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ABSTRACT 

Sodium periodate (NaIO4) is added to Cp*IrIII (Cp* = C5Me5
-) or (cod)IrI (cod = cyclooctadiene) complexes, 

which are water and C–H oxidation catalyst precursors, and the resulting aqueous reaction is 

investigated from milliseconds to seconds using desorption electrospray ionization, electrosonic spray 

ionization, and cryogenic ion vibrational predissociation spectroscopy. Extensive oxidation of the Cp* 

ligand is observed, likely beginning with electrophilic C–H hydroxylation of a Cp* methyl group followed 

by nonselective pathways of further oxidative degradation. Evidence is presented that the supporting 

chelate ligand in Cp*Ir(chelate) precursors influences the course of oxidation and is neither eliminated 

from the coordination sphere nor oxidatively transformed. Isomeric products of initial Cp* oxidation are 

identified and structurally characterized by vibrational spectroscopy in conjunction with DFT modeling. 

Less extensive but more rapid oxidation of the cod ligand is also observed in the (cod)IrI complexes. The 

observations are consistent with the proposed role of Cp* and cod as sacrificial placeholder ligands that 

are oxidatively removed from the precursor complexes under catalytic conditions. 

 

INTRODUCTION   

Characterization of intermediates in molecularly defined solution-phase catalysis is a recognized 

means to advance rational design of catalytic performance in terms of activity, selectivity, and 

robustness. However, for fast reactions (i.e., t1/2 < 1 s) this task is challenging as short-lived 

intermediates can be difficult to intercept and characterize by standard techniques (NMR, UV-vis, 

IR/Raman, etc.). Electrospray ionization (ESI) mass spectrometry (MS) and related methods are an 

extremely sensitive and selective means to study such reactions and characterize intermediates.1–5 The 

soft ionization of electrospray methods coupled with the unique power of mass spectrometry to 

separate complex mixtures into their components by mass-to-charge ratio (m/z) is a powerful tool for 

characterizing solution species in real time that would otherwise be difficult to analyze. 

Electrospray data allows us to follow catalyst speciation over time.2,6–8 Reactive desorption 

electrospray ionization mass spectrometry (DESI), an ambient ionization method similar to ESI,9–12 offers 

a means to initiate and sample reactions within milliseconds.13–15  This technique has been used by the 
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Zare lab at Stanford to characterize catalyst activation13 and short-lived intermediates that are unstable 

under conventional methods and conditions.15  To access longer timescales with ESI-MS on the order of 

seconds, it is possible to construct online microreactors which initiate reactions inside the tubing that 

leads to the electrospray source.6  Electrosonic spray ionization (ESSI) is a variant of ESI that can use the 

same source as DESI to generate a spray of microdroplets.16  In ESSI, very high flow rates of nebulizing 

gas generate smaller microdroplets than in ESI;  these enhance solvent evaporation and can promote 

more efficient analyte ionization without application of an electric potential.16,17  Furthermore, the 

simple and custom nature of the dual DESI/ESSI source allows for rapid cleaning/troubleshooting 

between experiments and increases efficiency and throughput.  While exact mass and molecular 

formulae are readily obtained from conventional MS data, structural information is absent and 

isomerism is unresolved.  Cryogenic ion vibrational predissociation (CIVP) spectroscopy is capable of 

obtaining vibrational and UV/vis spectra of mass-selected ions, allowing for structural and electronic 

characterization of detected species.18,19 

Recent efforts in the Crabtree and Brudvig laboratories at Yale have produced a family of 

organometallic Cp*Iridium(III) complexes (Cp* = pentamethylcyclopentadienyl, C5Me5
-) as versatile 

precursors for highly efficient water20 and C–H oxidation catalysis21 with either ceric ammonium nitrate 

or, more recently, sodium periodate as terminal oxidants.22,23  Subsequently, evidence was reported for 

oxy-functionalization of the Cp* ligand under reaction conditions, which raised questions about the 

molecularity and mode of action of these catalysts.24,25  However, it was shown that when an oxidatively 

resistant chelate ligand is bound to the Cp*Ir fragment, total degradation of the precursors to 

heterogeneous iridium-oxide material is prevented. 26 Very recently, a detailed kinetic and spectroscopic 

study confirmed that, for a series of homogeneous oxidation catalysts, the Cp* ligand is oxidatively 

removed in a pre-catalytic activation step and that alternative sacrificial placeholder ligands, such as cod 

(1,5-cyclooctadiene), can be used in place of Cp* (Figure 1).27  A bis-ligated Ir -oxo dimer was proposed 

from 17O NMR spectroscopy, resonance-Raman spectroscopy, and other data as the resting state of the 

catalytic species after loss of the oxidatively susceptible Cp* or cod ligands (Figure 1).  The mode of 

oxidative precursor activation has not yet been elucidated, however, leaving significant questions 

regarding the importance and role of the supporting oxidatively resistant ligands in the activation 

process.  

