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ABSTRACT 

Electrical properties of composite materials have been thoroughly investigated recently for the detection and monitoring 

of damage in Carbon Fibre Reinforced Polymers (CFRPs) under mechanical loading. Carbon Nanotubes (CNTs) are 

incorporated in the polymer matrix of CFRPs for the enhancement of their electrical properties. The electrical 

properties have shown to be sensitive to the damage state of the material and hence their monitoring provides the profile 

of their structural deterioration. The aim of the paper is the cross validation and benchmarking of an Electrical 

Potential Change Monitoring (EPCM) technique against Acoustic Emission (AE) and Lock-in Thermography (LT). All 

techniques successfully identified damage and its propagation. Thermography was more efficient in quantifying damage 

and describe dynamically the debond topology, as it provided full 2D imaging of the debond in real time. EPCM was 

both successful in providing quantitative information on debond propagation and its directionality. AE provided 

consistent information on damage propagation. All techniques identified three stages in the fatigue life of the 

interrogated coupons. The representation of the fatigue behavior as a function of life fraction, the correlation of AE data 

with EPCM and LT data and most importantly the consistent behavior of all tested coupons allowed for both the direct 

and indirect cross correlation of all employed methodologies, which consistently identified all aforementioned fatigue 

life stages. 

 

1. INTRODUCTION 

Carbon Fibre Reinforced Polymers (CFRPs) have been very popular as structural materials in aerostructures due to their 

high specific mechanical properties [1, 2]. Their increased use in commercial aircrafts such as the Airbus A350, A380 as 

well as the recent Boeing 787 (Dreamliner) accentuates the need for efficient repair technologies. Aircraft structures 

undergo complex loading during operation which leads to gradual structural degradation. The repair of a deteriorated 

structural component is often considered as the optimum option as compared to replacement. In an early work by Baker 

[3], the possibility of bonded repair was investigated. Bonded repair comprised an adhesively bonded composite patch on 

a cracked surface [4]. Adhesive bonding of the patch is superior to mechanical fastening as undesirable stress 

concentrations which inevitably occur at the fastening positions are not present [3, 5]. However, there is a dire need to 

enhance the reliability of bonded repair in order for it to qualify as a repair practice for structural components. In-service 

monitoring of the ‘structural health’ of a repaired component is the safest route towards (i) assessing its structural 



integrity, (ii) enhancing the confidence of the aircraft industry towards bonding technologies and ultimately (iii) reducing 

overall operational costs for safe airborne structures [6].  

The electrical properties of CFRPs have been examined as a means of assessing the structural integrity of composite 

structures in order to identify their possible structural degradation. The electrical continuity of the conductive 

reinforcement has been shown to be highly sensitive to changes in the structure in the presence of external mechanical 

load [7]. Every disruption of the electrical paths formed by the conductive reinforcement in the bulk CFRP is directly 

reflected as a change in the electrical resistivity of the material [8-13]. This effect may be enhanced via the dispersion of 

a conductive phase of a scale lower than that of the primary reinforcement. Carbon nanotubes (CNTs) [14-16] and 

Polyaniline [17, 18] render typical epoxy matrices antistatic or even conductive. Consequently the bulk CFRP becomes 

more electrically isotropic as it acquires conduction in other directions than those provided by the carbon reinforcement. 

The modified-matrix composites retain their electrical anisotropy but electrical properties are significantly enhanced e.g. 

in the through thickness direction after the inclusion of the secondary conductive phase [7, 10, 14, 16, 19]. This nano-

incorporation is reported to positively affect the electrical sensitivity of the CFRP materials to strain or damage [7].  

Thus, Electrical Resistance (ERCM) or Electrical Potential Change Monitoring (EPCM) methodologies have been 

extensively investigated in the recent years with the aim of providing a measure of damage accumulation under 

mechanical load [7, 10, 19-22]. The major advantage of these techniques is that no external sensing elements are needed 

as the variation of the resistivity is an inherent material property and consecutively the principle structure is not 

aggravated [23-25]. However, various parameters e.g. contact resistance, local resistivity variation and/or geometrical 

parameters increase the uncertainty of electrical property-based techniques. As a result, efficient benchmarking 

technologies have to be employed to verify the ERCM or EPCM results.  

