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When both gravity and surface tension effects are
present, surface solitary water waves are known to
exist in both two- and three-dimensional infinitely
deep fluids. We describe here solutions bridging
these two cases: travelling waves which are localised
in the propagation direction and periodic in the
transverse direction. These transversally-periodic
gravity-capillary solitary waves are found to be of
either elevation or depression type, tend to plane
waves below a critical transverse period and tend
to solitary lumps as the transverse period tends
to infinity. The waves are found numerically in
a Hamiltonian system for water waves simplified
by a cubic truncation of the Dirichlet to Neumann
operator. This approximation has been proven to be
very accurate for both two- and three-dimensional
computations of fully localised gravity-capillary
solitary waves [23]. The stability properties of these
waves are then investigated via the time evolution of
perturbed wave profiles.

1. Introduction
Gravity-capillary waves are of interest because they
affect energy, momentum [13] and material fluxes
through the sea surface [6], and because the initial
generation of waves by wind is predominantly in the
gravity-capillary regime (λ∼ 1cm) [25]. The study of
nonlinear waves and their dynamics in this regime
can therefore lead to increased understanding of these
phenomena. In this paper we consider the problem of
travelling nonlinear gravity-capillary waves localised in
the propagation direction and periodic in the transverse
direction on an ideal fluid of infinite depth. The latter
approximation is physically appropriate even in water
only a few centimetres deep, given the waves’ small
horizontal length scales compared to depth.
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There has been extensive work on solitary gravity-capillary waves in both two- and three-
dimensional flows. For a two-dimensional fluid domain (corresponding to a one-dimensional
free surface and henceforth denoted as the “1D problem”), the first numerical study of gravity-
capillary (GC) solitary waves in deep water was by Longuet-Higgins [12] who computed the
wave profiles of a branch of GC solitary waves (so-called depression waves) from the full Euler
equations. These solitary waves bifurcate from linear waves at the finite wavenumber where the
phase speed is a minimum, or, equivalently, when phase and group speeds are equal. Since
they bifurcate at finite wavenumber, the solitary waves have oscillatory tails and appear as
steadily travelling wave packets at small amplitude. More extensive numerical computations
were carried out [22] [8] completing the bifurcation diagram, and finding another branch: that
of elevation solitary waves. The longitudinal stability of these two branches was studied using
a numerical eigenvalue analysis by linearizing about these states in [4] showing that, for small
amplitude, depression waves are stable and elevation waves are unstable. The evolution of these
instabilities, together with computations of solitary wave collisions, were confirmed in direct
numerical simulations of the full equations in [16].

For a three-dimensional fluid domain, fully localised 2D steadily travelling waves, often called
lumps, were first computed in the fluid equations by Părău et. al. [18], with related work in
[10], [14] and [2] on reduced models. These localised states are predicted to be unstable at
small amplitude based on the behaviour of the two-dimensional focussing nonlinear Schrödinger
equation which approximates these solutions (see below). More extensive computations of lump
solutions and their evolution within an accurate approximation of the Euler equations (which is
the same model used here) indicate that certain finite amplitude lumps are stable [23].

The transverse instability of plane solitary waves (1D solitary waves trivially extended in the
transverse variable) was first considered in this context in [11] using a long wave analysis, then
numerically on a Kadomtsev-Petviashvilli (KP) type deep water model in [2] and on an accurate
approximation to the Euler equations in [23]. Plane solitary waves are unstable for sufficiently
long disturbances in the direction transverse to the propagation direction. In this paper we point
out that coinciding with that instability is the emergence of a new branch of solutions, which
we call transversally periodic plane solitary waves. These solutions are localised in the direction of
propagation and periodic transversal to that direction. The study of these solutions, which are a
bridge between plane waves and lumps, and their stability, through the computation of the time
dependent evolution of perturbed waves, are the subject of this work. We note that the existence
of transversally periodic plane solitary waves in the shallow water regime was proven by [9] but,
to our knowledge, no such proof exists in infinite depth.

The paper is structured as follows: in §2 the classical water wave problem is presented together
with its relation to the Nonlinear Schrödinger (NLS) equation. We then discuss a few results and
properties of the NLS equation central to the study of GC solitary waves. In §3 the Hamiltonian
truncation that we use is derived. In §4 we describe the transversally periodic profiles and
bifurcation curves in parameter space. The stability of the waves as a perturbed initial value
problem is examined in §5.

