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Abstract. Normative frameworks provide a means to address the governance of
open systems, offering a mechanism to express responsibilities and permissions
of the individual participants with respect to the entire system without compro-
mising their autonomy. In order to meet requirements careful design is crucial.
Tools that support the design process can be of great benefit. In this paper, we de-
scribe and illustrate a methodology for elaborating normative specifications. We
utilise use-cases to capture desirable and undesirable system behaviours, employ
inductive logic programming to construct elaborations, in terms of revisions and
extensions, of an existing (partial) normative specification and provide justifica-
tions as to why certain changes are better than others. The latter can be seen as
a form of impact analysis of the possible elaborations, in terms of critical conse-
quences that would be preserved or rejected by the changes. The main contribu-
tions of this paper is a (semi) automated process for controlling the elaboration
of normative specifications and a demonstration of its effectiveness through a
proof-of-concept case study.

1 Introduction

Normative frameworks provide a powerful tool for governing open systems by pro-
viding guidelines for the behaviour of the individual components without regimenta-
tion [1]. Using a formal declarative language to specify the behaviour of a normative
system gives the system’s designer a means to verify the compliance of the system with
respect to desirable behaviours or properties [2, 3]. When errors are detected, manually
identifying what changes to make in order to attain compliance with desired behaviours
is often difficult and error-prone: additional errors may be inadvertently introduced in
the specification as a result of misinterpretations, incompleteness or unexpected impact
of the manual changes. The availability of a systematic and automated framework for
elaborating and handling change in normative specifications would benefit the develop-
ment process of such systems.



Corapi et al. [4] have shown how Inductive Logic Programming (ILP) can be used to
support the elaboration of partial normative specifications, modelled using Answer Set
Programming (ASP). The system designer provides intended behaviours in the form
of use-cases. These are defined as specific (partial) scenarios of events and expected
outcomes, and are used to validate the correctness of the specifications. Use-cases that
fail the validation process are taken as positive examples (or learning objectives) for an
inductive learning tool, which in turn constructs suggestions for improving the specifi-
cation to guarantee the satisfiability of the failed use-cases. The learning of such sug-
gestions (or elaborations) is performed within a search space defined by a given set of
mode declarations that captures the format of possible changes that could be applied to
a given formalised normative specification.

Use-cases are inherently partial descriptions of a system behaviour. While their
sparse nature is well suited for the non-monotonicity of ASP, the learning process also
becomes less restricted, thus causing the problem of how to choose among the multiple
suggestions for change computed by the learner. For example, the failure to signal a
violation when an agent tries to borrow a book from a library could be caused by the
specification not correctly capturing any one of the following conditions: (i) the agent
has already borrowed the maximum number of items allowed, (ii) the book is for refer-
ence only, or (iii) a combination of all these reasons. In general, to address any of these
errors and establish the desired violations, there is more than one possible revision for
the given specification, with each one having its own impact on the overall behaviour
of the system. Thus, the problem with choosing the most appropriate revision is not the
revision itself, but the effect of that revision when it is combined with the rest of the
system and ensuring that desired system properties are maintained and undesired ones
are not introduced.

The approach in [4] lacks criteria for selecting among a (possibly large) number
of learned suggestions. This paper addresses this limitation and the general problem of
how to choose between alternative changes to make to a (partial) normative specifica-
tion, by providing an approach for analysing the impact of these changes. We make use
of the notion of relevant literals as critical elements of the domain that are required to
be positive or negative consequences in the intended specification, in order to discrimi-
nate between the suggested changes. The solution proposed in this paper provides also
a general method for choosing among alternative hypotheses in the wider context of
inductive learning.

The remainder of the paper is structured as follows: the next two sections provide
background in the form of a summary of the formal and computational model (sec-
tion 2) and an outline of the revision process (section 3) as described in detail in [4]; the
method of test generation and the ranking of results is described in section 4 and then
demonstrated in section 5 using the same file-sharing scenario as [4]. The paper ends
with a discussion of some related work (section 6) and conclusions (section 7).

2 Normative Framework

Actions that we take in society are regulated by laws and conventions. Similarly, actions
taken by agents or entities in open systems may be regulated or governed by the social



rules of the system they operate in. It is the task of the normative framework to specify
these rules and observe the interactions between the various entities with respect to these
rules. The essential idea of normative frameworks is a (consistent) collection of rules
whose purpose is to describe A standard or pattern of social behaviour that is accepted
in or expected of a group [OED]. These rules may be stated in terms of events or actions,
but specifically the events that matter for the functioning of the normative framework,
based on its current state. In turn, each event/action can influence the normative state.

The control of an agent’s or entity’s power (effectiveness of an action) and per-
mission to perform certain actions, its obligations and violations of the norms, needs
to occur within the context of normative system. For example, raising a hand in class
means something different than raising a hand during an auction. This relation between
the physical and normative context is described by Conventional Generation [5] where
an event in the physical world may correspond to an normative event. An example is
clicking the “buy” button on Amazon, which counts as paying for the good.