Within the aim of this work, the potential of EPCM is investigated for the monitoring of initiation and propagation of 

damage in composite repaired materials. CFRP panels with an artificially induced circular notch were repaired using an 

adhesively bonded composite patch. The bonding repair efficiency was assessed in real time using EPCM, Lock-in 

Thermography (LT) and Acoustic Emission (AE) under tension-tension cyclic loading. AE and LT were utilized in order 

to benchmark the results provided by EPCM. AE is employed for the localization of critical and subcritical damage or 

else the damage between the repair and the parent material as well as the damage observed from the presence of an 

artificially induced circular notch. LT is employed as a full field method to visualize and quantify debonding and stress 

concentrations around the artificially induced notch. Post mortem optical stereoscopic examination of the failed coupons 

was employed to verify the results provided by the aforementioned methods. 

 

2. OVERVIEW OF BENCHMARKING TECHNIQUES 

Infrared thermography (IrT) has been shown to be capable of identifying and monitoring service induced damage in 

composite materials [26, 27]. In the case of load bearing structures, IrT can be employed to monitor damage initiation 

and propagation due to mechanical loading [28, 29]. On one hand, stresses induced during mechanical loading lead to 

temperature variations due to the thermoelastic effect. On the other hand, irreversible processes such as defect nucleation 

and growth result in heat release which may be manifested locally as a hot spot. Moreover, these defects which 



accumulate and/or grow during loading act as heat traps which delay locally the cooling down process. Due to the above, 

the thermal gradients on the material surface can be recorded in order to assess the stress and the damage state of the 

material [30, 31]. Lock-in thermography (LT) is based on the detection with an IR camera of thermal waves generated 

onto the surface of a material subjected to periodical (usually sinusoidal) thermal excitation. The principle of LT lies on 

the synchronization of the thermal camera with the source of heating [32-37]. The resultant thermal transient of the 

generated thermal waves which recorded in real time, is analyzed via Fast Fourier Transform to provide phase and 

amplitude images. The phase image is time-dependent while the amplitude relates more to the thermal diffusivity of the 

thermal waves [32]. In the case of cyclic mechanical loading, the thermal waves which are generated are a result of the 

thermomechanical coupling through the thermoelastic effect. The thermoelastic effect for a thermally isotropic solid is 

well described by the following equation (Eq. 1): 

( / )p mΤ C T T           (1) 

where ρ is the mass density, Cp the specific heat and constant pressure, α the Coefficient of Thermal Expansion (CTE), T 

the absolute temperature, ΔΤ the change in temperature in Kelvin degrees, Km the thermoelastic coefficient and Δσ the 

change in the sum of principal stresses. For a typical CFRP plate, CTE varies or even changes sign for the longitudinal 

and transverse direction [38], and as a result, the thermoelastic effect is different in the two principle directions [39, 40]. 

For the plane stress and an orthotropic solid, it is more accurate to refer to express the temperature change as: 

( / )( )p L L T T mL mTΤ C T T                  (2), 

where the subscripts L and T denote the longitudinal and transverse directions respectively. What is typically shown by 

Eq. 2 is that the thermoelastic response of a loaded material is the sum of the thermoelastic response of the stresses in the 

two principal directions, which cannot be distinguished. Hence, depending on the sum of the parameters in Eq. 2, the 

temperature of a thermally anisotropic material either increases or decreases during tension and vice versa during 

compression [41, 42].  

Along with Irt, AE is a well-established technique which is capable of providing information on the structural 

deterioration of a material during mechanical loading. Local irreversible energy release due to damage such as crack 

initiation and propagation is manifested as transient acoustic waves. These may be recorded by sensors, acoustically 

coupled on the material under study. AE activity is directly affected by the characteristics of the induced stress field and, 

as a result, parameters such as duration and energy may be employed to provide a real time structural degradation 

spectrum [43, 44]. More analytically, acoustic signals emitted during mechanical loading of materials are attributed to 

damage due to mechanical deformation. Piezoelectric transducers placed on the surface of the material capture the elastic 

waves released during crack propagation incidents [45]. Information about the location and the structural severity are 

available through acoustic signal tracking [46]. Different forms of damage in composite materials under mechanical 

loading have been identified by many researchers [47, 48].  