2. Formulation and the Nonlinear Schrödinger equation
Consider an ideal fluid under the influence of gravity in a three-dimensional domain of infinite
depth and infinite horizontal extent, with a free-surface subject to capillary forces. Let (x, y)

denote the horizontal plane, z the vertical direction and t time. The flow is assumed irrotational,
and therefore there exists a potential function φ, such that the fluid velocity field (u, v, w) =

(∂xφ, ∂yφ, ∂zφ). Denoting the displacement of the water surface by z = η(x, y, t), the governing
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equations read

∆φ+ φzz = 0 z < η(x, y, t)(
φx, φy, φz

)
→ 0 as z→−∞

ηt + ηxφx + ηyφy − φz = 0 at z = η(x, y, t)

φt +
1
2

[
φ2x + φ2y + φ2z

]
+ gη= σ

ρ∇ ·
[

∇η√
1+|∇η|2

]
at z = η(x, y, t)

(2.1)

where ∇= (∂x, ∂y)
> is the horizontal gradient operator, ∇· is the corresponding horizontal

divergent operator, and ∆= ∂xx + ∂yy . The constants g, ρ, σ are the acceleration due to gravity,
the fluid density and the coefficient of surface tension respectively. One may set these constants
to one by using the space and time scales implied by the balance of surface tension and gravity as
in [23].

The focussing cubic nonlinear Schrödinger (NLS) equation is central to understand the
existence of GC solitary waves and some of their stability properties. These results are
summarised below in the context of the current problem. NLS-based results are limited, however,
by the fact that the equation describes only the small-amplitude envelope of the solitary wave and
hence fails to capture some essential features captured by more “primitive” models such as the
Hamiltonian truncation introduces in §3.

The derivation of the equation is standard [21] and follows from assuming that the free surface
displacement and the potential have the prescribed asymptotic form of a slowly modulated
sinusoidal carrier wave of wavelength 2π/k

η(x, y, t) ∼ 2Re
[
εA(X,Y, T )eik(x−cp(k)t)

]
+ ε2η2(x, y, t) + . . . , (2.2)

φ(x, y, z, t) ∼ 2 Im

[
ε
ω

|k|A(X,Y, T )e
|k|zeik(x−cp(k)t)

]
+ ε2φ2(x, y, z, t) + . . . . (2.3)

Here, ω(k) and cp(k) = ω/k are, respectively, the frequency and phase speed, X = ε(x− cgt) is
the slow modulation variable in the propagation direction, cg = dω

dk is the group speed, 4εA is the
local crest-to-trough amplitude, Y = εy is the slow variable in the transverse direction, T = ε2t

a long timescale and ε� 1 is a small parameter proportional to the ratio of the wavelength to a
typical modulation length scale. The governing equation for the amplitude modulation is found
by substituting (2.2-2.3) into (2.1) and ensuring that the solution is asymptotically valid up to
order ε3. This results in the 2D NLS equation

i AT + λ1 AXX + λ2 AY Y = µ
∣∣A∣∣2A, (2.4)

The coefficients λ1, λ2 and µ are functions of k, the carrier wavenumber. The dispersion relation,
or equivalently, the phase speed cp(k) is given by the solutions to the linearization of (2.1) about
a quiescent state and is

c2p(k) =
1

|k| + |k|.

The phase speed has a minimum at k= 1, a condition implying that phase and group speed
are equal and therefore the solution (2.2) corresponds to an approximate travelling wave which
translates without changing its shape. Under these condition, one finds that

cp =
√
2, λ1 =

√
2

4
, λ2 =

√
2

2
, µ=−11

8

√
2,

and therefore the 2D NLS equation is of the so-called focussing type, i.e. with λ1µ, λ2µ< 0.
The focussing nomenclature arises from nonlinear optics, where the spatial Laplacian (λ1 = λ2)
describes the effect of converging rays for an almost planar wavefront in three-dimensional space.

The well known solitary wave solution of the 1D NLS ((2.4) with λ2 = 0): A= a sech(κX)eiΩT

with Ω =− 1
2µa

2, κ= (−µ/2λ1)1/2 a, approximates the envelope of the small amplitude plane
solitary waves in the Euler equations [16]. The existence of transversally periodic solutions for NLS
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is discussed in [3] where eigenstates of the cubic focussing NLS are obtained by settingA= ρeiΩT

and rescalingX,Y, ρ such that one may take λ1 = λ2 = 1 and µ=−1. This results in the nonlinear
eigenvalue problem: 

ρXX + ρY Y − ρ+ ρ3 = 0

ρ(X,Y + l) = ρ(X,Y ),

limX→±∞ ρ(X,Y ) = 0.

(2.5)

In these variables, the plane soliton solution is given by ρ0(X) =±
√
2 sech(X). In [3] it is shown

that for the problem (2.5), there exists a one-parameter family of solutions ρl(X,Y ) for∞> l >

2π/
√
3 which degenerate to the plane soliton solution as l ↓ 2π/

√
3, and as l tends to infinity,

become a fully localized solution with circular symmetry. This solution is the Townes’ soliton,
the ground state of unbounded cubic NLS, first discovered in the nonlinear optics context [5]. It
was shown in [23] to approximate the envelope of fully localised lumps of the GC problem first
computed in [18]. Given that both limiting cases of this NLS solution branch have counterparts in
the GC problem, we should also expect the intermediate cases (i.e. transversally periodic solitary
waves) in the full GC problem.

