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Abstract

The best known isotropic membrane stress state is a soap film. However, if
we allow the value of the isotropic stress to vary from point to point then
the surface can carry gravity loads, either as a hanging form in tension, or as
a masonry shell in compression. The paper describes the theory of isotropic
membrane stress under gravity load and introduces a particle method for its
numerical simulation for the form finding of shell structures.

Keywords: masonry shell, isotropic stress, minimal surface, particle
methods

1. Introduction

In conventional structural design the geometry of a structure is first cho-
sen more or less arbitrarily and then analysed to establish how well it per-
forms. It is then modified to improve its performance and this cyclic process
is continued until the designers are satisfied. Michael Brawne [1] likened
this cyclic optimization process (as applied to architectural design) to Karl
Popper’s theory of the scientific method. The optimization process can be
automated using computers using techniques including genetic algorithms [2]
and simulated annealing [3].

Form finding techniques rely on physical or numerical models to auto-
matically generate the form. The model must have different, but analogous,
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properties to the structure being designed and classic examples include An-
toni Gaud́ı’s hanging models for the masonry vaults of the Church of Colònia
Güell [4] and Frei Otto’s soap film models for fabric, cable net and gridshell
structures. Form finding techniques do not produce an ‘optimum form’, but
a ‘good form’. However in practice the difference between optimization and
form finding is arbitrary - one would expect form finding to be taken through
a number of ‘optimization’ cycles involving analysis of the structure in its
proposed final form in masonry or fabric.

Masonry shells can only work in compression and a number of numeri-
cal techniques have been developed for finding their geometry to achieve a
specified stress state under dead load [5, 6, 7, 8, 9, 10, 11, 12]. In this paper
we propose the use of a variable isotropic stress state where the membrane
stress is uniform in all directions with no shear stress, but the value of the
stress varies from point to point.

There is no particular reason why the compressive membrane stress should
be isotropic, but it could be argued that an isotropic stress is in some ways
optimum. This mirrors the argument that a minimal surface is the best
shape for a cable net or fabric structure. Certainly we want to avoid loss
of compression in a masonry structure leading to cracking or loss of tension
in a tension structure leading to wrinkling. Thus we want the radius of the
Mohr’s circle for stress [13] to be less than the mean stress. The simplest
case is to set the radius of the Mohr’s circle equal to zero corresponding to
an isotropic stress. Note that the Mohr’s circle construction can be applied
to any symmetric second order tensor, for example surface curvature [14].

Imposing the condition that the stress state should be isotropic also has
the effect of avoiding undue stress concentrations. In general this is a good
thing, but there are circumstances where one wants a concentration of stress
or force, for example at a point support or at a boundary arch. However
a boundary arch can be modelled as a separate entity leaving the state of
stress in the rest of the shell isotropic.

We will use the expression ‘surface tension’ to denote the value of the
isotropic membrane stress expressed as a force per unit length. If the stress
is compressive, then the surface tension is negative. It is often thought that
the surface tension in a soap film is constant, but if this were the case it
would not be possible for a soap film to carry its own weight. A vertical soap
film must have a higher surface tension at the top than at the bottom. The
situation is analogous to hydrostatic pressure that must increase with depth.

Even without gravity surface tension must vary with film thickness. Imag-
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ine a soap film with slight fluctuations in thickness. The surface tension must
be greater where the film is thinner to pull fluid from thicker areas to ensure
stability [15].

In the following sections we present the theoretical analysis of an isotropic
membrane stress under gravity loads. We then give an example of the solution
of the equations using the finite element method. Finally we formulate and
illustrate the use of a particle method for numerical simulations.

2. Theoretical analysis

2.1. Geometric preliminaries

The methods described in sections 2.1 and 2.2 are based on those in Green
and Zerna[16], but with some changes in notation.