 

3. EXPERIMENTAL 



3.1 Material preparation 

The CFRP coupons used for this study consisted of composite plates (substrate) with a circular notch drilled in the 

middle to simulate service induced damage. The area of the notch was subsequently repaired using a tapered patch which 

was hand laid-up on the notched plate and subsequently cured in place. The circular notch was chosen as representative 

of damage in real conditions, as it is usual repair practice to drill a notch at the vicinity of the crack in order to retard its 

propagation, by the increase in the radius of curvature at the tip of a propagating crack [49].  

More analytically, the substrate was manufactured by 8 layers of an MTM56 series prepreg provided by Advanced 

Composites Group (UK) (cure cycle: 30 min at 120 
0
C, reinforcement: woven carbon fabric, 199 g/m

2
). The laminate 

was cured according to the recommended curing cycle. 300 x 500 mm
2
 coupons were cut and a Ø5mm notch was 

subsequently drilled in the center of each coupon using a diamond drill.  

The tapered CFRP patch was applied on the coupon and was manufactured using the 5H SATIN 43280 satin weave 

fabric (provided by HEXCEL). The fabric was impregnated at the recommended weight ratio with the Epocast 52 A/B 

(provided by Huntsman) modified with 0.5% w/w multi wall CNTs (provided by ARCHEMA) to enhance its electrical 

properties. As was established in preliminary studies, with efficient dispersion, electrical percolation is achieved at 

concentrations between 0.2% and 0.3%. The 0.5% w/w ratio was chosen for this study as (i) it is well above the 

percolation threshold and (ii) is low enough to retain the viscosity of the nano-reinforced matrix in workable level. 

The CNTs were dispersed in the epoxy matrix via sonication for 2 h using the ultrasonic processor UP400S (400 W, 24 

kHz) by Hielscher at 50% amplitude. As is well known, ultrasonication may disperse the nanophase but at the same time 

induces multiple breaks which reduce drastically the aspect ratio of the CNTs and as a consequence their reinforcing 

ability. The employed dispersion protocol was experimentally found to yield optimal fracture toughness properties for 

0.5% w/w CNT/matrix ratio, without destroying the CNTs [50].  

The patch was applied in layers using the conventional wet lay-up, using a tapered geometry in order to minimise the 

high shear stress fields at the edges of the repair. The pre-impregnated layer dimensions were 120x50mm
2
 (1st ply), 

100x50mm
2
 (2nd ply), 80x50mm

2
 (3rd ply) and 60x50mm

2
 (4th ply) (Fig.1). Curing of the patch on the substrate was 

performed in an autoclave as following: (i) reaching of 0.98 bar vacuum condition, (ii) increase of vacuum pressure to 

6.2 bar, (iii) increase of temperature at 120 
o
C with 3 

o
C /min rate, (iv) retain stable vacuum pressure and temperature for 

10 min, (v) decrease of temperature at 80
 o

C with -3 
o
C /min rate and finally (vi) vacuum pressure release. In Fig.1 the 

final coupon configuration is depicted. Finally 50x60 mm
2
 end tabs were attached on the composite coupons using high 

shear adhesive (Epibond 1590 A/B, Huntsman), in order to prevent failure at the gripping area. 



Figure 1. (a, b) Schematic configuration of the employed specimen, (c, d) snashots of both front (patched) and back side 

of the specimens. 

 

3.2 Testing 

For the EPCM measurements, electrically conductive contacts at specific locations were applied on the surface of the 

coupons using a conductive silver paint (Fig.2). Commercially available silver paint and silver loaded tape (RS-

Components) (Fig.2a) were subsequently used in order to connect the cables of the multimeter (Agilent Technologies) 

connected to a PC for data acquisition and the DC power supply (XANDREX HPH 18-10DC). 150 mA direct current 

was injected in the specimen during mechanical loading and the electrical potential variation was concurrently recorded 

on both sides of the notch (VA and VB) (Fig.2b). 

  

 

(a) 

(b) 

(c) (d) 



Figure 2. (a) EPCM experimental setup, (b) EPCM measurement approach. 

