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Abstract

The onset of convection in a porous layer which is heated from below is considered. In

particular we seek to determine the effect of spatially periodic variations in the permeability

field on the identity of the onset mode as a function of both the period P of this variation

and its amplitude A. A Floquet theory is assumed in order to ensure that the analysis is as

general as possible. It is found that convection is always three dimensional and that the critical

Rayleigh number always decreases as either the period or the amplitude of the permeability

variation increases. Furthermore, the corresponding Floquet exponent ν is either zero or 1,

and the range of values of P over which ν = 1 corresponds to the favoured mode has been

obtained as a function of A.

Key words: Porous medium; Linear stability; Horizontal layer; Heterogeneity; Nonuniform

permeability; Floquet theory
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1 Introduction

The onset of convective instability in a porous layer with a vertical temperature gradient has been

the subject of very considerable attention particularly in the course of the last few decades. The first

studies on this topic [1, 2] were formulations of the classical Rayleigh-Bénard problem within the

context of filtration processes in porous media as modelled through Darcy’s law [3]. A development

of these early studies on what might be called the Darcy-Bénard problem, was carried out by Palm

et al. [4] in order to investigate the nonlinear effects under slightly supercritical conditions. These

authors obtained an expression for the Nusselt number to high order in the supercritical parameter

(Ra−Rac)/Ra, where Ra is the Rayleigh number and Rac = 4π2 is its critical value at the onset

of instability [3].

While there are many different extensions that one might apply to the Darcy-Bénard problems,

some of which are the adoption of Brinkman and/or inertia effects, the dropping of the assumption

of local thermal nonequilibrium, and the consideration of inclined layers or ones which conducting

boundaries, the one which we concentrate on here is the effect of a heterogeneous permeability field.

Heterogeneity could comprise layered materials or media where the permeability varies continuously

with one or more coordinates, or else it could be random. McKibbin and O’Sullivan [5] studied a

horizontally layered material and showed that large permeability differences are required for the

multilayered medium to display onset conditions different from those for a homogeneous layer.

This analysis was developed further by Rees and Riley [6] by taking into account weakly nonlinear

effects and they showed that double or multiple minimum loci for the Rayleigh number may exist

at onset of instability. Studies of the Darcy-Bénard problem for heterogeneous porous media were

carried out also by Nield and Simmons [7].

A situation where the permeability undergoes a periodic change was envisaged by De Wit and

Homsy [8, 9]. However, the kind of instability investigated by these authors is definitely different

from the buoyancy-induced Rayleigh-Bénard instability. On the other hand, the physical effect

leading to the instability is a concentration-dependent viscosity in the binary fluid saturating the

porous medium. Much more closely related to the present paper is the work of Rees and Tyvand

[10] (hereinafter referred to as Part 1) who considered a porous layer with a permeability which

varies periodically in a horizontal direction. The analysis carried out in that paper was two-

dimensional thus limiting the study to the behaviour of transverse rolls, i.e. ones with axes that

are perpendicular to the direction of the x-axis where the permeability changes periodically.

The aim of this contribution is to extend the investigation reported by Rees and Tyvand [10]

from two-dimensional to three-dimensional modes. The Floquet theory which was employed by

Rees and Tyvand [10] to determine the selected two-dimensional modes of instability employed in

order to determine whether two dimensional modes or three dimensional modes form the favoured
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onset mode.

2 Governing equations

We consider a plane porous layer saturated by a Newtonian fluid. The thickness of the layer is H.

The boundary planes at z = 0 and z = H are impermeable and isothermal, and are held at the

temperatures Th and Tc, respectively, where Th > Tc. The permeability, K, varies periodically in

the x-direction and it satifies the following trigonometrical law,

K = K0 [1 +A cos(λx/H)] , (1)

whereK0 is the mean permeability, A ∈ [0, 1) is a dimensionless amplitude, and λ is a dimensionless

wavenumber which is such that 2πH/λ is the period of the permeability distribution.