 

  

Figure 1.  Proposed mode of action27 for molecular Ir oxidation catalysts 
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In this work, we present ESSI, DESI, and CIVP characterization of the oxidative activation of some 

Ir catalyst precursors. Data obtained after time lapses from milliseconds to seconds after the 

introduction of a chemical oxidant reveal species involved in the initial activation mechanism.  We track 

the complex speciation using the high resolving power of an orbitrap mass analyzer.28  As the site of 

initial precursor oxidation is crucial in identifying likely pathways for oxidative breakdown, a battery of 

isotope labeling and MS/MS fragmentation studies were performed to characterize the observed 

species.  To obtain structural data and characterize the functional groups present in the partially 

oxidized precursors, we performed CIVP spectroscopy of the mass-selected ions. The vibrational spectra 

obtained are analogous to those found in FTIR and afforded additional structural information about 

these partially activated intermediates including the distinction between different isomers by infrared 

double resonance.   

 

METHODS 

 See SI for synthetic details.  

 DESI and ESSI studies were performed on a hybrid LTQ-Orbitrap-XL (ThermoFisher Scientific, San 

Jose, CA) with the resolution set to 100,000 at m/z 400.  The custom-DESI source used has been 

described previously.13,14  Briefly, it is constructed from a 1/8” stainless steel Swagelok Tee. Spray 

solution is pumped from a syringe and through a fused silica capillary (100 m ID, 360 m OD) that 

passes into the top of the tee and is held at its entrance point with a carefully tightened graphite ferrule. 

At the silica tubing’s exit from the tee, the capillary runs co-axially through a 1/8” stainless steel tube.  

High-pressure nebulizing gas (~120 psi) is supplied through a 1/8” stainless steel tube at the bottom of 

the tee. The DESI source was positioned at an angle of approximately 60° from the surface, about 2 mm 

above the surface, and 2-4 mm from the inlet of the mass spectrometer. The ESSI studies used the same 

custom source as the DESI studies or a modified ESI source from a Finnigan LCQ ion trap (ThermoFisher 

Scientific, San Jose, CA), where the N2 was supplied directly. The source was pointed directly at the inlet 

of the instrument and held approximately 4 cm away. When a source potential was required, a 0 – 5 kV 

potential was applied to the needle of the syringe supplying solution to the DESI/ESSI source. Instrument 

settings were as follows to ensure efficient ionization/transmission without causing significant 

fragmentation: capillary temperature = 175 °C, capillary voltage = 44 V, and tube lens = 110 V. Increasing 

the capillary voltage or tube lens above these values induced partial fragmentation of the Ir species 

observed and greatly complicated the interpretation of these spectra. 

 To acquire DESI spectra, analytes were embedded in surfaces by pipetting a small volume of a 

stock solution onto a surface and allowing the liquid to evaporate under a stream of N2. Once dry, 

surfaces were placed underneath the DESI spray and then either rastered in front of the source or held 

in place until the surface was depleted of sample.  The distribution of observed species varied slightly as 

the surface was depleted of analyte, indicating that reactions were likely occurring both in the droplets 

as well as on the surface, or that the observed relative distribution is highly dependent on the 

instantaneous concentration of analyte on the wetted surface. It is not within the scope of this study to 
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determine whether one or both of these phenomena are occurring.  Paper, glass, and porous 

polytetrafluoroethylene (PTFE) surfaces were tested for each compound measured.  Spectra were 

qualitatively the same or similar for each surface type, other than an approximate order of magnitude 

increase in sensitivity in PTFE relative to paper and an approximately order of magnitude decrease in 

sensitivity in glass relative to paper.  For reasons of cost and ease of handling, paper was used for most 

measurements unless the sensitivity of PTFE was required.  The paper used was cut from manila 

envelopes.  As DESI is an ambient ionization technique, samples are necessarily exposed to atmosphere 

during handling and the DESI process.  When relatively air-free conditions were required, compounds 

were weighed in uncapped vials in a glove box and then sealed with a septum cap. Solvents were 

degassed by bubbling with N2 or Ar.  Using Schlenk techniques, compounds were dissolved in degassed 

solvents and then syringes were used to deposit solutions on PTFE or paper surfaces which were then 

dried under a current of N2 and then analyzed under air. The cod complexes are not stable in air-

saturated solutions; however, when degassed DCM was used to deposit them on surfaces the solvent 

evaporated quickly such that extensive aerobic oxygenation of these precursors was avoided. These dry 

surfaces gave consistent DESI-MS when exposed to air for at least minutes.  

 The design for the online reactor was inspired by one in the literature,29 where solutions of each 

reagent are pumped from separate syringes, through fused silica capillary tubing, and into a micromixing 

tee (IDEX Health and Science, Oak Harbor, WA) which effectively mixes the two solutions as they flow 

into the final piece of tubing which serves as a flow microreactor placed between the mixing tee and the 

ESSI source.  Reaction times were controlled by altering residence times with different lengths of this 

tubing and the total flow rate. The speciation observed was qualitatively identical when micromixing T’s 

with different dead-volumes and frit sizes were interchanged. This observation indicated that reactions 

did not significantly progress while the solution was in the mixing T and that the residence time in tubing 

is a reliable estimate of reaction time. When a source potential was required, a 0 – 5 kV potential was 

applied to the needle of the syringe supplying NaIO4(aq) solution to the mixing tee. 