As is shown in Fig.2b, the electrically conductive path between the substrate and the repair is formed through the patch 

/substrate interface. Apart from the conductive primary reinforcement i.e. the carbon fibres, the electrical continuity 

between the repair and the substrate was enhanced in the transverse direction by the electrical conductive network 

formed by the CNTs in the matrix of the patch. As the conductive path includes the interface of the patch and the 

substrate, any changes in the form of debonding are expected to affect it directly. More analytically, as the debonding 

front propagates, the electrical potential values are expected to change monotonically. Thus, the evolution of the 

debonding during mechanical testing should result in the increase of the resistance or else the potential drop between the 

measuring points.  

For the Acoustic Emission monitoring, two broadband piezoelectric transducers (Pico, Physical Acoustics Corp., PAC) 

were attached on the specimen as shown in Figs.3a and 3b at specific distance (80mm). Ultrasonic gel was applied for 

the acoustic coupling. The pre-amplifier gain was set to 40 dB. After performing a pilot test, the threshold was also set to 

40 dB, in order to avoid electronic/environmental noise. The signals were recorded employing a two-channel PCI-2 

monitoring board of PAC with sampling rate of 5 MHz.  
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As is depicted in Fig.3b the propagation of the patch debonding front of the patch causes the generation of AE hits. The 

simultaneous recording by the two broadband AE sensors allowed for the location of the events due to debonding, along 

the length of the specimen. Thus, cumulative AE signals on either side of the patch along the loading axis may represent 

the length of the debonding front or else, the critical damage of the repaired material.  

Figure 3. (a) Schematic representation of AE technique, (b) AE signal measurement principle. 

For the thermographic inspection, the Jade 510-CEDIP-MW infrared camera was used (Fig.4). The camera employs a 

cooled indium antimonide (InSb) detector (3-5 μm), with a frame rate from 50-150 Hz and a focal plane array (FPA) 

pixel format of 320x240. The thermal sensitivity of the camera is lower than 25 mK at 25 
0
C and the resolution 0.001 

0
C. 

The camera was employed in lock-in mode at a frame frequency of 50 Hz. The cyclic loading imposed by the loading 

frame was 5 Hz. For the purposes of this work, the camera was positioned at approximately 1 m distance from the 

specimen in order to include the whole patched area in the Field Of View (FOV) of the camera (Figs.4a and 4b). At this 

distance the corresponding field of view was 208x156 mm
2
 with a lateral and perpendicular resolution of 0.65 mm/pixel. 

Figs.4c and 4d are snapshots of experimental setup of the second pair; IrT versus AE. In the aforementioned 

configuration the cyclic loading is the source of thermal excitation of the material. As has been shown in a previous 

publication, debonding is manifested in the amplitude domain as a distinct discontinuity in the greyscale area, delineated 

by a hot zone which indicates the stress concentration at the debonding front. 
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(b) 
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Figure 4. (a) Schematic of the thermographic experimental setup (b) recorded field of view of the thermal camera  

The aforementioned inspection techniques were employed in pairs, as the current injection would interfere with the 

thermographic inspection. This is due to the fact that the Joule heating effect provoked by the current injection, masking 

the heat generated either thermoelastically or due to irreversible damage. As should be noted at this point, the Joule 

effect can be utilized for damage monitoring. In a parallel study, the Joule effect has been successfully employed in 

conjunction with phase or lock-in thermography to assess delaminations in impacted composite panels [51]. More 

analytically, the mechanical testing protocol included real time monitoring of the fatigue loading by EPCM along with 

AE (1
nd

 pair) and IrT together with AE (2
nd

 pair).  

Prior to the application of the monitoring techniques, preliminary mechanical testing was performed in order to define 

the stress level at which stable debonding took place with the application of cyclic loading. To this end, the coupons 

were subjected in fatigue at incremental load levels for 20kcycles at each level, until stable debonding was observed. The 

debonding process was monitored thermographically on line and assessed optically at the end of each load level 

increment, as was performed in [26]. Stable debonding was consistently observed for 80% of the static strength of the 

pristine laminate, as quoted by the manufacturer. A total of four coupons were tested in this load level (80%), two 

coupons with EPCM combined with AE monitoring and two coupons with thermography combined with AE monitoring. 