The onset of convection in the porous layer is carried out under the following assumptions:

(i) Darcy’s law holds; (ii) the Oberbeck-Boussinesq approximation may be applied; (iii) the effective

thermal conductivity and the effective volumetric heat capacity (the average product of the density

and the specific heat) of the saturated porous medium are approximately uniform; (iv) there is

local thermal equilibrium between the solid phase and the fluid phase; (v) no internal heating effect

occurs. We can express the governing equations in a dimensionless form by adopting the scalings,

1

H
(x, y, z) → (x, y, z) ,

αm

σH2
t → t,

H

αm
(u, v, w) → (u, v, w) ,

T − Tc

Th − Tc
→ T,

K0

µαm
p → p.

(2)

Here, x, y, z and t denote the Cartesian coordinates and time, u, v, w are the velocity components,

T is the temperature, p is the dynamic pressure, αm is the effective thermal diffusivity of the

saturated porous medium, µ is the fluid viscosity, and σ is the ratio between the effective volumetric

heat capacity of the saturated porous medium and the volumetric heat capacity (the product of

the density and the specific heat) of the fluid.

On account of Eq. (2), the dimensionless local balance equations for mass, momentum and heat

transport may be written as

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3a)

u = −F (x)
∂p

∂x
, v = −F (x)

∂p

∂y
, w = −F (x)

(
∂p

∂z
−RaT

)
, (3b)

∇2T =
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
, (3c)

while the boundary conditions are expressed as

z = 0 : w = 0, T = 1,
∂p

∂z
= Ra,

z = 1 : w = 0, T = 0,
∂p

∂z
= 0.

(4)
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Here, F (x) and the Darcy-Rayleigh number Ra are defined respectively as,

F (x) = 1 +A cos(λx), Ra =
ρcgβ (Th − Tc)K0H

µαm
, (5)

where ρc is the fluid density at the reference temperature Tc, g is the modulus of the gravitational

acceleration g, and β is the thermal expansion coefficient of the fluid.

The aim of this paper is to understand how the onset of three dimensional convection depends

on the values of the nondimesnional parameters, A, P and ν, where A is the amplitude of the

permeability variation, P = 2π/λ is the period of that variation, and ν is the Floquet exponent to

be introduced below.

3 Basic solution and analysis of linear disturbances

A basic state which is a stationary solution of Eqs. (3) and (4) with a zero velocity exists and is

given by

ub = vb = wb = 0, Tb = 1− z, pb = Ra z
(
1− z

2

)
, (6)

where the subscript b denotes the “basic solution”. We introduce small-amplitude disturbances of

the basic solution, Eq. (6), as follows,

(u, v, w) = (ub, vb, wb) + ε (U, V,W ) , T = Tb + εθ, p = pb + εP, (7)

where ε is a perturbation parameter, such that |ε| ≪ 1. We now substitute Eq. (6) and Eq. (7) into

Eqs. (3) and (4), and neglect terms which are of O(ε2). Thus, the system of linearised disturbance

equations is given by

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (8a)

U = −F (x)
∂P

∂x
, V = −F (x)

∂P

∂y
, W = −F (x)

(
∂P

∂z
−Raθ

)
, (8b)

∇2θ =
∂θ

∂t
−W, (8c)

z = 0, 1 : W = 0, θ = 0. (8d)

A pressure-temperature formulation is obtained by substituting Eq. (8b) into Eq. (8a), so that we

finally obtain

∇2P = Ra
∂θ

∂z
−G(x)

∂P

∂x
, (9a)

∇2θ =
∂θ

∂t
+ F (x)

(
∂P

∂z
−Raθ

)
, (9b)

z = 0, 1 :
∂P

∂z
= 0, θ = 0, (9c)
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where

G(x) =
F ′(x)

F (x)
= − Aλ sin(λx)

1 +A cos(λx)
, (10)

and where the prime denotes an ordinary derivative with respect to x.

Equations (9) may be solved as an eigenvalue problem which defines the marginal stability

condition for the Darcy-Rayleigh number Ra. However, there is a natural periodicity in the x-

direction which is caused by the permeability variations, and this is not necessarily one which will

yield the smallest value of the critical Rayleigh number. Therefore we may use Floquet theory to

attempt to maximise the range of available disturbances that may be considered. Therefore we

may write P and θ as

P (x, y, z, t) = Re{Raf(x)ei(ky+λνx/2−ωt)} cos(πz), (11a)