The threshold wavelength 2π/
√
3 for the new branch of solutions can be obtained using a

simple linear eigenvalue problem arising from a perturbation of the plane wave. Substituting the
ansatz ρ=

√
2sech(X) + αf(X) cos(kY ) into the system (2.5) and linearizing it with respect to

the perturbation parameter α, one obtains:

f ′′ + 6 sech2(X) f = (1 + k2) f, lim
X→±∞

f(X) = 0 (2.6)

This eigenvalue problem can be solved by introducing the transformation µ= tanh(X) (see [1],
pp.31), which results in the Legendre equation

(1− µ2) d
2f

dµ
− 2µ

df

dµ
+
(
n(n+ 1)− 1 + k2

1− µ2
)
f = 0, (2.7)

with n= 2. Equation (2.7) has two distinct eigenvalues which satisfy
√
1 + k2 = 1 and√

1 + k2 = 2. The second eigenvalue gives the critical wavelength k=
√
3 and the corresponding

eigenfunction f = sech2(X) in the original coordinates.
Unsteady solutions to the NLS equation (2.4) may also be used to predict instabilities of both

the plane solitary wave and the fully localised Townes’ soliton. Linear stability analysis of the
plane solitary wave within (2.4) (see [19]) shows that a transverse perturbation with spanwise
wavenumber KY is unstable when the perturbation is sufficiently “long”, that is,

0 < KY 6

√
3

λ2
, Kc (2.8)

This threshold coincides with the limiting wavelength of the steady nontrivial periodic state,
discussed above. Furthermore, the wavenumber Kc can be used to approximate accurately
a numerically verified critical wavenumber kc , εKc for the transverse instabilities in more
primitive KP type model equations of GC waves [2] and in the full problem [23]. In these
papers, numerical computations show the unstable plane solitary waves focussing primarily
in the transverse direction and ultimately evolving (after some dispersive radiation) into
more complicated structures. These resulting structures are localised “lump” solitary waves
or breathers when ky , the transverse perturbation wavenumber, is small enough, and are
transversally periodic unsteady structures when ky is nearer kc. In this latter case, numerical
experiments in [23] showed that waves resultant from the instability were still localised in
the propagation direction, but appeared to be time-periodic oscillations around a transversally
periodic steadily travelling state. This is further indication that we should expect in the full GC
problem steadily travelling free surface profiles, localised in propagation direction and nontrivially
periodic in the transverse direction.
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Localised steady states such as the Townes’ soliton are also unstable within the 2D NLS. A
virial argument (see §5) shows this, and that certain perturbations are sufficient for a focussing
singularity to occur in finite time. The instabilities have been confirmed numerically also in model
equations of GC waves [2] and in the full problem [23]. However, these computations do not
point to the formation of singularities as does NLS. The focussing instability is arrested with the
formation of apparently stable oscillatory breather-like structures. In addition to these breathers,
steadily travelling larger amplitude “lumps" were also found and observed to be stable.

In what follows we complete the picture of CG travelling structures in the GC problem by
numerically computing the transversally periodic states from their emergence at kc to their
limiting lump configuration. We discuss both small amplitude cases where the waves’ envelopes
are well described by the NLS equation and larger amplitude solutions, which differ considerably
from those. The stability of the computed structures is tested through time evolution of perturbed
initial states.

3. Hamiltonian Formulation and Truncation
In this section we sketch the reformulation of the water wave problem into Hamiltonian form
(first introduced by Zakharov [24] ) and present the truncated approximation that we shall use
subsequently in the paper. The principal ingredients are the introduction the surface potential
ξ(x, y, t), φ(x, y, η(x, y, t), t) and the (scaled) Dirichlet to Neumann operator

G(η) ξ ,
√

1 + (∇η)2 φn.

A Dirichlet to Neumann operator maps Dirichelet data ξ to the normal derivative of φ,
φn(x, y, η(x, y, t), t) on the free surface given a particular fluid domain defined by η(x, y, t). It
is a nonlocal operator, linear in ξ and nonlinear in η, that could in principle be evaluated by
solving for the velocity potential φ(x, y, z, t) in the the entire domain given Dirichelet data and
then computing its normal derivative on the free boundary. Instead of this, we shall use an
expansion of this operator about G0, the easily found form for a horizontal free surface [7]. In
fluid dynamics terms, the Dirichelet to Neumann operator can be thought of as a inducing a map
between the tangential and normal velocities at the free surface. The scaling factor of

√
1 + (∇η)2

arises from the kinematic boundary condition whereby

ηt =
(
φz −∇η · ∇φ

)
z=η

=
√

1 + (∇η)2 φn

Henceforth, we shall use the term “Dirichlet to Neumann operator” to mean the operator that
includes this scaling.