2.1 The Formal Model

In this paper we use the model as set out in [2] based on the concept of exogenous
events within the physical world and normative states, those within the framework’s
context. Events change the state of the normative system by acting on normative fluents,
properties of the system that can be true at certain points in time.

The essential elements of the normative framework (summarised in Fig. 1(a)) are
events (E), which bring about changes in state, and fluents (F), which characterise the
state at a given instant. The function of the framework is to define the interplay between
these concepts over time, in order to capture the evolution of a particular institution
through the interaction of its participants. The model has two kinds of events: normative
(Enorm), that are the events defined by the framework, and exogenous (Eex), some of
whose occurrence may trigger normative events in a direct reflection of “counts-as” [6],
while the rest may have no relevance for a given framework. Normative events are
further partitioned into normative actions (Eact) that denote changes in normative state
and violation events (Eviol), that signal the occurrence of violations. Violations may
arise either from explicit generation, (i.e. from the occurrence of a non-permitted event),
or from the non-fulfilment of an obligation. The model also has two kinds of fluents:
normative fluents that denote normative properties of the state such as permissions (P),
powers (W) and obligations (O), and domain fluents (D) that correspond to properties
specific to a particular normative framework.

A normative state is represented by the fluents that hold true in that state. Fluents
that are not present are held to be false. Conditions on a state (X ) are expressed by a set
of fluents that should be true or false. The normative framework is initialised with the
state I.

Changes in the normative state are specified by two relations: (i) the generation
relation (G), which implements counts-as by specifying how the occurrence of one (ex-
ogenous or normative) event generates another (normative) event, subject to the empow-
erment of the actor and the conditions on the state, and (ii) the consequence relation (C),
which specifies the initiation and termination of fluents, given a certain state condition
and event.



N = 〈E ,F , C,G, I〉, where

1. F =W ∪P ∪O ∪D
2. G : X × E → 2Enorm

3. C : X × E → 2F × 2F

where
C(X, e) =
(C↑(φ, e), C↓(φ, e)) where

(i) C↑(φ, e) initiates
fluents

(ii) C↓(φ, e) terminates
fluents

4. E = Eex ∪ Enorm

with Enorm = Eact ∪ Eviol
5. I, initial instiutional state
6. State Formula: X = 2F∪¬F

(a)

p ∈ F ⇔ ifluent(p). (1)
e ∈ E ⇔ event(e). (2)

e ∈ Eex ⇔ evtype(e, obs). (3)
e ∈ Eact ⇔ evtype(e, act). (4)
e ∈ Eviol ⇔ evtype(e, viol). (5)

C↑(φ, e) = P ⇔ ∀p ∈ P initiated(p, T) : − (6)
occurred(e, I), EX(φ, T ). (7)

C↓(φ, e) = P ⇔ ∀p ∈ P terminated(p, T) : − (8)
occurred(e, T), EX(φ, T ). (9)

G(φ, e) = E ⇔ ∀g ∈ E, occurred(g, T) : −
occurred(e, T),
holdsat(pow(e), T),EX(φ, T ).

(10)
p ∈ I ⇔ holdsat(p, i00). (11)

(b)

Fig. 1. (a) Formal specification of the normative framework and (b) translation of normative
framework-specific rules into AnsProlog

The semantics of a normative framework is defined over a sequence, called a trace,
of exogenous events. Starting from the initial state, each exogenous event is responsible
for a state change, through the eventual initiation and termination of fluents. This is
achieved by a three-step process: (i) the transitive closure of G with respect to a given
exogenous event determines all the generated (normative) events, (ii) to this, all vio-
lations of non-permitted events and non-fulfilled obligations are added, giving the set
of all events whose consequences determine the new state, (iii) the application of C to
this set of events identifies all fluents that are initiated and terminated with respect to the
current state, so determining the next state. For each trace, the normative framework can
determine a sequence of states that constitutes the model of the framework for that trace.
This process is realised as a computational process using answer set programming.

2.2 Computational Model

The formal model described above is translated into an equivalent computational model
using answer set programming (ASP) [7] with AnsProlog as the implementation lan-
guage4. AnsProlog is a knowledge representation language that allows the program-
mer to describe a problem and the requirements for solutions declaratively, rather than
specifying an algorithm to find the solutions to the problem. The mapping follows the
naming convention used in the Event Calculus [8] and Action languages [9].

The basic components of the language are atoms, elements that can be assigned
a truth value. An atom can be negated using negation as failure or classical nega-
tion. Literals are atoms a or classically negated atoms −a. Extended literals are lit-
erals l or negated literals not l. The latter is true if there is no evidence supporting

4 In this paper we use the SMODELS syntax for writing AnsProlog programs



the truth of a. Atoms and (extended) literals are used to create rules of the general
form: a : −b1, ..., bm,not c1, ...,not cn, where a, bi and cj are literals. Intuitively, this
means if all literals bi are known/true and no literal cj is known/true, then a must
be known/true. a is called the head and b1, ..., bm,not c1, ...,not cn the body of the
rule. Rules with an empty body are called facts. Rules with an empty head are called
constraints, indicating that no solution should be able to satisfy the body. A (normal)
program (or theory) is a conjunction of rules and is also denoted by a set of rules. The
semantics of AnsProlog is defined in terms of answer sets, that is, assignments of true
and false to all atoms in the program that satisfy the rules in a minimal and consistent
fashion. A program may have zero or more answer sets, each corresponding to a solu-
tion. They are computed by a program called an answer set solver. For this paper the
solver we used was ICLINGO [10].