Consider a surface described by the position vector

r
(
θ1, θ2

)
= x

(
θ1, θ2

)
i + y

(
θ1, θ2

)
j + z

(
θ1, θ2

)
k. (1)

i, j and k are unit vectors in the directions of the Cartesian axes and θ1 and
θ2 are the surface parameters or coordinates replacing the u and v which are
often used. Note that the 1 and 2 are not exponents.

The covariant base vectors are

gi =
∂r

∂θi
=
∂x

∂θi
i +

∂y

∂θi
j +

∂z

∂θi
k (2)

in which i is equal to 1 or 2. g1 and g2 are tangent to the surface in the
directions of increasing θ1 and θ2 respectively. Note that they are in general
not unit vectors, nor are they perpendicular to each other.

The components of the metric tensor are

gij = gi · gj (3)

and the square of the distance between adjacent points on the surface is

δs2 =

(
2∑

i=1

∂r

∂θi
δθi

)
·

(
2∑

j=1

∂r

∂θj
δθj

)
=

2∑
j=1

2∑
i=1

gijδθ
iδθj = gijδθ

iδθj. (4)

The summations in the right hand side of this expression are implied by the
Einstein summation convention. This expression for δs2 is known as the first
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fundamental form and therefore gij are also known as the coefficients of the
first fundamental form.

The quantity
g = g11g22 − g212 (5)

and the unit normal,

n =
g1 × g2

|g1 × g2|
=

g1 × g2√
g

. (6)

Note that g is not a scalar in that it is a property of the coordinate system,
rather than something with physical meaning.

The contravariant base vectors gj also lie in the plane of the surface.
They are defined by

gi · gj = δji
n · gj = 0

(7)

in which the Kronecker deltas, δji = 0 if i 6= j and δji = 1 if i = j. Thus g1 is
perpendicular to both g2 and n and its magnitude is such that g1 · g1 = 1.

The contravariant components of the metric tensor are

gij = gi · gj (8)

and a vector can be expressed as

v = vigi + vn = vig
i + vn (9)

in which
vi = gijvj
vi = gijv

j.
(10)

Again note the use of the summation convention in (9) and (10).
Finally, the coefficients of the second fundamental form are

bij = bji =
∂gi

∂θj
· n =

∂gj

∂θi
· n = −gj ·

∂n

∂θi
(11)

and the second fundamental form itself is

δr · δn = −bijδθiδθj. (12)

bij tell us about how the direction of the normal changes as we move about
on the surface, in other words, about the curvature of the surface.

bij and gij are not independent, they are linked by the Gauss Codazzi
Mainardi equations which ensure that the surface fits together.
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2.2. The membrane equilibrium equations for shell and tension structures

We are now in a position to define the membrane stress tensor σ= σijgigj

by
δf = εikσ

ijgjδθ
k (13)

in which δf is the element of force crossing the imaginary cut δr = gkδθ
k.

ε12 = −ε21 =
√
g and ε11 = 0 and ε22 = 0 are the components of the

Levi-Civita permutation pseudotensor. Note that we are not yet making the
assumption that the membrane stress is isotropic.

Equation (13) makes a bit more sense when written out in full:

δf =
√
g
(
σ11δθ2 − σ21δθ1

)
g1 +

√
g
(
σ12δθ2 − σ22δθ1

)
g2, (14)

especially when compared to the equivalent relationship for plane stress in
two dimensions in Cartesian coordinates:

δf = (σxδy − τyxδx) i + (τxyδy − σyδx) j. (15)

Equilibrium of moments about the surface normal tell us that the stress
tensor is symmetric, σ12 = σ21.