The Hamiltonian, which is the total physical energy of the system, can be expressed as

H[η, ξ] =
1

2

∫
dxdy

∫η
−∞

(
φ2x + φ2y + φ2z

)
dz +

1

2

∫
η2 dxdy

+

∫ (√
1 + η2x + η2y − 1

)
dxdy

=
1

2

∫ [
ξG(η)ξ + η2 + 2

(√
1 + η2x + η2y − 1

)]
dxdy (3.1)

In the expression above the first term is the kinetic energy of the fluid, the second term is the
gravitational potential energy and the last term is the surface energy due to capillary effects. The
evolution of the system is given by the kinematic and dynamic boundary conditions (the last
two equations in (2.1)) which can be obtained from the variational derivatives with respect to the
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canonically conjugate variables ξ and η:

ηt =
δH
δξ

= G(η)ξ (3.2)

ξt =−
δH
δη

=
1

2(1 + |∇η|2)

[
(G(η)ξ)2 − |∇ξ|2 + 2(G(η)ξ)∇ξ · ∇η

−|∇ξ|2|∇η|2 + (∇ξ · ∇η)2
]
− η +∇ ·

[
∇η√

1 + |∇η|2

]
(3.3)

This formulation reduces the three-dimensional problem to a two-dimensional one, but with the
complication of introducing the nonlocal and unknown Dirichlet to Neumann operator.

A simplification arises by writing the Dirichlet to Neumann operator using an expansion
G(η) =

∑∞
i=0Gi(η), where Gi is of degree i in η. For infinite depth, the first three terms of the

series are given by [7]

G0(η) =
(
−∆

)1/2
,

G1(η) =−G0 · ηG0 −∇ · η∇,

G2(η) =
1

2
∆η2G0 +

1

2
G0η

2∆+G0ηG0ηG0.

G0 is the Dirichelet to Neumann operator for a half-space in R3. It is most easily evaluated
in Fourier space since the solution to Laplace’s equation can be written as φ̂(x, y, z, t) =

e|k|zφ̂(x, y, 0, t) where ·̂ denotes the Fourier transformed function and k= (kx, ky) are the
Fourier transform variables. Therefore, φ̂n = φ̂z(x, y, 0, t) = |k|φ̂(x, y, 0, t) = |k|ξ̂, showing that
the Fourier symbol of G0 is |k|, which can be taken as the definition of (−∆)1/2.

Here, we approximate the Hamiltonian using a three-term truncation of G which has been
previously verified numerically for accuracy in [23]. Thus,

H =
1

2

∫ [
ξ
(
G0 +G1 +G2

)
ξ + η2 + 2

(√
1 + η2x + η2y − 1

)]
dxdy +O

(
|η|3|ξ|2

)
(3.4)

, HT +O
(
|η|3|ξ|2

)
, (3.5)

and we now use HT and take variational derivatives as in (3.2) and (3.3), to obtains a simpler
system, used in the remainder of the paper, for the evolution of free surface displacement and
surface potential:

ηt −G0ξ =
(
G1 +G2

)
ξ (3.6)

ξt + (1−∆)η =
1

2

[(
G0ξ

)(
G0ξ − 2G0ηG0ξ − 2η∆ξ

)
− |∇ξ|2

]

+∇ ·

 ∇η√
1 +

∣∣∇η∣∣2 −∇η
 (3.7)

Similar truncations have been used in the past, first by Craig & Sulem [7] for the numerical
simulation of pure gravity waves, and for example in [17], where this method was first used
to seek travelling waves. The present formulation, however, differs importantly from prior cases
where the truncation of Dirichlet to Neumann operator was made in the primitive equations
(3.2) and (3.3) instead of the Hamiltonian (3.1), leading to a difference in the kinematic evolution
equation and a loss of Hamiltonian structure. For GC waves the Hamiltonian model (3.6-3.7)
agrees remarkably well with the full potential equations for the bifurcation curves, wave profiles
and the dynamics of solitary waves for a two-dimensional fluid domain, and with higher-order
truncations of the Hamiltonian in three dimensions [23]. In the next section we make a brief
comparison between the Hamiltonian truncation and the truncations of the primitive equations
(such as those in [7] and [17]).
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Finally, we note that a fourth order Hamiltonian truncation, leading to evolution equations
accurate to cubic order, is the lowest order model that can capture effects also captured by NLS
(which is itself cubic). Indeed the NLS equation that can be derived from (3.6-3.7) is identical
to the one derived from the full equations (2.1). However, the model (3.6-3.7) contains far
more dynamical effects (for example, all resonant triads and quartets are captured exactly) and
should thought of as a good approximation to the full potential flow equations up to moderate
amplitudes [23].