The mapping of a normative framework consists of two parts: an independent base
component and the framework-specific component. The independent component deals
with inertia of the fluents, the generation of violation events of non-permitted actions
and of (un)fulfilled obligations.

The mapping uses the following atoms:
– ifluent(p) to identify fluents,
– evtype(e, t) to describe the type of an event,
– event(e) to denote the events,
– instant(i) for time instances,
– final(i) for the last time instance,
– next(i1, i2) to establish time ordering,
– occurred(e, i) to indicate that the (normative) event happened at time i,
– observed(e, i) that the (exogenous) event was observed at time i,
– holdsat(p, i) to state that the normative fluent p holds at i, and finally
– initiated(p, i) and terminated(p, i) for fluents that are initiated and termi-

nated at i.
Given that exogenous events are always empowered while normative events are not,
the mapping must keep type information for the events, hence the evtype(e, t) atoms.
Similarly, violation events are always permitted and empowered. However, all fluents,
irrespective of type, are treated the same way so the mapping does not differentiate
between them.

Figure 1(b) provides the framework-specific translation mechanism.An expression
φ in the framework is translated into AnsProlog rule bodies as conjunction of literals,
using negation as failure for negated expressions, denoted asEX(φ, T ). The translation
of the formal model is augmented with a trace program that specifies (i) the length of
traces that the designer is interested in, and (ii) the property that each, except the final,
time instant is associated with exactly one exogenous event (iii) specifics of the desired
trace(s), for example length, or the occurrence of a specific event.

3 Revising Normative Rules

In this section we briefly summarise the approach described in [4] for computing elab-
orations of normative specifications through use-cases by means of non-monotonic in-



ductive logic programming. Our proposed technique for analysing the impact that pos-
sible elaborations could have on a normative specification extends this approach with a
formal mechanism for narrowing down the number of suggested elaborations based on
a notion of relevant literals.

The development of a normative specification is captured in [4] by an iterative
process that supports automated synthesis of new rules and revisions of existing one
from given use-cases. The latter represent instances of executions that implicitly capture
the desired behaviour of the system. They are defined as tuples 〈T,O〉 where T (trace)
specifies a (partial) sequence of exogenous events (observed(e, t)), and O (output)
describes the expected output as a set of holdsat and occurred literals that should
appear in the normative state. The traces do not have to be complete (i.e. include an
event for each time instance) and the expected output may contain positive as well as
negative literals and does not have to be exhaustive. An existing (partial) normative
specification N is validated against a use-case 〈T,O〉, specified by the designer, by
using T as a trace program for N and adding a constraint that no answer set should
be accepted that does not satisfy O. If no answer set is computed then the normative
specification does not comply with the use-case and a learning step is performed to
compute new rules and/or revisions of existing rules that guarantee the satisfiability of
the use-case. This validity check can be extended to a set of use-cases U from which
we derive the conjunction of all the traces TU and outputs OU (making sure that there
is no conflict in the time points being used).

The learning step is in essence a Theory Revision [11] task, defined in terms of
a non-monotonic inductive logic programming [12], and implemented in answer set
programming using the learning system ASPAL [13], [14].

Within the context of our computational model of normative systems, this task is
expressed as a tuple 〈OU, NB ∪ TU, NT,M〉, where:
1. OU is the set of expected outputs,
2. NB is the part of the normative specification that is not subject to revisions (i.e.

“static” background knowledge) augmented with the traces of the use-cases,
3. NT is the part of the normative system that is subject to modification, and
4. M is the set of mode declarations that establish how rules in the final solution

shall be structured. A mode declaration can be of the form modeh(s) or modeb(s),
where s is the schema of the predicate that can be used in the head or body of a rule
respectively.

These last define the literals that can appear in the head and in the body of a well-
formed revision. The choice of the M is therefore crucial. Larger M with more mode
declarations ensures higher coverage of the specification but increase the computation
time. Conversely, smaller mode declarations improve performance but may result in
partial or incorrectly formed solutions.

In [4] the mode declaration M is specified to allow the synthesis of new normative
rules as well as revision of existing rules. To compute the first type of solutions, M
allows predicates occurred, initiated and terminated to appear in the head of
the learned rules and predicates holdsat and occurred to appear in the body of the
learned rules. To compute revisions on existing rules the mode declaration M makes
use of special predicates: exception(p, v̄), where p is a reified term for a rule existing



in the specification and v̄ the list of variables in the rule that are involved in the change.
This special predicate can appear in the head of a learned rule whose body gives the new
literals that need to be added to the existing rule p with specific variables v̄. Another
special predicate is del(i, j), where i is the index of an existing rule and j the number
of the literal in the body of the existing rule that needs to be removed. This is learned
as a ground fact. By means of these two special predicates it is possible to learn rules
that define what literals to add to and what literals to remove from existing rules of the
normative specification NT. The reader may refer to [4] for further details.