Throughout the test campaign stress ratio of 0.1 and 5Hz frequency were adopted for the fatigue loading. All coupons 

failed consistently, starting with the progressive patch debonding of the patch from the side of the load application of the 
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testing frame, the propagation towards the middle of the coupon and the brittle transverse failure once the notch was 

revealed.  

 

 

3.3 Results and discussion 

3.3.1 EPCM & AE 

Fig.5 depicts the electrical potential changes (Fig. 5a) and the acoustic activity (Fig. 5b) recorded during the fatigue 

mechanical testing of one of the two tested coupons as a function of the loading cycles. The bottom side indicates the 

side at which the load was introduced by the loading frame. Both EPCM channels are depicted. The polarity was chosen 

so that increase in potential values corresponds to increase in the resistance of the monitored closed circuit, which would 

be the expected result from the propagation of the debonding front. With the selected formality, relative potential 

increase corresponds to increase in “potential drop” due to electrical resistance increase. AE activity snapshots are 

overlaid on the EPCM graphs indicating the location of the recorded events at specific instances during the experiment 

corresponding at the indicated EPCM measurements. The cumulative AE hits for the total duration of the experiment are 

shown in Fig.5b. 



 

Figure 5. (a) Electrical potential changes along with (b) the acoustic emission signals during the fatigue mechanical 

testing. 

For both the top and the bottom side, the recorded noise is of a typical amplitude of 5 mV and high frequency. As was 

observed, this frequency is approximately 5 MHz which is indicative of the fact that it is not system noise but 

corresponds to the real time resistance fluctuations within individual fatigue cycles. The same phenomenon was observed 

in the case of fatigue of plain composite coupons [13]. Additionally, there is a superimposed electrical potential 

oscillation of approximately 15 mV amplitude for 25 kcycles period, manifested as “drops” and “peaks” in the potential 

along the fatigue cycles. It may be postulated that these changes are attributed to local disruptions of the electrical 

conductive path between the repair and the substrate mirroring the debonding evolution of the patch from the substrate. 

In this case, the patch should exhibit “stick-slip” behaviour as critical failure progresses. Finally, there is a large scale 

change with monotonic parts which is independent of the aforementioned oscillations. The discontinuity recorded at 

approximately 270 kcycles is not readily explained but may be attributed to sudden change in a part of the electrical 

circuit independent of the interrogated repair, such as the contact resistance of the copper wires. The recorded large scale 

electrical potential change (EPC), as described in the previous paragraph, is distinctly different from the top to the 

bottom side. For both sides the EPC exhibits a steep decrease in the initial few loading cycles. As should be noted, the 
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initial potential value for both sides corresponds to the unloaded coupon. In this respect the initial changes may be 

attributed to effects related to the local changes in contact resistance due to the initial cyclic loading. This monotonic 

potential decrease (which corresponds to resistance decrease) cannot be readily interpreted. However, similar effects 

have been recorded for the resistance change during step [7] or fatigue [52] loading. The initial decrease in the absolute 

potential values cannot be associated to damage but relates to other mechanisms, which are activated during the first 

stages of the fatigue loading and may include the increase of the 0º fibre alignment, the fibre piezo-resistive effect, the 

relaxation of the fibre pre-stressing and the decrease of the contact resistance [52].  

Following the aforementioned decrease, the EPC is differentiated from the top to the bottom channel. The top channel 

(grey line) exhibits a small increase in potential of approximately 10 mV from its minimum value and thereafter the 

potential values oscillate around a mean (0.045-0.047 V) value, suggesting the existence of the “stick-slip” mechanism, 

which however has reached a steady state. However, the EPC for the bottom channel exhibits a monotonic increase until 

the specimen failure. This increase is more than 30 mV from the minimum recorded value. The sudden potential drop at 

the end of the fatigue life obviously indicates loss of continuity due to specimen failure, which occurred with the critical 

failure of the bottom part of the patch followed by brittle transverse failure at the vicinity of the notch. Obviously, EPCM 

was successful in identifying the most probable failure site of the patch coupon, as after the initial stage, progressive 

critical failure was clearly manifested as monotonic potential increase of the bottom part of the coupon. The relative 

potential increase values as a function of fatigue life fraction for the bottom part of the coupon is shown in Fig.6. 