Adding the forces on a small quadrilateral of shell we have

∂

∂θ2
(
εi1σ

ijgj

(
−δθ1

))
δθ2 +

∂

∂θ1
(
εi2σ

ijgjδθ
2
)
δθ1 + w

√
gδθ1δθ2 = 0 (16)

where w is the load per unit surface area. Thus

∂

∂θi
(√

gσijgj

)
+ w
√
g = 0. (17)

In terms of components this can be written as

σijbij + w = 0 (18)

which is the equilibrium equation in the direction of the normal and

∇iσ
ij + wj = 0 (19)

which are the two equilibrium equations in the plane of the surface. ∇iσ
ij is

the covariant derivative,

∇iσ
ij =

∂σij

∂θi
+ σkjΓi

ki + σikΓj
ki (20)

and

Γj
ki = gj · ∂gk

∂θi
(21)

are the Christoffel symbols of the second kind.
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2.3. The membrane equilibrium equations for isotropic membrane stress shells

The previous section provided the theoretical background for understand-
ing the membrane equilibrium equations for shell and tension structures.
Next, we derive the equations for isotropic membrane stress.

If the state of stress is isotropic the membrane stress tensor is

σij = σgij (22)

in which the scalar σ is the surface tension with units force per unit width.
The equilibrium equations now become

σgijbij + w = 0 (23)

and
∇i

(
σgij

)
+ wj = 0. (24)

However
gijbij = 2H (25)

where H is the mean or Germain curvature so that in the normal direction,

2σH + w = 0. (26)

When the loading is zero we have H = 0 which is the condition for a minimal
surface.

The covariant derivatives of the components of the metric tensor are zero
so that the in-plane equilibrium equations become

∂σ

∂θi
+ wi = 0. (27)

2.4. Vertical loading on isotropic membrane stress shells

If the loading is vertical then

wi = −Wgi · k
w = −Wn · k (28)

in which W is the downwards load per unit surface area. However,

gi · k =
∂z

∂θi
, (29)
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so that the in-plane equilibrium equations become

∂σ

∂θi
= W

∂z

∂θi
. (30)

Thus σ must be a constant along a contour line of constant z and therefore
σ must be a function of z only. Thus

dσ

dz
= W (31)

and W is therefore also a function z only.
If we write

W = W (σ) (32)

where W (σ) is a function that we have chosen, then

z =

∫
dσ

W
(33)

giving us the relationship between W , σ and z.
The equilibrium in the normal direction is

2σH = W cosλ (34)

where λ is the slope of the shell, that is the angle between n and k.

2.5. Constant physical stress shell

The physical stress in a shell of thickness t is

σphysical =
σ

t
(35)

in units of force per unit area. Remember that σ is the membrane stress with
units force per unit length. The weight per unit surface area is

W = ρgt

where ρ is the density and g is the acceleration due to gravity (not to be
confused with the geometric quantity with the same symbol).

Thus
σphysical
ρg

=
σ

W
(36)
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and therefore if the ratio σphysical/ρ is constant,

σ

W
= −a (37)

in which a is a constant with units of length. The minus sign is to give us a
negative σ corresponding to compression when W and a are positive.

Then
dσ

dz
= −σ

a
(38)

and therefore the thickness,

t = t0 exp

(
z0 − z
a

)
. (39)

The shape of the shell is given by

2aH + cosλ = 0 (40)

in which H is negative for a dome-like shell.

2.6. Weight per unit area a linear function of z

If
W = W0 +Q (z0 − z) (41)

where Q is a constant, then

σ = σ0 −
W 2 −W 2

0

2Q
, (42)

unless Q = 0 in which case W is a constant and

σ = σ0 −W (z0 − z) . (43)

We will focus our attention on the case when

σ0 = −W
2
0

2Q
(44)

so that

σ = −W
2

2Q
(45)
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and
σ

W
= −W0

2Q
− 1

2
(z0 − z) . (46)

The membrane stress is proportional to the thickness squared, rather than
just the thickness as in the previous section. This is justified by the following
reasoning. Even though we try and design shells to work by membrane action,
they need bending stiffness to resist buckling and also to resist non-funicular
loads, that is loads which excite possible inextensional modes of deformation
as analysed in Lord Rayleigh’s 1890 paper on the oscillation of bells [17].