θ(x, y, z, t) = Re{h(x)ei(ky+λνx/2−ωt)} sin(πz), (11b)

where k is the wave number, ω is a temporal frequency and ν is the Floquet exponent. All three of

these parameters are real provided that marginal stability is considered. Substitution of Eq. (11)

into Eqs. (9) yields

(
f ′′ + iλνf ′ − 1

4λ
2ν2f

)
+G(x)

(
f ′ + 1

2 iλνf
)
−
(
k2 + π2

)
f − πh = 0, (12a)(

h′′ + iλνh′ − 1
4λ

2ν2h
)
−
[
k2 + π2 − iω

]
h+RaF (x) (h+ πf) = 0. (12b)

These equations are then solved subject to the periodicity conditions,

f(0) = f(P ), f ′(0) = f ′(P ), h(0) = h(P ), h′(0) = h′(P ), (13)

as an eigenvalue problem for Ra in terms of A, P , ν and the spanwise wavenumber, k. The aim

then is to minimise Ra with respect to both ν and k. The principle of exchange of stabilities applies

to Eqs. (12) and (13) (see Appendix A) and therefore we may set ω = 0. We also mention that the

two-dimensional problem which was investigated by Rees and Tyvand [10] is obtained from that

defined by Eqs. (12) in the limit k → 0, i.e. when the disturbances become independent of y.

The eigenvalue problem given by Eqs. (12) and Eq. (13) was solved using precisely the same

numerical scheme that was devised in Rees and Tyvand [10] and described there in great detail.

Briefly, the two ordinary differential equations were approximated using an eighth order finite

difference method where the resulting difference equations were rearranged into the form of a

matrix eigenvalue problem for Ra. With such a high order method, numerical accuracy of at

least six significant figures could be obtained with a relatively small number of grid points. In

general we used 40 intervals per unit distance. Accuracy of encoding the method was provided

by a comparison with solutions obtained using a fourth order Runge-Kutta scheme coupled with
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a shooting method. Neutral curves, some of which will be presented below, generally provided a

single minimum. This minimum was found by means of a Newton-Raphson scheme applied to five

values of Ra which were obtained for five closely-spaced values of k. Thus, if we write Ra = Ra(k),

then we require those values of k for which dRa/dk = 0. Thus corrections in k are given by the

standard formula,

δk = −Ra′(k)/Ra′′(k), (14)

where the following fourth order central difference approximations are used to approximate the

above derivatives,

Ra′(k) ≃
[

1
12Ra(k − 2ϵ)− 2

3Ra(k − ϵ) + 2
3Ra(k + ϵ)− 1

12Ra(k + 2ϵ)
]
/ϵ, (15a)

Ra′′(k) ≃
[
− 1

12Ra(k − 2ϵ) + 4
3Ra(k − ϵ) 52Ra(k) + 4

3Ra(k + ϵ)− 1
12Ra(k + 2ϵ)

]
/ϵ2. (15b)

Minimisation using these approximations yielded at least three if not more than four figures of

accuracy even when ϵ is as large as 0.01, which is well in excess of what is required for graphical

resolution.

4 Discussion of the results

4.1 Mode shapes

Before we present details of the neutral curves and the minimisation of the critical values of Ra

over k and ν, it is important to have an idea about what the computed solutions look like. While

the present computations are one-dimensional, the onset modes are three-dimensional, but the

mode shapes themselves are visualised easily by plotting contours of the rate of heat transfer at

either the upper or lower surfaces of the layer, and this yields a two-dimensional view of how the

disturbance varies with x and y.

Figure 2 compares onset modes for the two amplitudes, A = 0.1 and A = 0.3, for the four cases,

P = 0.5, P = 1, P = 2 and P = 4. We have selected k = π as a representative wavenumbers,

and have set ν = 0 so that the onset modes have the same periodicity in the x-direction as the

permeability variation. All the plots are confined to the region 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2 for easy

comparison, and the values of P are such that the patterns in this Figure tesselate the plane.

When both A and P take small values, then the resulting pattern takes the form of longitudinal

rolls at leading order, with small-amplitude variations about this state; this is evident for the

case A = 0.1 and P = 0.5 where the effect of permeability changes is only just visible. As the

period increases, then the onset mode becomes increasingly confined to those regions where the

permeability takes its largest value. When the amplitude of the permeability variation takes larger
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values, then the localisation of the convection pattern becomes more extreme because the local

Rayleigh number (i.e. one which is based on permeability at the currently chosen value of x) varies

much more greatly over a period. But once the period of the variation is sufficently large, there

is little visual difference between the mode shapes for small and large values of A, although larger

values of A give profiles which are slightly more concentrated towards the permeability maxima.