In the following section we describe travelling wave solutions to the fluid system (3.6)-(3.7)
using, in part, the NLS solutions of §2 to construct approximate initial guesses at small amplitude.

4. Travelling waves
The small amplitude 1D CG problem in the Euler equations has “elevation” and “depression”
travelling solitary waves corresponding to whether the midpoint of the (symmetric) wave is
above or below the mean free surface elevation [22]. This feature is not predicted by the 1D NLS
equation, as it describes only the envelope of the wave, and elevation and depression waves
differ by π in the relative phase between the envelope and the carrier wave. In fact, the NLS
equation predicts a continuous family of waves with arbitrary relative phase between 0 and π.
The transversally periodic solitary waves presented below are found to be also of elevation or
depression type (indicated by the sign of η(0, 0) in the figures). For the same reasons given above,
this could not have been predicted by the 2D NLS equation.

Steady solutions to equations (3.6-3.7) are sought in a frame of reference translating at an
unknown speed c in which the solution is steady. Assuming η and ξ are periodic functions of
x− ct and y with periodicity of L and 2π/ky respectively, we expand

η =

M∑
m=0

N∑
n=0

amn cos

(
m

2π

L
(x− ct)

)
cos(nkyy), (4.1)

ξ =

M∑
m=0

N∑
n=0

bmn sin

(
m

2π

L
(x− ct)

)
cos(nkyy), (4.2)

with a00 = b00 = 0. Inserting into (3.6)-(3.7), the resultant nonlinear algebraic system for the
Fourier coefficients and c is solved using Newton’s method. The nonlocal operator G0 and
derivatives are obtained by using the Fourier multipliers, while nonlinear terms are computed
pseudo-spectrally in physical space. The solution branches in the bifurcation diagrams are
computed using either c or ky as continuation parameters. L is fixed sufficiently large for the
solution to approximate a localised disturbance in x (this is checked by increasingL and observing
that the solution does not change appreciably). In most computations, 256× 64 grid points are
used along the propagating and transverse directions respectively. Two types of initial guesses
were used: either the fully localised solitary wave solutions found in [23] for which the period
in the y direction is gradually decreased (ky is increased) to obtain the periodic wave profiles, or
monochromatic waves modulated by the transverse-periodic solitons to the cubic NLS equation.

We begin with a comparison of the errors between solutions found using the different
truncations mentioned in §3 and those of the full potential flow equations for a one dimensional
free surface case (i.e. plane waves) where accurate solutions to the full equations are available
( [22], [16]). Figure 1 (left panel) shows two examples of the depression plane wave profile at
small and large amplitudes. Figure 1 (right panel) shows the relative maximum pointwise error
in the free-surface displacement for waves of depression, for a range of speeds. The solutions
were found using the Fourier method described above, simplified to one-dimension, for various
models: the fourth-order Hamiltonian truncation resulting in (3.6-3.7), a sixth-order Hamiltonian
truncation, and third- and fifth-order truncations of the primitive equations as proposed in [7]
and [17]. (From the symmetries of the problem odd-order truncations in the evolution equations,
and even order Hamiltonians are preferable.) It is clear that over a large range of wave speeds
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Figure 1. Left: cross sectional profiles of small and large amplitude plane waves. Right: relative error of various

truncation methods when compared to the full Euler equations. The present truncation (solid line) has errors below

1% over a broad range of amplitudes.

corresponding to a large range of amplitudes, the quartic Hamiltonian is approximately an order
of magnitude more accurate than the formally equivalent primitive equation cubic truncation.
Furthermore, higher order truncations of both types are far more delicate to use computationally,
and we were unable to make those solutions converge over the full range of speeds in the figure.

In Figure 2 a typical small amplitude depression solitary-periodic wave free-surface profile is
shown. This example corresponds to a wave near the secondary bifurcation shown in Figure 5. As
expected from their form as described by the NLS equation, they appear as a sinusoidal carrier
wave (evidenced by the fast oscillation in x of period approximately 2π corresponding to k= 1)
which is slowly modulated by an envelope of the form 2ε(sech(εx) + α sech2(εx) cos(εKyy))

where ε is a measure of the amplitude and α is a measure of the distance from the secondary
bifurcation point. Hence, the travelling waves have a fast oscillation decaying in the direction of
propagation and have a slow periodic modulation in the direction perpendicular to propagation.
Figures 3 and 4 show larger amplitude depression and elevation waves with the same transverse
modulation period as in Figure 2 (i.e. waves further along the secondary bifurcation branch
shown in Figure 5). These waves are more localised in space than the wave in Figure 2.
The principal difference between elevation and depression waves is that the former has two
pronounced troughs, whereas the latter has only one.