Summarising the aforementioned observations, EPCM (i) is capable of identifying the real time resistance fluctuation 

within individual fatigue cycles (ii) indicates the characteristic stick-slip behaviour which relates to the progressive 

debonding of the patch due to fatigue and most importantly (iii) is capable of clearly identifying the preferential side of 

failure of the patch. 

As far as AE is concerned, the acoustic events as recorded at the same time with the electrical potential values are shown 

in Fig.5b. Snapshots of the cumulative acoustic events are presented as a function of the sensor positions. Events 

correspond to acoustic activity recorded within the time difference that sound travels within the length of the coupon. 

The differential arrival time allows for the calculation of the location of the sound source. The acoustic events which 

reflect the presence and location of damage start to appear from the edges of the repair (critical damage) moving along 

the centre of the specimen indicating the debonding of the repair. As should be noted the bottom part of the coupon (blue 

EPCM channel in Fig. 5a) corresponds to the right side and the top part (grey EPCM channel in Fig. 5a) to the left side 

of the event location snapshots. The activity corresponding to the bottom channel appears consistently to be higher and 

this is indicative of the part where failure is most likely to take place. In the final stage of the test and prior the final 

failure of the specimen, the recorded acoustic events are concentrated in the centre of the specimen. At the same region 

the coupon eventually failed due to the presence of the circular notch (sub-critical damage). Summarising, AE (i) is 

consistent with the observations made by EPCM and (ii) is capable of detecting subcritical failure at the end of the 

debonding process. 

Fig.6 depicts the cumulative events as a function of fatigue life fraction together with the relative potential change 

recorded by EPCM as a function of fatigue life fraction. As can be easily observed, both techniques exhibit a monotonic 



increase. It may be postulated that three fatigue life stages may be defined with EPCM as indicated by the successive 

changes in the slope of the depicted curve, i.e. the onset of damage marked as stage 1, the increase in damage rate 

marked as stage 2 and finally the rapid deterioration that inevitably leads to failure (stage 3). AE is not as efficient in 

clearly identifying all stages of the fatigue life. As should be noted, the potential change is typical of a fatigue life 

diagram as in a typical fatigue case, stage 1 should exhibit a higher damage rate than stage 2. Finally, Fig.7 depicts the 

cumulative events vs. the relative potential change. This may be regarded as typical benchmarking or calibration graph 

for EPCM against AE. As can clearly be the benchmarking scheme of both NDE methods is efficient in highlighting the 

fatigue stages with approximately linear interdependence for each fatigue life stage. Indicative of the potential of the 

benchmarking approach is that the fatigue life stages are more clearly defined in figure 7 than independently for both 

techniques (figure 6). 

 

 

Figure 6. Cumulative AE events and relative potential change as a function of fatigue life fraction; Fatigue life stages 

that may be defined with EPCM, are not obvious with AE. 

  



 

Figure 7. Cumulative AE events vs. relative potential change 

 

3.3.2 IrT & AE 

In the second testing configuration, IrT was employed together with AE simultaneously to the mechanical testing. 

Amplitude images at specific load cycles are shown in Fig.8. As was observed, debonding initiated at the 80% of the σuts. 

Hence, only amplitude images at that load level are presented (Fig.8).  

  



Figure 8. Thermal images and acoustic events during fatigue mechanical loading at 80% of the σuts of the substrate.  

