” or “abnormal” for glycoside hydrolases. 
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Table I.  
Mean value DOO of average inter-carboxyl-group O…O distances DOO (in Ångström), standard 
deviation (1) and number of structures N for each GH family. 

 complexed enzymes free enzymes 

GH family DOO 1 N DOO 1 N 

-retaining 
13 5.26 0.21 3 5.02 0.06 3 
27 6.72 0.00 1 6.44 0.37 3 
31 6.03 0.00 1 5.85 0.00 1 
36 6.59 0.00 1 6.54 0.00 1 
51    4.82 0.15 2 
89    7.47 0.00 1 
93 6.54 0.00 1 6.55 0.00 1 
101    4.17 0.00 1 

-retaining 
1 4.83 0.14 13 5.02 0.03 4 
2 5.74 0.04 4 5.46 0.04 4 
3 6.04 0.00 1    
5 4.81 0.24 3 4.94 0.18 3 
7 6.25 0.00 1 6.34 0.00 1 
10 6.39 0.15 4 6.52 0.01 2 
11 6.56 0.57 4 6.25 0.35 3 
16 6.38 0.25 5 6.45 0.15 3 
22 8.11 1.38 3 6.76 0.00 1 
26 4.64 0.00 1 4.80 0.16 2 
30 5.61 0.00 1 4.98 0.06 5 
32 6.67 0.18 3 6.29 0.05 3 
35 5.04 0.07 2 4.41 0.31 2 
42    4.81 0.00 1 
44 4.97 0.00 1 4.99 0.00 1 
53    4.89 0.04 5 
68    6.44 0.00 1 
113    4.32 0.00 1 

-inverting 
15 9.39 0.16 8 9.75 0.32 7 
28 6.51 0.00 1 6.02 0.74 5 
37 8.64 0.02 2    
43 7.46 0.00 1 7.57 0.65 10 
97 6.04 0.01 2 6.10 0.01 2 

-inverting 
6 10.07 0.30 5 11.22 0.83 5 
8    8.00 0.02 4 
9 7.33 0.52 7 7.74 1.16 9 
14 7.17 0.39 17 7.80 0.23 6 
43    7.56 0.18 4 
46    12.62 0.00 1 
64 7.08 0.00 1 7.03 0.00 1 
82 5.21 0.00 1 4.87 0.14 2 

NGP (free and complexed) 
18 5.37 1.44 50 
20 5.35 0.18 21 and 9.28 0.34 2 
25 3.97 0.00 1 and 9.13 0.47 5 
56 3.86 0.07 3 
84 5.53 0.21 8 and 8.58 0.00 1 
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Table II  
Means and standard deviations (1) of DOO minimum and maximum values across GH families. 

 mean / Å min / Å max / Å ref. 10 

-retaining 5.8 ± 0.9 4.2 7.5 4.8 ± 0.5 
-retaining 5.6 ± 0.8 4.2 7.7 5.3 ± 0.2 
-inverting 8.0 ± 1.5 6.0 10.2 9.0 ± 1.0 
-inverting 7.9 ± 1.6 4.8 12.6 9.5 
all retaining 5.6 ± 0.8 4.2 7.7 
all inverting 8.0 ± 2.0 4.8 12.6 

NGP GHsa 5.6 ± 1.6 3.7 9.6 

 
a Neighbouring-group participation mechanism 