We now turn to bifurcation curves. Several parameters are used to show the solution branches:
the wave speed c, the transverse wavenumber ky , and three measures for the amplitude. The
amplitude measures are the free-surface displacement at the origin η(0, 0), which is traditionally
used as a bifurcation parameter ( [22], [18]), and two physical energies:

E(c, ky) =
1

2

∫π/ky
−π/ky

dy

∫∞
−∞

dx
[
ξ
(
G0 +G1 +G2

)
ξ + η2 + 2

(√
1 + η2x + η2y − 1

)]

and e(c, ky) =
ky
2πE. E is the total energy over a transversal period of the wave and e is the

average energy per transversal unit length. These energies are more useful amplitude parameters
than surface displacement as they yield stability information (see §5). Both energies are needed
because, in the limit of plane solitary waves, E is infinite but e is finite, whereas, in the limit of
fully localised waves, e is zero but E is positive.

The NLS equation may be used to predict the largest unstable transverse wavenumber as a
function of the amplitude of the plane solitary waves. Or, for a given transverse wavenumber,
the amplitude of the plane wave required for the onset of the secondary bifurcation at which
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Figure 2. Typical profile of a small amplitude transverse-periodic depression solitary wave. ky = 0.18, Energy =

6.7, c = 1.405, η(0, 0) =−0.305.
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Figure 3. Typical profile of a larger amplitude transverse-periodic depression solitary wave. ky = 0.18, Energy =

6.7, c = 1.392, η(0, 0) =−0.466. Note that this wave has the same energy and transverse period as that of

Figure 2. This wave is therefore to the left of the minimum of the speed-Energy curve and is stable (see §5), while

the wave in Figure 2 is unstable.
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Figure 4. Typical profile of a larger amplitude transverse-periodic elevation solitary wave. ky = 0.18, Energy =

13.18, c = 1.391, η(0, 0) = 0.218.
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transversally periodic solitary waves for ky = 0.18. The solid lines correspond to the plane waves of the system

bifurcating from c=
√
2. The dotted lines are the NLS predictions for these plane waves
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line corresponds to e= 0.19 and the dashed line to e= 0.24. The dotted lines corresponds to the plane solitary

wave. According to numerical experiments in §5, when subject to small perturbations of transverse periodicity

2π/ky , the waves to the right of the minimum are unstable and those on the left, stable.

transversally periodic waves arise. From the relations Kc = εkc =
√
3/
√
λ2 and ||η||∞ = 2εA,

kc =

√
33

32
||η||∞. (4.3)

This prediction is quite accurate for depression waves: in the cases shown in Figures 5 and 6,
kc = 0.095, ||η||∞ = |η(0, 0)|= 0.0982 and kc = 0.175, |η(0, 0)|= 0.174. For elevation waves, the
agreement is less good, for example, for the elevation branch in Figure 5, kc = 0.18, , |η(0, 0)|=
0.128.

Figure 5 shows the bifurcation diagram in the c− η(0, 0) plane for both elevation and
depression plane waves and transverse periodic waves at a fixed value of ky . If a ky is varied,
the location of the secondary bifurcation will slide along the plane wave branch. The curves for
the 1D NLS plane wave prediction are also shown for comparison. Note that (i) the transversally
periodic waves are a secondary bifurcation from finite amplitude plane waves and have speeds
strictly smaller than the speed at which planes waves bifurcate from the undisturbed state, c=

√
2

(which in turn is the minimum speed of linear GC waves); (ii) elevation and depression waves of
the same transverse period bifurcate at different speeds - a feature that is not accurately described
by the NLS approximation (4.3) which does not distinguish between elevation and depression
branches.

Figure 6 shows the solution curves for fixed energy density e in the ky − c plane for depression
waves. The dashed lines correspond to the plane wave at the same value of e. Note that the
branches are subcritical: near bifurcation, as the speed decreases, the wavenumber increases first
(i.e. there exists shorter transverse period waves of the same energy) before decreasing to zero in
the limit of fully localised waves (which are not shown in the figure since they have zero energy
density).

Figure 7 shows the bifurcation diagram at fixed ky in the E − c and e− c planes. The energy
density e, used on the left panel is appropriate to compare transversally periodic solutions to
plane waves (solid lines) whereas the total energy E over a period used on the right panel is
appropriate for comparison with fully localised “lump” solutions which always have finite total
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Figure 7. Bifurcation curves for depression and elevation transversally periodic solitary waves for fixed transversal

wavenumber ky . In both figures, dashed and dotted curves correspond to transversally periodic depression solitary

waves with ky = 0.18 and ky = 0.1 respectively. Circles correspond to transversally periodic elevation solitary

waves with ky = 0.18. Left: Energy density e versus speed. Solid lines with up and down triangles correspond to

plane solitary waves of elevation and depression respectively. The dash-dot line is the 1D NLS prediction for plane

waves. Right: Total energy per period E versus speed. Solid lines with up and down triangles correspond to fully

localised lump solitary waves of elevation and depression respectively. The square is the 2D NLS prediction of the

Townes’ soliton for which E = 12.04 [23].

energy (even at bifurcation) but zero energy density. The lump solutions are the lowest energy
state for all ky and speeds.