As is depicted in Figs.8a-h, stress concentration areas are present at the edges of the repair (critical damage) or at the loci 

where high stresses are expected to appear and are manifested in the amplitude domain as regions of increased intensity 

[26]. With fatigue loading, the high amplitude region is constricted from the bottom side towards the center of the 

specimen, implying that as debonding progresses, the debonded bottom area is practically relieved from stresses which 

are concentrated towards the middle of the coupon. As can be seen from the amplitude image series, the progress of 

critical damage of the coupon continued until the complete debonding of the bottom side of the repair from the substrate, 

which consistently failed in a transverse brittle manner at the notch edge. As is expected, the exposed “artificial” damage 

that is the circular notch caused a stress concentration leading to subcritical failure. The arrows on amplitude images 

show the direction of the patch debonding from the substrate.  
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Figure 9. Cumulative AE events and relative debonded area as a function of fatigue life fraction. Distinct fatigue life 

stages may be discerned with both methodologies 



 

 

Figure 10. Cumulative AE events vs. relative area change 

 

Along with the thermal assessment, acoustic events were recorded at the same timing. In Figs.8i-vii snapshots of the 

event location are presented for distinct cycles. As can be seen in Fig. 8i, there is considerably more acoustic activity on 

the right hand side which corresponds to the bottom part in the thermograph (Fig. 8a). As the fatigue progresses, the 

acoustic pattern is consistent (Fig. 8ii-vii), with considerably higher acoustic activity on the side that debonding is clearly 

discerned in the thermographic images (Fig. 8b-h). Additionally, in Figs.8i-vi the acoustic events indicate that the 

debonding process initiated from the edges of the patch and expanded towards the centre of the specimen where the 

circular notch is present. To summarize, similarly to the previous experimental configuration (EPCM & AE), there is 

more activity at the side which corresponds to the bottom part of the repaired coupon (in this representation corresponds 

to the right hand side of the location snapshots). The distribution of the acoustic activity is indicative of the failure site 

and was confirmed by the catastrophic failure of the specimen; after the complete debonding of the bottom side of the 

patch from the substrate, the acoustic events appear to develop and basically concentrate around the loci of the artificial 

notch (in the middle of the specimen) until the catastrophic final failure of the coupon (sub-critical failure). In this 

configuration as well, AE is able to identify the location of damage as well as to verify what was efficiently observed 

from the thermal assessment.  



Fig.9 depicts both the relative debonded area and the recorded cumulative AE events vs. the fatigue life fraction. As in 

the previous configuration, three distinct fatigue life stages are discernible with IrT, whereas this distinction is not 

obvious in AE. Again, the three fatigue stages as observed via the thermographic monitoring are typical of a fatigue life 

diagram, i.e. the initial fast damage progression stage (stage 1) is followed by a decreased rate (stage 2) and finally 

accelerates until failure (stage 3), indicating that the thermographic assessment provides a more reliable representation of 

damage which may also be readily quantified. This effect is more clearly depicted in Fig.10, where the cross correlation 

of the two methodologies are presented; in this representation all three stages may be clearly defined, with the acoustic 

activity being directly proportional to IrT data for each consecutive stage.  

 

3.3.3 Cross validation of the applied NDE techniques 

Fig.6 and 9 clearly show that EPCM and IrT are capable of identifying three distinct fatigue stages. These stages are 

better highlighted, when EPCM and IrT are interrelated with AE acoustic emission activity. In this way, the fatigue life 

stages are clearly defined. Interestingly enough though, the fatigue life stages are almost identical in the fatigue life 

fraction representation for the two studied configurations; i.e. stage 1 ranges ends at approximately 35-45% and stage 2 

at approximately 60%. In other words, provided that the correlation between the AE activities in the two scenarios is 

satisfactory, an indirect cross validation of IrT and EPCM may be performed; Fig.11a depicts the AE activity vs. lifetime 

fraction and Fig.11b depicts the correlation of the cumulative events as recorded for the two distinct configurations. It is 

interesting to note that the fatigue life stages are clearly defined via the cross correlation of the results for the two distinct 

configurations. Moreover, the cross correlation of the acoustic activity for the two NDE scenarios presents an envelope 

which is directly relevant to the uncertainty provided by the indirect benchmarking of IrT vs. EPCM as concurrent 

monitoring was not feasible with both techniques. Fig.12 depicts the benchmarking of IrT against EPCM; within the 

uncertainty of the approach, the indirect benchmarking of the two methodologies can be performed successfully in order 

to define the fatigue life stages as a function of the fatigue life fraction, providing a universal benchmarking for the two 

“incompatible” NDE methodologies (Fig.12). 

Summarising, the estimations for the fatigue life stage transitions for all studied configurations and combinations are 

presented in table 1.  