4 Handling Change

The approach proposed by [4] provides an automated way for computing suggestions
of possible elaborations of a given normative specification. The designer must then
choose the most appropriate revision from a (possibly large) set of alternative changes.
In real applications this is impractical, as the number of suggested changes can be too
large to work with. Informally, possible alternative revisions can be any combinations
of addition of new literals and/or deletion of existing literals in any of the existing rules
of the specification. Automated criteria for selecting solutions from the suggestions
provided by the learning are therefore essential.

In the remainder of this paper, we show that analysing the impact of suggested
changes, in terms of relevant literals that would be preserved or discarded, can be
an effective criteria for revision selection. Considering all the consequences that each
possible revision would give is clearly not a practical solution. What is needed is a
mechanism for identifying key consequences that would allow to reject some suggested
changes whilst preserving others. We propose that test generation can provide such a
mechanism and show how the process can carried out in answer set programming to fit
with both the inductive learner and the computational model of the normative frame-
works.

4.1 Test Generation

A test normally defines the set of outcomes that have to be observed given certain
achievable information in order to confirm or refute an hypothesis. Using the definitions
from [15], a test can formally be defined as a pair (A, l) where A is a conjunction of
achievable literals, the initial condition specified by the tester, and l is an observable, the
outcome (l or ¬l) decided by the tester. Using this structure, we can define confirmation
and refutation tests with respect to given background knowledge Σ.

Definition 1. The outcome a of a test is said to confirm a hypothesis H iff Σ ∧A ∧H
is satisfiable andΣ∧A � H → a. The outcome a of a test is said to refute a hypothesis
H iff Σ ∧A ∧H is satisfiable and Σ ∧A � H → ¬a.

Hence, a refutation test has the power to eliminate the hypothesis when its outcome is
not included in the consequence of Σ ∧ A where H is true. Note that in this paper the



symbol |= is associated with the skeptical stable model semantics5 in conformity with
the underlying ASP framework.

Using the notion of relevant test in [15], we define relevant literals as follows.

Definition 2. (Relevant Literal) Let 〈T,O〉 be a use-case consisting of a partial trace
T and desired outcome O, Σ a given (partial) normative specification, and HY P the
set of hypotheses representing the suggested revisions of Σ that satisfy 〈T,O〉. A literal
l is relevant if:
1. Σ ∧ T ∧O ∧Hi is satisfiable, for all Hi ∈ HY P
2. Σ ∧ T ∧O 2

∨
Hi∈HY P ¬Hi

3. T ∧O ∧ l is an abductive explanation for
∨

Hi∈HY P ¬Hi

4. T ∧O ∧ l is not an abductive explanation for ¬Hi, for all Hi ∈ HY P

Conditions 1 and 2 above state, respectively, that each suggested revision (Hi) satisfies
the given use-case and is consistent with the normative specification and the use-case.
Both these conditions are guaranteed by the correctness of the learning process [13].
Conditions 3 and 4 above ensure that some but not all suggested revisions are refuted
by the relevant literal l. Thus should l be observed, at least one hypothesis may be
rejected.

The automated generation of tests for specific objectives (e.g. eliminate some hy-
pothesis H) can be formulated [15] in terms of an abductive problem [16] so that
Σ ∪ (A, l) � ¬H . Informally, given an abductive problem 〈B,Ab,G〉, where B is a
background knowledge, G is a goal, and Ab a set of abducibles, a conjunction of liter-
als E in the language Ab, is an abductive explanation for G, with respect to B if and
only if B ∧ E is satisfiable and B ∧ E � G.

4.2 The approach

Our approach extends the work of [4] with an iterative process for computing relevant
literals and discarding learned revisions that are refuted by the relevant literals. As il-
lustrated in Fig. 2, once possible changes are learned, this iterative process is activated.
At each iteration, the (remaining) learned revisions are “combined” with the existing
normative specification as integrity constraints in order to capture conditions 3 and 4
above and ensure that the abduced relevant literals have the power to eliminate some
suggested revisions. Traces of the given use-cases are included as achievable literals to
guarantee that the abduced relevant literals conform with the use-cases. The abduced
relevant literals are ranked according to how much information can be gained from
them. The most highly ranked literal is then presented to the designer, who can then
specify the truth value for the literal. Based on the designer’s answer, suggested revi-
sions that are refuted by the relevant literal are discarded. The process is repeated: new
relevant literals and their scores are computed with respect to the remaining suggested
revisions. This process is repeated until no further relevant literals can be identified.
This is the inner loop of the process depicted in Fig. 2. The remaining learned revi-
sions are then returned to the designer. If only one suggested revision remains, this is
used to change the specification automatically and the revised normative description is
returned.