From these figures one can make the following conjectures about the stability of transverse
periodic solitary waves (when subject to perturbations of the same basic transverse period):
(i) elevation waves are unstable as their energy levels are much larger than depression ones.
(Some 1D large amplitude elevation plane waves are stable [4] but they are beyond the regime
considered here.) (ii) Depression waves are unstable near their bifurcation point as, for fixed
wavenumber, the energy of the wave decreases as the speed decreases. (iii) Depression waves
change stability at the minima of the speed-energy curves, and are stable to the left of the minima
(i.e. at lower speeds) in agreement with what is observed for lumps [23]. In addition, finite-
amplitude instabilities of plane waves occurring due to the subcritical nature of the bifurcation of
transversally-periodic waves (see Figure 6) are expected. Hence sufficiently large perturbations
with wavenumber larger than kc, will destabilise the plane wave, a feature not captured by linear
stability analysis. These conjectures are supported by the numerical experiments shown in the
following section.

5. Time-dependent solutions and stability
In this section the stability of transversally-periodic traveling waves is investigated through
numerical experiments of the time-dependent equations. While the results in this section are
only show a small number of dynamical experiments with particular initial conditions, our
observations are that the behaviour is qualitatively representative of the dynamics for a large
class of perturbations of travelling waves.

In all experiments presented, numerical time integration of the system (3.6-3.7) is performed
using a Fourier spectral method described in [23]. Briefly, defining p̂= η̂ + i|k|/L̂(k)ξ̂ where L̂=
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√
|k|(1 + k2), the system can be written as a single complex equation

p̂t + iL̂p̂= N̂ (p̂),

where N includes all the nonlinear terms. The system is now discretized using a finite set of
Fourier modes

p̂=

M/2∑
m=−M/2

N/2∑
n=−N/2

pmn(t)e
im 2π

Lx
xe
in 2π
Ly
y
,

and it is the the evolution of pmn(t) is computed. The linear evolution can be integrated exactly
see [15] for details) and the nonlinear terms N are computed in a combination of real and
Fourier space for efficiency. Half-mode de-aliasing is used in nonlinear terms throughout our
computations, and a fourth order Runge-Kutta scheme is used for time integration.

There are two relevant analytical results that guide the computations. First we may expect a
linear change of stability at extrema ofHT (c) (or equivalently E(c)) curve, a necessary condition
for the change of stability of a neutral mode arising from the translational invariance of the
problem [20]. The second result is the focussing or defocussing behaviour of NLS (see, for
example, [21]). This result has been proven only for fully localised data, and states that, for the
normalised NLS (2.4) with λ1 = λ2 = µ= 1, if the Hamiltonian

HN =

∫
|∇A|2 − 1

2
|A|4,

is initially negative, the solution will focus (i.e. |A|2 will concentrate while
∫
|A|2 is preserved)

to a singularity in finite time. For the opposite sign, the solution “defocusses”:
∫
(X2 + Y 2)|A|2

increases without bound, and the wave disperses away. The Townes soliton, and the transverse
periodic NLS solutions satisfying (2.5) have HN = 0 (where, in the case of transverse periodic
waves, is defined over a period).

Firstly, we consider initial conditions of the form

η = (1 + ε) η0(x, y, c) (5.1)

where η0 denotes the elevation or depression transverse periodic solutions found in the previous
section, and ε is a small parameter that determines the amplitude and sign of the perturbation.
Whilst a focussing argument similar to the one above has not been proven for the periodic case,
in our limited experiments the result holds qualitatively for depression solitary waves in the
small amplitude regime (i.e. solutions to the right of the minimum in the Figure 7). An example
of this is shown in Figure 8(a) where we tracked the maximum amplitude of the free surface
arising from perturbed initial data of the form (5.1). When ε > 0, and thereforeHN < 0, there is an
initial focussing instability resulting in large growth. What follows is a recurrent finite-amplitude
oscillatory travelling state: a transversally periodic breather type solution similar to those found
in the unbounded case by [23]. A typical example of such a recurrent state is shown in the bottom
two panels of Figure 9 which correspond to the minimum and maximum amplitude of a similar
state arising from a different instability. Using the same travelling solution η0, but taking ε < 0

yields the other curve in Figure 8(a). Now, the wave defocuses and the amplitude decreases in
magnitude until the periodic domain is filled with linear waves.