We know that the linear buckling theory of shells can give extremely
optimistic results, but the Zoelly and Van der Neut formula [18] tells us that
the linear buckling load of a spherical shell of given radius is proportional
to the square of the thickness. This is because buckling involves bending
stiffness as well as membrane stiffness [19]. Clearly non-linear buckling is
also influenced by both bending and axial stiffness.

Figure 1: Cross-section through shell of revolution with constant physical stress

2.7. Shells of revolution

In cylindrical polar coordinates a shell of revolution is described by z =
z (r) and the slope λ and arc length along the cross-section s are related to
r and z by dr/ds = cosλ and dz/ds = sinλ.
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Figure 2: Cross-section through shell of revolution with constant physical stress and oculus

The mean curvature is

H =
1

2

(
dλ

ds
+

sinλ

r

)
(47)

and therefore equation (34) becomes

dλ

ds
= 2H − sinλ

r
=
W

σ
cosλ− sinλ

r
(48)

in which W/σ is a known function of z. There is an analytic solution to
this equation for the case when W = 0, the catenoid minimal surface, r =
c cosh (z/c).

There is also the cone
σ

W
=
z

2
(49)

which satisfies (31) and produces

0 =
dλ

ds
=

2

z
cosλ− sinλ

r
(50)

so that
λ = tan−1

(√
2
)

= 54.7◦. (51)
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Figure 3: Cross-section through shell of revolution with σ/W 2 = constant

For other cases we can integrate numerically by marching along the curve
using equation (48) from a starting point with given r, z and λ.

Figures 1 and 2 show the uniform physical stress shell, σ/W = constant,
while figures 3 and 4 show the σ/W 2 = constant shell. In each case there is
the possibility of a shell closed at the top or a shell with an oculus surrounded
by a catenoid-like section. Figure 3 shows a 54.7◦ slope cone in red.

Equation (48) naturally wants to form an oculus because dλ/ds will tend
to infinity if r → 0 unless the initial conditions are such that sinλ → 0 as
r → 0.

If there is no oculus, the radius of curvature at r = 0 is equal to 2σphysical/(ρg).
If we take ρg to be 20kN/m2 and σphysical to be 10MPa for a typical masonry,
then we have a radius of curvature of 1000m, showing how efficient shell
structures could be.

3. Application of the finite element method

In this section we describe an example of the solution of the equations
using the finite element method. It is included to give an indication of the
sort of forms that can be derived using an isotropic stress shell. However,
because techniques for the numerical form finding of tension structures by
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Figure 4: Cross-section through shell of revolution with σ/W 2 = constant and oculus

modelling a soap film using the finite element method are well established
[20], we will not describe the approach in detail.

These techniques usually use flat triangular shape functions in which the
degrees of freedom are the nodal coordinates. The area of a triangle is half
the base times the height and the strain energy is the surface tension times
the area. Hence upon differentiating the strain energy with respect to the
degrees of freedom, the forces that a triangle exerts on its nodes are equal
to the surface tension times half the length of the opposite side acting in the
direction perpendicular to the side [20].

A compression shell is an inverted hanging membrane and figure 5 shows
a shell with uniform physical stress that is partly supported by the horizontal
ground and partly by a weightless, momentless arch. A weightless arch could
by physically realized by a concrete arch forming the edge of a weak masonry
shell in which the arch has the same weight per unit area as the masonry.
The arch could be prestressed in compression using flat jacks to ensure strain
compatibility. Note that the slope of the shell is almost vertical near the
scalloped edge. This is difficult to achieve using techniques which project
the shell surface onto a horizontal plane [5, 7, 8].

The outer boundary is formed by the equation r = r0 (1 + 0.15 cos (6θ))
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Figure 5: Plan, elevation and cross-section of constant stress shell found using the finite
element method (the red line is where the shell is cut by the section while the blue is the
edge of the arch)

in polar coordinates. The other boundaries are the inner arch and two radial
lines at an angle 2π/3 with a ratio of inner to outer radii of 5.23. The shape
of the shell is fixed by these parameters together with the ratio of load to
membrane stress and the length of the arch.