5 P |= a if a is true in every answer set of P .



Fig. 2. Handling changes in normative specifications

Suggested Revisions as Hypotheses. Changes to our normative specifications can be
one of three different varieties: addition of new rules, deletion of an existing rule, and
addition or deletion of a body literal in an existing rule. These modifications correspond
to the following facts in each solution:

1. r ← c1, . . . , cn: A new rule is added to the revised specification.
2. del(i, j): The condition j of rule ri inNT is deleted. If a rule has all of its condition

deleted, then it is removed from the revised specification.
3. xt(i, ri) ← c1, . . . , cn: The condition of rule ri in NT is extended with the condi-

tions c1, . . . , cn. Should a solution contain two of such facts for extending the same
rule, then the revised specification contains two different versions of the extended
rule.

To abduce relevant literals, each modification in a learned solution is (automatically)
combined with the static part of the background knowledge NB. For each revisable rule
ri in solution Sk the following clause is added:

1. If ri is deleted by Sk, then clauses corresponding to ri are not added to NB

2. ¬hypk : − not ri, c1, . . . , cn, cn+1, . . . , cm
If both xt(i, ri) ← c1, . . . , cn and del(i, j) facts are in Sk and cn+1, . . . , cm are
the conditions of rule ri from NT that are not deleted by Sk

3. ¬hypk : − not ri, c1, . . . , cm
If only del(i, j) is in Sk, and c1, . . . , cm are conditions of rule ri from NT that are
not deleted by Sk

4. ¬hypk : − not ri, c1, . . . , cn, cn+1, . . . , cm
If only xt(i, ri) ← c1, . . . , cn is in Sk, and cn+1, . . . , cm are the conditions of ri
from NT

5. ¬hypk : − not ri, c1, . . . , cm
If Sk does not change ri, and c1, . . . , cm are the conditions of ri from NT

For example, if we have the following NT:



terminated(perm(shoot(A1, A2)), Time) : −initiated(peace, Time).
terminated(perm(shoot(A1, A2)), Time) : −holdsat(peace, Time).

...and three alternative suggested revisions:

1. Add: initiated(perm(shoot(A1, A2)), Time) : −initiated(war, Time). The fol-
lowing rules are added to the normative specification, with head predicate ¬hyp(1):

¬hyp(1) : − not initiated(perm(shoot(A1, A2)), Time),
initiated(war, Time).

¬hyp(1) : − not terminated(perm(shoot(A1, A2)), Time),
initiated(peace, Time).

¬hyp(1) : − not terminated(perm(shoot(A1, A2)), Time),
holdsat(peace, Time).

The first of the above rules represents the new rule added by the suggestion, while
the latter two correspond to changes made by alternative revision suggestions but
left unchanged by the current suggestion.

2. Change: terminated(perm(shoot(A1, A2)), Time) : −initiated(peace, Time).
to: terminated(perm(shoot(A1, A2)), Time) : −terminated(war, Time). The
following rules are added:

¬hyp(2) : − not terminated(perm(shoot(A1, A2)), Time),
terminated(war, Time).

¬hyp(2) : − not terminated(perm(shoot(A1, A2)), Time),
holdsat(peace, Time).

Similarly, the revised rule in the second suggestion is captured by the first rule
above with head predicate ¬hyp(2), while the second of these represents the rule
deleted by the third suggestion.

3. Remove: terminated(perm(shoot(A1, A2)), Time) : −holdsat(peace, Time).
This results in the following rules been added to the normative specification:

¬hyp(3) : − not terminated(perm(shoot(A1, A2)), Time),
initiated(peace, Time).

The above rule, with head predicate ¬hyp(3), corresponds to the rule revised by
the second revision suggestion.

Abducing Relevant Literals. Let 〈T,O〉 be the use-case that was used to learn the set
R of suggested revisions, NB be the part of the normative specification that R leaves
unchanged, NR the rules in the specification that one or more suggestions in R revise,
CH/2 be the function that transform rules by suggested revisions as described in sec-
tion 4.2, and let HYP be the set of hypotheses in CH(NR, R). The relevant literals are



solutions of the abductive task 〈B,Ab,G〉 where:

B = NB ∪ T ∪ CH(NR, R)
G = O ∪ ¬(

∧
Hi∈HYP ¬Hi) ∪ ¬(

∧
Hi∈HYPHi)

and Ab is the set of ground instances of (possible) outcomes. The relevant literals is a
set E ⊆ Ab such that B ∪ E � G.

The above abductive task is computed using ASP and the solutions generated are
answer sets containing relevant literals. To know the exact impact each relevant literal
has on the hypothesis space, it is important to match it to the hypotheses it refutes.
Algorithm 1 is used to extract relevant literals that refute a given suggested change
(i.e. learned hypothesis) from the answer sets, using a series of set comparisons. The
algorithm finds the differences between an answer set with a falsified hypothesis and
another where it is not, then finds the smallest subsets of all these differences. The
output of the algorithm are the smallest sets of literals that can refute the hypothesis.
Note that while set intersection could potentially be used to extract such relevant literals,
it would disregard the cases where a disjunction of literals l1∨l2 can falsify a hypothesis.