When η0 is chosen to have larger amplitude (i.e. solutions beyond the regime approximated
by the NLS and to the left of the minimum in Figure 7) the transverse periodic waves appear to be
numerically stable. This is shown in Figure 8(b) where, independently of the sign of ε, the solution
remains close to the original travelling wave.

All elevation transverse-periodic waves that we tested were unstable. A typical example of the
evolution of an elevation wave similar to that of Figure 4 perturbed as in (5.1) is shown in Figure
9. The solution which initially has two deep troughs (see Figure 4) experiences an instability
whereby the rear trough deepens at the expense of the forward one, releasing a linear radiated
wave field ahead. The newly formed structure is similar to a depression wave and focusses into a
depression breather, much like the one present after the focussing instability of small amplitude
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Figure 8. (a) Evolution of the maximum norm (trough depth) for perturbed depression waves in the small-amplitude

regime (c= 1.4047, energy= 6.7074 and η(0, 0) =−0.3054). Solid line, positive amplitude perturbation

(ε= 0.002); dashed line, negative amplitude perturbation (ε=−0.002). (b) Evolution of maximum trough depth

(departure from unperturbed trough depth) for depression waves in the moderate-amplitude regime (c= 1.3927,

energy= 6.6591 and η(0, 0) =−0.4391). Solid line, positive amplitude perturbation (ε= 0.01); dashed line,

negative amplitude perturbation (ε=−0.01).

depression waves. Figure 9 shows this evolution in four snapshots: the first two corresponding to
the initial stage of the deepening rear trough, and the lower two showing two frames separated
by a half-period of the periodic pulsation.

As alluded in the previous section, our bifurcation curves (see Figure 6) also point to the
possibility of a finite-amplitude instability of the plane waves for perturbations with transverse
periods shorter than that predicted by NLS. A typical example is shown in Figure 10. The initial
data for these set of experiments has the form

η = (1 + ε cos(kyy)) η0(x, c) (5.2)

where η0(x, c) is a plane depression solitary wave. If ky >kc given by (4.3) the weakly nonlinear
stability analysis predicts stability (see, for example, [11]), which is confirmed numerically.
However, larger perturbations of the same transverse wavenumber destabilise the plane wave.
In this case, the long time evolution is, once more, dominated by a transverse periodic depression
breather.

6. Conclusion
Gravity-capillary free surface flows support a variety of solitary waves. Here we found that there
exist travelling two-dimensional surface profiles that are localised in the travelling direction and
are periodic in the transverse one. These transverse periodic solitary waves are either of elevation
or depression type, and the depression waves along this branch connect two limiting cases: plane
solitary waves and fully localised lumps. The stability properties of these waves are considered
through time dependent computations.

All solitary waves are found to be unstable, except depression waves whose amplitude
is above a critical value. These stable waves, together with transverse periodic breathers that
appeared consistently in instability calculations, act as attractors in the time evolution of the
system for a broad class of initial data. In the dynamics leading to these attractors, dispersive
radiation plays the role of dissipation in the formation of the breathers. The resilience and
universality of these breathers is a surprising outcome of this work.
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Figure 9. Four snapshots of the evolution of a moderate-amplitude unstable elevation wave with c= 1.3995,

η(0, 0) = 0.193. The initial wave is similar to that of Figure 4. The initial data was constructed as in (5.1)

with ε=−0.002. The evolution leads to a depression breather and small amplitude waves radiated during the

instability. The solution is shown at time 190 and 290 where the initial instability takes place, and then 790 and

820 which correspond approximately to the times of maximum and minimum amplitudes of the periodic breather

motion.
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Figure 10. Stability and instability for the same plane solitary wave with different perturbations. A plane solitary

wave with trough depth −0.1806 and c= 1.4084 was subject to perturbations as in (5.2) with ky = 0.195 and

ε= 0.1 (dashed line) or ε= 0.2 (solid line). The former perturbation does not trigger an instability while the latter

does.

Througout this work we have used a truncated version of the free surface fluid equations.
While we have demonstrated its accuracy in the waves computed here, truncations of any order
have serious limitations. Calculations of complicated structures such as overhanging waves (see
for example [22]) cannot be studied using these methods and require a different formulation.

We believe that the new waves, and the dynamical effects described here, could be an
important ingredient in understanding the energy transfer due to wind forcing of capillary-
gravity ripples. All the structures described in the paper exist in a regime below the minimum
speed of linear waves, and therefore may be the first excited modes for low wind speeds. This
would imply that linear theories would underestimate energy transfer. A reasonable model for
wind forcing must also include dissipation, since, in the length scales considered here, dissipative
timescales can be estimated to be similar to the timescale observed in the focussing instability [23].
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