The differential equation corresponding to uniform physical stress (40)
was solved using quadrilateral finite elements which were simply formed from
two triangles joined along the diagonal of each quadrilateral. Element sym-
metry was ensured by splitting each quadrilateral two ways using both diag-
onals and averaging the values.

The equations were solved using Dynamic Relaxation [20]. This is an
explicit method, which means that we do not need to formulate the stiffness
matrix, and since this is a non-linear problem we cannot use the stiffness
matrix to evaluate nodal forces. The stiffness matrix involves the second
derivatives of the strain energy with respect to the degrees of freedom and
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these are only constants for a linear problem. The equivalent nodal forces
come from the first derivatives of the strain energy and these can only be
obtained from the second derivatives if the second derivatives are constants.

We have only one differential equation and this controls the shape of
the shell by forces in the normal direction. Nodes are free to float over the
surface in very much the same way as the molecules of a real soap film. We
need two more conditions to control nodal positions and one could be that
one set of element edges form contour lines. Other possibilities include an
equal mesh Chebyshev net or a geodesic coordinate system whose constant
spacing could be relevant to laying masonry in courses. However, in this
case the nodal positions were simply controlled by giving the element edges
a constant tension coefficient or force density, that is force divided by length.
The component of these forces was removed from the normal direction.

4. Numerical form finding using a system of particles

4.1. Theory

We shall now investigate the use of a particle method to solve the equa-
tions developed in Section 2. The particle method is much less computa-
tionally efficient than the finite element method, but is of some theoretical
interest.

The method is based upon techniques developed for smoothed particle
hydrodynamics [21, 22]. This is a mesh-free Lagrangian technique used for
computational fluid dynamics, particularly in the film industry. The particles
represent fluid particles and apply pressure and viscous forces to their near
neighbours. Similar methods can also be used for solid mechanics and Silling
[23] has coined the term peridynamics for the technique. However a soap film
is more a fluid than a solid and so our treatment is more like that of smoothed
particle hydrodynamics in that links between particles are continuously being
formed and broken.

Consider a system of fluid particles in surface. The mass of the ith particle
is mi and its position is defined by the position vector ri which is a function
of time. Let us suppose that there is a tension in the ‘link’ joining the ith

and jth particles equal to

Tij =
Cijmimj

a3
f
(rij
a

)
(52)

where
rij = |ri − rj| (53)
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and Cij is a quantity with units force times length cubed over mass squared.
a is a constant with units of length and f (rij/a) is some function which
decreases with the separation rij to such an extent that only neighbouring
particles interact.

Consider a uniform virtual membrane strain ε (not to be confused with
the permutation pseudotensor). The virtual work associated with the ith

particle is
ε

2

∑
j

(Tijrij) (54)

in which the factor of 1
2

is there because each link is shared by two particles.
If the surface tension in the surface to be modelled is σ, the virtual work

per unit area is 2σε in which the 2 is there because the area strain is 2ε.
Thus the virtual work per unit mass is

ε

2mi

∑
j

(Tijrij) =
2σε

µ
(55)

in which µ is the mass per unit area.
Thus

σ

µ
=

1

4mi

∑
j

(Tijrij) =
1

4a2

∑
j

[
Cijmjrijf

(rij
a

)]
. (56)

We have large number of particles and therefore we can replace the summa-
tion by an integral so that,

σ

µ2
=

1

4a3

∫
Crf

(r
a

) dm
µ

=
1

4a3

∞∫
r=0

Cf
(r
a

)
2πr2dr (57)

in which C is the value of Cij in the neighbourhood. If we scale f () such
that

∞∫
u=0

f (u) 2πu2du = 2, (58)

then
C = 2

σ

µ2
. (59)
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However σ/µ2 will usually not be constant. Thus we could, for example,
write

Cij =
σi
µ2
i

+
σj
µ2
j

, (60)

provided that we have an expression for the surface tension associated with
the ith particle, σi, as a function of the corresponding mass per unit area,

µi =

∑
j

(mjF (rij/b))

∞∫
r=0

F (r/b) 2πrdr

=

∑
j

((mj/b
2)F (rij/b))

∞∫
r=0

F (r/b) 2π (r/b2) dr

=

∑
j

((mj/b
2)F (rij/b))

∞∫
u=0

F (u) 2πudu

.