Changes in the value of the wavenumber, k, causes the width of the pattern in the y direction

to change, as one expects, and therefore it is deemed not necessary to demonstrate this. However,

it is an a priori expectation that nonzero values of the Floquet exponent could provide the most

unstable mode for some choices of A and P . Therefore Figure 3 shows how different values of ν

affect the planform of the onset mode. This Figure takes the case A = 0.3, P = 2 and k = π,

where 0 ≤ x ≤ 8 and 0 ≤ y ≤ 4, i.e. four periods of the permeability variation and two spanwise

periods are displayed.

When ν = 0 we obtain the type of pattern shown in Figure 2 where the longitudinal pattern

is still quite evident even though there is much localisation in the regions of high permeability.

When ν = 1, regions of positive and negative rates of heat transfer alternate as x increases, and

the overall pattern has a period of 2P = 4 in the x-direction. When ν = 0.5, we show two different

forms of the onset mode. The pattern which is labelled, Oblique, is the natural pattern which

arises due to the substitution which is given in Eq. (11). The line of, say, red spots is aligned at

an angle to the x-axis and could be said to form an oblique mode. There is, of course, a second

form of this which is equivalent to ν = −0.5, but graphically it may be seen by turning the present

plot upside-down. A third form is obtained by adding the two different oblique modes together.

This has the effect of removing almost completely any disturbance in alternating regions of high

permeability; this is the one labelled as Rectangular in Figure 3. The period of each of these

three patterns is now 4P = 8. Other more complcated patterns may be obtained, but these are

not shown in the interests of brevity. All of these modes will be referred to below as even modes

because the patterns obey the same symmetry as that of the underlying permeability variation.

4.2 Neutral curves

In this subsection we attempt to convey a comprehensive understanding of how the neutral curves

vary with the parameters, P , A and ν. While there are only three parameters to vary, this

understanding is made more difficult to present than was expected a priori because neutral curves

corresponding to distinct modes sometimes cross one another. This may be seen in Figure 4 which

displays the neutral curves corresponding to various modes for A = 0.01 and A = 0.3 and for

P = 1, 1.5, 2, 3, and 4. The value ν = 0 was taken here.

When k ≪ 1 the first mode to appear is an odd one in x, which means that a dividing (or zero)
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disturbance isotherm arises at x = 0 and multiples of x = P , and therefore a transverse convection

cell is centred precisely where the permeability is at its largest. These may be seen in Part 1. The

second mode is one for which the temperature field is even in x, as shown in Figures 2 and 3.

When either P is sufficiently large or A sufficiently small, the values of Ra for these two modes are

almost identical and are indistinguishable graphically. As k increases, the even mode takes over

as the one which corresponds to the lower value of Ra. A clear transition of this kind is seen for

the case, A = 0.3 and P ≤ 2, which is shown in Figure 4, and it is true for all other cases. For

any chosen pair of values of A and P the minimum value of Ra (i.e. the critical Rayleigh number,

Rac) corresponds to a mode which is even in x in general, and given that k is nonzero, it is also a

longitudinal roll. Thus we have already settled the fact that transverse (or two dimensional rolls)

never form the most unstable mode.

When A = 0.01 the shapes of the neutral curves are seen to depend quite strongly on the period,

P . However, the profile of the onset mode can change quite substantially as k increases from zero.

If one focusses on the case, A = 0.01 and P = 4, then the onset mode for very small values of

k is roughly proportional to sinπx, i.e. it is an odd mode. As k increases, this changes suddenly

to the corresonding even mode, cosπx, as discussed above. The value of Ra then rises, reaches

a maximum and decreases once more. In this region the mode changes gradually to one where

the profile has only one minimum and one maximum in the period, P , and although it begins by

having both signs, it eventually becomes a single-signed function of x.