Scoring Relevant Literals. Ideally we want to be able to dismiss as many suggested
revisions as possible. The number of hypotheses that could be discarded depends on the
relevant literal’s truth value: e.g. while we may be able to reject nearly all hypotheses if
the literal is true, we may not be able to reject any should it be false. We use the number
of minimum hypotheses that a relevant literal may reject as the score for comparing
the literal against other relevant literals, using a fractional score when the literal can
only falsify a hypothesis in conjunction with others. Thus, for each relevant literal l that
rejects n suggested revisions when it is true, and m suggested revisions when it is false,
minimum(n,m) is the score for l. The most relevant literals are those with the highest
value of these scores, and could be further ranked according to the maximum number
of hypotheses each one falsifies.

5 Case Study

The case study is taken from [4]. The scenario describes a system of file sharing agents
where:

Agents are initialized to have ownership of a unique block of digital data, which
all together comprise a digital object – a file of some kind. After the initial
download of the unique block, an agent must share a copy of a block of data
it possesses before acquiring the right to download a copy of a block from
another agent. Violations and misuses are generated when an agent requests a
download without having shared a copy of a block after its previous download,
and a misuse terminates its empowerment to download blocks. However, if an
agent has VIP status, it can download blocks without any restriction.



Algorithm 1 Extracting relevant literals of a given hypothesis
Input: answer sets ANS , hypothesis predicate h, and the set of hypothesis predicates HYP
Output: a set
REV of relevant literals that refute h

1: {Find the difference between Si and answer sets that do not have relevant literals of h}
2: DIFF = ∅
3:
4: for all Si ∈ ANS do
5: if ¬h ∈ Si then
6: for all Sj ∈ ANS do
7: if ¬h /∈ Sj then
8: NREV = Sj ∪HYP ∪ {¬h : HYP}
9: DIFF = DIFF ∪ {Si −NREV }

10: end if
11: end for
12: end if
13: end for
14:
15: {Find the smallest subsets from the sets in DIFF}
16: REV = ∅
17:
18: for all D ∈ DIFF do
19: REV = REV − {R : REV |R ⊃ D}
20: if D /∈ REV and @R : REV (R ⊂ D) then
21: REV = REV ∪ {D}
22: end if
23: end for
24:
25: return REV

Our existing normative specification includes the six revisable rules in Fig.3(a),
that is NT. The learner is supplied with the use-case comprising T (Fig.3(b)) and O
(Fig.3(c)). This use-case shows how a violation is raised when alice downloads data
consecutively without sharing any data in between. On the other hand, no violations
are raised when charlie downloads data without sharing, as charlie is a VIP. For
the system specification to comply with the use-case, the fourth and fifth rule need
to be revised, so that VIP agent’s empowerment will not be terminated after a down-
load, and a syntactic error in the fifth rule corrected, where the first Y should be X in
occurred(download(Y,Y,B),I).

For this particular use-case and six revisable rules, with a maximum of seven rules
per solution the learner outputs 41 ways in which the rules could be revised. Due to the
space limitations, we look only at 4 of the proposed 41 (see Fig. 4).



% Rule 1
initiated(hasblock(X,B),I) :-

occurred(myDownload(X,B),I).
% Rule 2
initiated(perm(myDownload(X,B)),

I) :-
occurred(myShare(X),I).

% Rule 3
terminated(pow(

extendedfilesharing,
myDownload(X,B)),I) :-
occurred(misuse(X),I).

% Rule 4
terminated(perm(

myDownload(X,B2)),I) :-
occurred(myDownload(X,B),I).

% Rule 5
occurred(myDownload(X,B),I) :-

occurred(download(Y,Y,B),I),
holdsat(hasblock(Y,B),I).

% Rule 6
occurred(myShare(X),I) :-

occurred(download(Y,X,B),I),
holdsat(hasblock(X,B),I).

(a)

T =



observed(start,i00)
observed(download(alice,bob,x3),

i01)
observed(download(charlie,bob,x3)

,i02)
observed(download(bob,alice,x1),

i03)
observed(download(charlie,alice,

x1),i04)
observed(download(alice,charlie,

x5),i05)
observed(download(alice,bob,x4),

i06)


(b)

O =



not viol(myDownload(alice,x3),
i01)

not viol(myDownload(charlie,x3),
i02)

not viol(myDownload(bob,x1),i03)
not viol(myDownload(charlie,x1),

i04)
not viol(myDownload(alice,x5),

i05)
viol(myDownload(alice,x4),i06)
occurred(misuse(alice), i06)

⋃{
not occurred(misuse(a), i)
| a ∈ Agents, i ∈ Instances, i 6= i06

}

(c)

Fig. 3. Rules for revision (a), with use-case trace (b) and outputs (c)

5.1 Generating Relevant Literals

To form the background knowledge for the abductive task, rule 4 and rule 5 are
removed from the current specification, and their suggested revisions included in the
specifications following the representation described in section 4.2. Fig. 5 contains an
extract from the ASP encoding of our abductive task for computing relevant literals
regarding revisions for rule 4 and rule 5.