(61)
F (r/b) is a weighting function and b is a constant length which would usually
be set equal to a. This formula is based upon the idea that the integral of
the mass per unit area over area is equal to the total mass.

Figure 6: Shell with no load, compared with the catenoid in black

Again it makes sense to scale F () so that

∞∫
u=0

F (u) 2πudu = 1 (62)

in which case
µi =

∑
j

(mj

b2
F
(rij
b

))
. (63)
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It is conventional in smoothed particle hydrodynamics to set

f (u) = −F ′ (u) (64)

and this is consistent with our analysis because then

1 =
∞∫

u=0

F (u) 2πudu = [F (u) 2πu2/2]
∞
u=0 −

∞∫
u=0

F ′ (u) πu2du

= −
∞∫

u=0

F ′ (u) πu2du =
∞∫

u=0

f (u) πu2du
(65)

The numerical experiments described in the next section used

F (u) =
e−u

2

π
(66)

and
∞∫

u=0

F (u) 2πudu =

∞∫
u=0

e−u
2

2udu = −
[
e−u

2
]∞
u=0

= 1 (67)

as required.
We also have

f (u) =
2ue−u

2

π
(68)

and therefore the force between adjacent particles is zero if rij = 0.

4.2. Results: numerical particle examples

Figure 6 shows a shell with no load compared with the catenoid in black.
The analysis has 27,000 particles and the radius of influence of each particle is
such that each particle interacts with approximately 12 neighbours. Figure 7
is a loaded shell with constant physical stress so that σ/µ2 in equation (56) is
proportional to 1/µ. In this case there are 75,000 particles and each particle
interacts with approximately 25 neighbours.

In each case only half the shell is drawn so that the particles on only one
side are seen. Particles near the line of symmetry are drawn in red in figure
7 to show the shape of the cross-section which should be compared with part
of figure 2.

The shapes were found using Dynamic Relaxation [20] which is essentially
the same as Verlet integration [24]. In each cycle the force between each

17



Figure 7: Loaded constant physical stress shell

pair of interacting particles is calculated and hence the resultant force on
each particle, including the own weight when appropriate. The increment in
particle velocity would normally be the resultant force divided by the particle
mass times the time step, but we describe below how this was modified to
ensure stability. The increment of displacement is the updated velocity times
the time step. The time step and damping were chosen by trial and error since
the best values are difficult to predict by purely theoretical considerations.

Smoothed particle hydrodynamics is stable because pressure increases
with density, and as noted in the introduction a soap film can only be stable
if its surface tension increases as it gets thinner, that is if σ/µ2 is inversely
proportional to at least µ3. Numerical experiments were conducted trying to
model this behaviour, but with limited success.

It was therefore decided to allow the membrane stress to increase with
mass per unit area area - which is what we want for the constant physical
stress shell when loaded by gravity. This gives us two possibilities:

Tension surface which is unstable within its own plane and stable out of
the plane.

Compression surface which is stable within its own plane and unstable
out of the plane.

In fact the two approaches are essentially the same, in the stable direction
particles are moved in the direction of the out of balance force while in the
unstable direction they are moved in the opposite direction to the out of
balance force. This was done as follows. The symmetric second order tensor

Qi =
1

mi

[4Pi − tr (Pi) I] (69)

in which

Pi =

∑
j

[mj [(ri − rj) (ri − rj) /a
2] f (rij/a)]∑

j

[mjf (rij/a)]
(70)
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and I is the unit tensor was evaluated for each particle in each cycle. Two
of the principal directions (or eigenvectors) of Pi will approximately lie in
the local plane of the surface and the corresponding principal values (or
eigenvalues) will be positive and approximately equal. The third principal
direction will be approximately normal to the surface and the corresponding
principal value will be approximately zero.