Figure 5 concentrates on the neutral curves corresponding to the onset mode, and therefore

some curves display a discontinuous change of slope which reflects the crossing of two curves. Here

we concentrate on the effect of different values of P on the onset criterion for both A = 0.1 and

A = 0.3, with k = π and ν = 0. While it is clear that the critical Rayleigh number is a decreasing

function of P , the value of Ra close to k = 0 is not a monotonic function of P . This is caused

by the difficulty of fitting cells, which would naturally have a wavelength of 2 into the period of

the permeability variations. Indeed, Part 1 shows that this is achieved only by selecting nonzero

values of ν to allow an appropriate spatial period of the onset profile. When P takes small values,

the neutral curve is almost identical to that for the uniform porous layer, and the profile of the

onset mode is generally very similar to that given in Figure 2 for P = 0.5, i.e. it is a longitudinal

vortex with short wavelength ripples.

Figure 6 is concerned with how the amplitude, A affects the onset criterion when P = 1 and

P = 3. The manner in which the shapes of the neutral curves change with A is much more

straightforward than how they change with P . The critical value, Rac, is a decreasing function of

A in general. This is because of the presence of regions of permeability which are higher than the

mean value that used to define the Rayleigh number.
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The effect of varying ν is shown in Figure 7 for A = 0.3, k = π and for the two periods, P = 0.8

and P = 2. When P = 0.8 it is clear that the smallest value of Rac is obtained when ν = 0, but

when P = 2 it is ν = 1. In Part 1 it was found that the minimising value of ν for two dimensional

convection varies smoothly between ν = 0 and ν = 1 and back. For three dimensional convection

we find that the transitions are always sudden, and that they arise for all amplitudes, A. These

graphs also suggest that Rac varies monotonically with ν, which is actually not true in general.

For a chosen value of A, there is a transitional value of P where ν = 1 takes over from ν = 0 as

the minimising value. In such cases Rac increases from its ν = 0 value to a maximum and then it

decreases again towards its ν = 1 value. Thus the transition in terms of ν is always discontinuous.

4.3 Critical values

All of this is summarised in Figure 8 which displays the variation in Rac and kc with P for a wide

selection of values of A ranging from 0.01 to 0.9. First of all, we note that this Figure confirms

that Rac is a decreasing function of both A and P in all cases. Second, Rac appears to tend

towards 4π2 when P → 0 independently of the value of A. Third, the region in between the two

black circles for each Rac curve is the region in which ν = 1 comprises the most unstable mode.

There appears only to be one such region; values of P which are outside of this range correspond

to ν = 0. The ν = 0 curve, when it doesn’t form the most unstable mode, is shown as a dotted

line in this graph.

The corresponding wavenumbers are also shown. There is a tendency for k → π as P → 0 and

as P → ∞. Somewhat surprisingly the value of kc is quite small on the ν = 1 side of the first

transition when A is small. Such a mode looks more like a transverse roll with a relatively slow

modulation in the y-direction but with a wavenumber roughly equal to π in the x-direction. This

happens because P = 1 together with ν = 1 yields a potential pattern in the x-direction which has

a period of 2. Although it is tempting to cite this as a potential reason for having ν = 1 solutions

being favoured near to P = 1, it doesn’t explain why the range of P over which ν = 1 is favoured

is so large.

The locus of points where the favoured mode makes its transition between ν = 0 and ν = 1 is

shown in Figure 9. The numerical values of P corresponding to the lower branch tend towards 1 as

A → 0, and therefore ν = 0 forms the favoured mode whenever P < 1 for all amplitudes, A. With

regard to the upper branch, the values of P appear to increase without bound as A → 0, and it

appears to satisfy a relation which is approximately of the form, P ∼ 1.74A−1/4. When A = 0.001

then P = 9.5760 on the upper branch.
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5 Conclusions

This paper is a natural extension of the two dimensional analysis of Part 1 into three dimensions.