By adding the trace, as well as these hypotheses to the framework, the program can
be used as the background data for the abduction task. The head of the suggested new
and revised rules are used as abducible predicate symbols, while their revised conditions
are used as constraints for these abducibles to avoid an explosion in the number of
answer sets. The following integrity constraints capture conditions 2 and 4 of our test
characterisation given in section 4.2
:- hyp(1), hyp(2), hyp(3), hyp(4).
:- -hyp(1), -hyp(2), -hyp(3), -hyp(4).

However, since we use Algorithm 1 to identify the relevant literals, as explained in
section 4.2 the constraint is relaxed to:



%---Suggestion 1
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).

%---Suggestion 2
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(viol(myDownload(Y,B2)),I).

%---Suggestion 3
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :- occurred(download(X,Y,B),I).

%---Suggestion 4
% New rule
occurred(misuse(A),I) :- occurred(viol(myDownload(A,C)),I).
% Revise rule 4
terminated(perm(myDownload(X,B2)),I) :- occurred(myDownload(X,B),I), not isVIP(X).
% Revise rule 5
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(download(X,Y,B),I).
occurred(myDownload(X,B),I) :-

holdsat(hasblck(Y,B),I), occurred(viol(myDownload(X,B2)),I).

Fig. 4. 4 selected revision suggestions from the 41 proposed

:- -hyp(1), -hyp(2), -hyp(3), -hyp(4).

The constraint above is still needed, as the algorithm searches for answer sets which
includes -hyp/1 instances to extract relevant literals from. Thus, while the answer
sets without any refuted hypothesis are excluded from the algorithm’s output, answer
sets with all hypotheses refuted will still be included.

Applying Algorithm 1 to the answer sets generated by the abductive task, the fol-
lowing relevant literals are computed:

Literals that
can falsify both
hyp(2) and
hyp(4):



¬ occurred(viol(myDownload(alice,x1)),i06),
¬ occurred(viol(myDownload(alice,x2)),i06),
¬ occurred(viol(myDownload(alice,x3)),i06),
¬ occurred(viol(myDownload(alice,x5)),i06),
¬ occurred(viol(myDownload(bob,x1)),i06),
¬ occurred(viol(myDownload(bob,x2)),i06),
¬ occurred(viol(myDownload(bob,x3)),i06),
¬ occurred(viol(myDownload(bob,x4)),i06),
¬ occurred(viol(myDownload(bob,x5)),i06)



% New Rule
-hyp(H) :- not occurred(misuse(A),I), occurred(viol(myDownload(A,C)),I), hyp_id(H)

.
% Rule 4
-hyp(H) :- not terminated(perm(myDownload(X,B2)),I), occurred(myDownload(X,B),I),

not isVIP(X), hyp_id(H).

%---Suggestion 1
% Rule 5
-hyp(1) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).

%---Suggestion 2
% Rule 5
-hyp(2) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).
-hyp(2) :- not occurred(myDownload(X,B),I), occurred(viol(myDownload(Y,B2)),I),

holdsat(hasblck(Y,B),I).

%---Suggestion 3
% Rule 5
-hyp(3) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I).

%---Suggestion 4
% Rule 5
-hyp(4) :- not occurred(myDownload(X,B),I), occurred(download(X,Y,B),I),

holdsat(hasblck(Y,B),I).
-hyp(4) :- not occurred(myDownload(X,B),I), occurred(viol(myDownload(X,B2)),I),

holdsat(hasblck(Y,B),I).

Fig. 5. Computing relevant literals

Literals that
can falsify
only hyp(4):


occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x1)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x2)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x3)),i06)
occurred(misuse(bob),i06) ∧ occurred(viol(myDownload(bob,x5)),i06)

However, hyp(1) and hyp(3) cannot be falsified as both revisions produce the same
consequences using the current use-case.

5.2 Scoring the Relevant Literals

When scoring the literals such as occurred(misuse(bob),i06), where the literal
alone cannot refute a hypothesis, a fractional score is given corresponding to how many
other literals are needed to reject the hypothesis. The scores for each relevant literal are
given in Table 1, with the following four literals having highest score:

occurred(viol(myDownload(bob,x1)),i06)
occurred(viol(myDownload(bob,x2)),i06)
occurred(viol(myDownload(bob,x3)),i06)
occurred(viol(myDownload(bob,x4)),i06)
occurred(viol(myDownload(bob,x5)),i06)

Any of these literals can be returned to the designer as the most relevant. Should the
designer consider the returned literal to be false, then both the second and fourth sug-
gested revisions could be discarded. However, if the literal is considered to be true, the
dependent literal occurred(misuse(bob),i06) is given to the designer. This is be-



Relevant literal
Truth value
True False

occurred(viol(myDownload(alice,x1)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x2)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x3)),i06) 0.0 2.0
occurred(viol(myDownload(alice,x5)),i06) 0.0 2.0
occurred(viol(myDownload(bob,x1)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x2)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x3)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x4)),i06) 0.5 2.0
occurred(viol(myDownload(bob,x5)),i06) 0.5 2.0
occurred(misuse(bob),i06) 0.0 0.5

Table 1. Scoring of relevant literals

cause the two literals are dependent as shown by the lists of relevant literals for each
hypothesis given above.