 

 Fatigue Life Stage Transition Estimation 

NDE Methodologies 
Stage 1 to Stage 2 

(35%-45% of Fatigue life time) 

Stage 2 to Stage 3 

(55%-65% of Fatigue life time) 

EPCM   

AE (EPCM)   

IRT   

AE (IrT)   

AE (EPCM) & AE (IrT)   

EPCM & IrT   
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Figure 11. (a) AE activity vs. lifetime fraction and (b) correlation of the cumulative events as recorded for the two 

distinct configurations 
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Figure 12. Relative potential change vs. relative area change. 

 

Figure 13. (a, b, c) Post failure images, (d) image taken via a stereoscope.  

Fig.13 depicts post failure images (Figs.13a,b,c) as well as stereoscopic (Fig.13d) of a representative tested coupon. 

Longitudinal cracking (horizontal lines) on the surface of the upper side of the broken specimen are visible in Fig.13d. 

The post mortem images indicate the consistent type of failure as well as the characteristic behaviour of the composite 

where longitudinal cracks blunt the stress concentration at the edge of the notch. 

 

   

(b) 

(c) 

(a) (d) 



 

4. CONCLUSIONS 

Within the scope of this paper, a combined NDE system was developed through EPCM, AE and IrT for the monitoring 

of the repair integrity in composite repaired laminates with a central notch. The aim was to cross validate and benchmark 

all involved methodologies. Critical and sub-critical damage were efficiently identified and recorded during fatigue 

mechanical loading. Two scenarios were employed whereby the aforementioned techniques were employed in pairs, i.e. 

AE & EPCM and AE & IrT. The NDE methods were employed in real time simultaneously to the testing procedure. In 

all tested cases, the coupons failed in a consistent way, whereby critical failure initiated from one side of the specimen, 

was propagated towards the middle of the specimen and exposed the notch, inducing thus transverse failure.  

All techniques sufficiently identified the debonding process. Both EPCM and IrT indicated three well-defined stages 

along the fatigue life of the interrogated coupons. The fatigue stage transition was identified at ca. 40% for the first to the 

second stage and at ca. 60% for the second to third stage. EPCM was successful in clearly identifying the topology of the 

progressive debonding as denoted by the monotonic potential increase which was only observed at the side where critical 

failure initiated and propagated. Secondary effects that are observed in the fluctuation of the electrical potential may be 

attributed to real time strain variations due to fatigue and a characteristic stick-slip behavior which is not directly related 

to damage propagation. The concurrent AE monitoring partially revealed the directionality of the critical failure, as 

denoted by the increased activity on the failure side of the coupons. The correlation of the two techniques was very 

satisfactory and was feasible in enhancing the observed fatigue life stages. 

The IrT technique was successful in identifying stress concentration areas at the edges of the repair which led to 

debonding from the substrate (critical failure). Stress concentrations were observed at either side of the circular notch. As 

fatigue loading continued, debonding was manifested by the restriction of high intensity areas in the amplitude domain 

towards the center of the specimen. The relative debonded area was calculated from the IrT thermographs. As 

aforementioned, three fatigue life stages were visible, which were found to correspond better to typical fatigue behavior, 

whereby the first stage possesses a higher gradient than the second and in the third, the damage rate is accelerated until 

failure. In general, the interrelation of the IrT and AE performed concurrently in real time during the loading of the 

coupon, revealing a clear representation of the fatigue life stages.  

Concluding, Electrical Potential Change Monitoring (EPCM) technique is a promising technique for the assessment of 

the repair integrity via the identification of the potential failure site as well as the fatigue life stages of the tested 

component. The same conclusion is valid for Infrared Thermography (IrT) which also provides a real time 2D 

visualization of the critical failure. The cross-correlation of the employed methodologies revealed that the monitoring of 

the fatigue behavior may be enhanced via the combination of the proposed methods on a single platform. It was shown 

that the correlation may be very good and provide the estimation of the distinct fatigue life stage transitions when plotted 

against lifetime fraction. The consistency of the failure process with well defined transitions at fractions of the fatigue 

life time in all studied configurations allowed for an indirect correlation of the IrT and the EPCM methods. 
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