We have considered the effect of spatially periodic variations in the permeability on the onset of

convection in an otherwise uniform horizontal porous layer heated from below. When convection

is confined to be two dimensional, the critical parameters for the onset of convection were found

in Part 1 to depend not only on the period and the amplitude of the permeability variations but

also only on the Floquet exponent. For example, the Floquet exponent corresponding to the most

unstable mode changes continuously as the period of the variations change. In the present paper

it has been shown that, when convection is allowed to be three dimensional, the Floquet exponent

only ever changes discontinously as P increases from zero, and it does this only twice, namely from

ν = 0 to ν = 1 when P takes a value which is a little greater than 1, and then a second time back

to ν = 0 at a value of P which is much more strongly dependent on the value of A. It is also found

that the critical Rayleigh number always decreases as either P increases or A increases.
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Appendix A – Exchange of stabilities

This analysis proceeds by first multiplying Eq. (12a) by F exp(iλνx/2), and Eq. (12b) by exp(iλνx/2)

and rearranging them thus:(
Ff ′eiλνx/2

)′
+ iλν

2

(
Ffeiλνx/2

)′
− (k2 + π2)Ffeiλνx/2 − πFheiλνx/2 = 0, (A1a)(

h′eiλνx/2
)′

+ iλν
2

(
heiλνx/2

)′
− (k2 + π2 − iω)heiλνx/2 +RaF (h+ πf)eiλνx/2 = 0. (A1b)

These equations are now multiplied by the functions, f̄ exp(−iλνx/2) and h̄ exp(−iλνx/2) , re-

spectively, and integrated over one period, P . This is a legitimate step to take because the integ-

rands of both integrals have precisely this period. The resulting equations may be added together

in such a way that an integral involving Fhf̄ is removed, and we thereby obtain,

iω

∫ P

0

|h|2 dx =

∫ P

0

[
|h′|2 +

(
k2 + π2 + 1

4λ
2ν2 −RaF

)
|h|2 + iλν

2

(
hh̄′ − h′h̄

)]
dx

+Ra

∫ P

0

F
[
|f ′|2 +

(
k2 + π2 + 1

4λ
2ν2

)
|f |2 + iλν

2

(
ff̄ ′ − f ′f̄

)]
dx.

(A2)

All the terms on the right hand side of this equation are real, while the left hand side is purely

imaginary. Therefore this equation may be satisfied if and only if ω = 0. We therefore conclude

that the principle of exchange of stabilities holds for all values of the given parameters, and that

the onset problem is stationary.
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Figure 1: The fluid-saturated porous layer with a periodic horizontal permeability field.
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Figure 2: Showing the lower surface rate of heat transfer for different onset modes for A = 0.1

(left) and A = 0.3 (right), and for P = 0.5 (uppermost), 1, 2 and 4 (lowest). Here k = π and ν = 0

and the shown patterns are confined to 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2.
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Figure 3: Showing the lower surface rate of heat transfer for different onset modes for the case,

P = 2, A = 0.3 and k = π, and for the values of ν shown.
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Figure 4: Showing how neutral curves vary with P for A = 0.1 and A = 0.3. Here k = π and

ν = 0. In the two left hand frames continuous lines depict P = 4 and dashed lines P = 3. In the

right hand frames continuous lines depict P = 2, dashed lines P = 1.5 and dotted lines P = 1. Up

to six modes are displayed.
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Figure 5: Showing the neutral curves corresponding to the first mode for P = 0.2 (short dashes),

0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 8 (long dashes). Curves corresponding to P = 2.5 and 3.5 are

dotted. Here A = 0.1 (left frame) and A = 0.3 (right frame) with k = π and ν = 0.
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Figure 6: Showing the neutral curves corresponding to the first mode for A = 0.01 (short dashes),

0.1, 0.3, 0.5, 0.7 and 0.9 (long dashes). Here P = 1 (left frame) and P = 2 (right frame) with

k = π and ν = 0.
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Figure 7: Showing variation with ν of the neutral curves corresponding to the first mode for A = 0.3

and k = π. The left frame corresponds to P = 0.8 and the right to P = 2. Dotted lines correspond

to ν = 0 and dashed lines to ν = 1. The values of ν are separated by an increment of 0.1.
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Figure 8: Showing the variation of the critical values of Rac (left) and kc (right) with P for

A = 0.01, 0.1, 0.2, 0.3 (0.1) 0.9. For each Rac curve the two filled circles delineate the range of P

over which ν = 1 yields the smallest value of Rac, while ν = 0 elsewhere. For Rac the uppermost

line corresponds to A = 0.01; for kc it is the dashed line.
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Figure 9: Showing the regions in (A,P )–space in which either ν = 0 or ν = 1 forms the favoured

onset mode.
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