6 Related work

The literature on norm change and norm revision is quite diverse, but also quite thinly
spread across a range of disciplines. Many normative frameworks include appeal to
extrinsic normative frameworks, such as negotiation, argumentation, voting, or even
fiat (dictatorship) to mediate norm change. These are not the concern of this paper. Our
focus is on the specific nature of the revision: what needs to change, rather than how it
shall be brought about. In human societies, the identification of what may be informal,
or the outcome of an extensive evaluative study, along with proposals for which rules
to revoke, which rules to add and an assessment of the consequences. This reflects
work in the philosophy of law, the logic of norms, or the logic of belief change [17],
where the drive has been the discovery of norm conflicts and their subsequent revision
in the framework of deontic logic. However, this only explores the principle of norm
conflict and norm inconsistency (concluding that they are in fact the same), and that it
may be resolved by a process of norm revision in which the norm set is reduced and
subsequently extended (consistently). Further theoretical studies can be found in [18–
20]

Artikis [21] presents a formalization of a (run-time) process for changing the rules
governing a protocol, central to which are the notions of stratification and degrees of
freedom to determine a metric for the magnitude and hence feasibility of the change
from the current rules to the new rules. However, fundamental to this scheme is that
the state-space of alternatives be known a priori, so it is essentially limited to known-
knowns, rather than the exploration of all possibilities to remedy shortcomings.

Campos et al. [22] propose a mechanism for the adaptation of a normative frame-
work – which they call an electronic institution (EI) – in which the EI is goal-driven
and utilizes a feedback mechanism to compare observations with expected goals in or-
der to self-reconfigure using transition functions. The expected goals are quantitative



constraints on values of observed properties, while actual performance is captured in an
objective function comprising a weighted aggregation of observed properties. As with
Artikis, above, the scope for adaptation is limited in that responses are pre-determined
in the specification and may only affect parameters of norms.

Tinnemeier et al. [23] make clear that normative concepts should be used to af-
fect which entities have the permission and the power to effect norm change, they also
point out that norm-reasoning is typically beyond the competence of typical agency. In
consequence of the latter, they choose for the normative framework to provide suitable
norm-change operators for the agents to use that do not require detailed norm knowl-
edge. While the scope of changes is more extensive than either Artikis or Campos, the
rules for norm scheme change (sic) appear to depend both on domain knowledge and
the foresight of the designer.

Thus, although there is a select literature which addresses norm change in various
ways, it either suffers from an absence of a computational model, or has very restricted
solution space which depends on prediction of what changes may be needed. In contrast,
we provide technical support for a formal model of norm revision, as presented here and
in our earlier paper [4], which can adapt the normative framework arbitrarily, to meet
evolving requirements, expressed through goals, and is, we believe, entirely novel.

7 Conclusions

In this paper, we have tackled the problem of distinguishing between revisions of nor-
mative specifications through the use of test generation. While we have concentrated on
problem of choosing between normative revisions, more generally our work for choos-
ing between alternate hypotheses is applicable to any theory revision problem. As dis-
cussed in [11], there appears two ways of judging whether one revision is better than
another. The first is by looking at how complete and consistent the revised theory would
be by checking it satisfies a set of desired characteristics such as the AGM postulate (see
Chapter 2 of [24]). As we depended on previous work for the correctness of the revi-
sion, this is not the directly related to our work. The second is by following the principle
of minimal change which takes the revision that changes the original theory the least
as the best solution. While this approach ensures that as much knowledge as possible
is retained by the change, the minimal revision may not always reflect the specification
that the designer wants. Thus, other criteria in addition to minimal changes should be
used in a revision framework based on use-cases.

Although examining all possible revisions may give a more complete view of the
changes made to the original partial specification, our approach can help the user by
pointing out the key discriminating aspects between the different revisions. By identi-
fying comparable consequences of the suggested revisions, we are able to use them as
a rationale for rejecting possible changes. We have investigated how test generation can
be applied, providing a notion of test characteristics for revisions, and used this charac-
terisation to describe how abduction can be used to find such relevant literals. In [15],
the discriminating test is mentioned as another type of test that could reject hypothe-
ses regardless of its truth value. It is also mentioned that while they are ideal to use
for rejecting hypotheses, their characteristics are too restrictive and thus relevant tests



were discussed. For the relevant literals in this paper, the scoring mechanism ensures
that relevant literals satisfying the characteristics of discriminating tests have higher
priority.

Our case study demonstrates how our proposed approach could be integrated into
an existing framework for normative refinement, where ASP can be used to compute
relevant literals and score them in order to identify those that are most relevant. It also
shows a situation where our approach may not discriminate all suggested revisions.
While the revision suggestions are different, our approach could not find any relevant
literals as the system trace used to find it does not describe a scenario in which the
revisions would differ. As the revision process is designed to be carried out iteratively,
use-cases from previous cycles could be kept either as additional constraints or as addi-
tional traces to use for generating relevant literals.
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