Thus the two tangential principal values of Pi will be approximately
(1/2) tr (Pi) and therefore the three principal values of Qi will be approx-
imately tr (Pi) in the two tangential directions and −tr (Pi) in the normal
direction.

Hence if we multiply the out of balance force by Qi we will automatically
move a particle in the correct direction for a compression surface. For a
tension surface we simply change the sign of Qi.

The amount of motion per iteration is also controlled by the time step
and the amount of damping in the Dynamic Relaxation, which were chosen
by trial and error.

We have replaced Newton’s second law ai = fi/mi (where ai and fi are
the acceleration and resultant force upon the ith particle) by

ai = Qi · fi (71)

and so Qi is the ‘reciprocal of inertia tensor’. It is perhaps unsatisfactory
to introduce a concept which does not have any obvious physical meaning in
real dynamics, but we are only interested in using fictitious dynamics to find
a stable static solution. A real soap film manages to be stable in both the
normal and tangential directions and hence exhibits both the characteristics
of tension and pressure. In reality the soap film has a real thickness with
internal pressure and an apparent surface tension in its two bounding surfaces
caused by attractive forces. Thus to properly simulate a soap film using
particles it may be necessary to have sufficient particles to model this truly
three dimensional behaviour.

The boundary conditions were very simple. The catenoid in figure 6
started as a circular cylinder contained within a cylindrical ‘can’ with ends.
The velocity of any particle which moves outside the can is reversed in direc-
tion, vertically and / or radially. Thus the particles simply ‘bounce off’ the
wall and ends and this produces the concentration and layering of particles
where the lid and bottom meet the wall. There are no special boundary
particles and this technique will work for tension or compression surfaces.
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Figure 8: Frei Otto eye

It works for tension surfaces because then particles move in the opposite
direction to out of balance forces in the tangential direction.

Figure 9: Frei Otto eye - physical model

The boundary conditions are similar for the loaded shell in figure 7, except
for the addition of a ‘ball’ centred at the middle of the bottom. The initial
shape was a parabola rotated around the axis.

Figure 8 shows an unloaded soap film supported by a Frei Otto eye, a
loop of cotton attached to a fixed point. In this case each particle interacts
with approximately 10 particles and there are a total of 19,000 particles. The
outer boundary is the bottom of a ‘can’ and the cotton is simply modelled as
ordinary soap film fluid particles (shown in red on figure 8) linked by short
lengths of cotton modelled by elastic links. These particles are permanently
attached to the cotton.
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Figure 10: Frei Otto eye - principal curvature net

Figure 8 can be compared with the physical model in figure 9 and with fig-
ure 10 which shows the principal curvature net on the minimal surface found
using the method described in [25]. The tension in the cotton means that
its curvature vector must lie in the local plane of the surface and therefore
it must be in an asymptotic direction on the surface. Since there is no shear
stress in the surface, the tension in the cotton is constant and therefore the
magnitude of its curvature, that is the geodesic curvature, must be constant.
The outer boundary of the soap film in figure 10 is contained within a sphere
within which the soap film is free to slide. This means that the soap film is
normal to the sphere and therefore there can be no twist along the edge so
that the outer boundary is a principal curvature direction.

5. Conclusions

In this paper we have discussed the use of a variable isotropic membrane
stress for the form finding of shell structures. The solution of the resulting
equations was done firstly using the finite element method, and secondly
using a particle method similar to smoothed particle hydrodynamics.

The particle method is very much less efficient, but does avoid the neces-
sity of generating a grid. It is also nearer to a true physical analogue and may
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have other applications. It should be possible to model a soap film without
introducing the reversal of movement associated with negative stiffness as
implemented by the ‘reciprocal of inertia tensor’ which implies that particles
have an ‘intelligence’ not associated with real molecules.
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