 Data were analyzed using the Qualbrowser tool in ThermoScientific’s Xcalibur program. When 

possible, m/z values were internally referenced to the m/z of [Cp*Ir(pyalc)]+, [1]+ (pyalc = 2-(2′-pyridyl)-

2-propanolate, m/z 464.1560).  Assignments of molecular formula were made by comparing the 

observed exact masses (within 5 ppm) as well as isotope distributions with simulated spectra.  Ir-

containing peaks were readily identified by the characteristic isotopic profile of Ir (191Ir: 37%, 193Ir: 63%; 

all m/z values reported here are for 193Ir species), which also allowed for easy determinations of the 

number of Ir atoms within a given molecular formula. Due to the complexity of the spectra and the 

number of overlapping peaks, positive identifications were made when at least the two principal 191Ir 

and 193Ir peaks were well resolved, the exact masses were within 5 ppm, and the relative intensities 

were within 15%. Working with chloride-free hydroxo precursors simplified the MS spectra further by 

eliminating additional isotope pattern splittings. All of the detected Ir species were monocationic and 

monomeric, with the exception of variable and minor amounts of [(Cp*Ir)2(OH)2(H2O)n]+ (n = 0,1) dimers 

in the spectra of 1(OH).  These were attributed to impurities in the samples of 1, which was synthesized 

from [(Cp*Ir)2(OH)3]OH.  Identified Ir species in Tables S1 and S2 were extracted from the MS data by 

exporting observed and simulated spectra as .csv files and then processing them with a custom MatLab 
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program which identifies local maxima in the observed and simulated data and then matches peaks in 

the simulated spectra to peaks in the observed that are within 5 ppm.  Peak areas were determined 

from the fit of the observed peaks to Gaussian shapes. 

The Yale Cryogenic Photofragmentation Spectrometer has been described in detail 

elsewhere.30,31 Briefly, electrosprayed ions were guided in RF-only multipoles through three vacuum 

stages to a main chamber pressure of 10-7 torr. The ions were then trapped in a cryogenically cooled 

quadrupole ion trap (Jordan TOF Products trap mounted on a Sumitomo 4K closed-cycle cryostat) using 

a pulsed buffer gas mixture of 1% N2 in He. The ions were held for 95 ms to allow for the condensation 

of weakly bound N2 mass tags and the buffer gas to be evacuated before extraction into a Wiley-

McLaren TOF mass spectrometer. The ions were then temporally focused and intersected with the 

output of an OPO/OPA infrared laser (Laservision, Belleview, WA). The tagged parent ions and 

photofragments formed by photoevaporation of the tag were then separated using a reflectron mass 

selector before detection with micro-channel plates. Spectra are reported as the photofragment yield as 

a function of laser wavelength.  

The laser fluence was lowered until a linear photofragmentation yield response was observed 

for all resonances. This ensures single-photon absorption, and generates spectra equivalent to linear 

absorption spectra, and as such can be directly compared to harmonic predictions. The OPO/OPA laser 

scheme is tunable from 2200 to 4500 cm-1 at a resolution of approximately 3 cm-1. The 600-2200 cm-1 

range was generated by mixing the signal and idler outputs in a AgGaSe2 crystal, which doubles the 

bandwidth to around 6 cm-1. 

Isomer-selective CIVP spectra could be obtained using an infrared photochemical hole-burning 

scheme.  This was achieved using infrared double resonance in conjunction with multiple stages of mass 

selection (IR2MS3) and has been described in depth in previous work.32,33 Briefly, a second stage of mass 

selection was added before the reflectron to separate parent and daughters generated with the first 

(pump or hole-burning) laser.  The undissociated parents were then interrogated at a second transient 

focus provided by the second (collinear) time-of-flight separator. This arrangement allowed a single 

isomer to be monitored at the second laser crossing while the hole-burning laser was scanned through 

the spectrum at the first crossing.  All lines arising from the probed isomer then appeared as “dips” in 

the probe signal.  

For all cryogenic ion vibrational predissociation experiments, an aqueous 100 μM solution of the 

complex was prepared with 0.4 equivalent of NaIO4 and allowed to equilibrate for 24 hours. These 

solutions remained yellow in color, but exhibited large abundances of oxidized species without a high 

concentration of oxidant, thus avoiding salt suppression of the electrospray process. This solution was 

electrosprayed from a 15 μm ground silicon tip (New Objective, Woburn, MA) held at +2500 V with 

respect to the entrance aperture of the mass spectrometer. 

Density functional calculations were carried out using the Gaussian 09 program34 at the cam-

B3LYP/SDD/6-311+G(d,p) level of theory.35,36 Harmonic spectra were empirically scaled by 0.943 above 

2500 cm-1 to match the calculated free OH transitions to the free OH transition in the observed [1O]+•N2 
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spectrum.  Below 2500 cm-1, a scaling factor of 0.954 was applied to match the harmonic pyridine ring 

mode at 1613 cm-1. Isomer searches were performed by sampling a grid generated by rotation around 

the central Cp*-Ir axis and rotation of the oxidized methyl functionalities about the C-C bonds. 

 

 

RESULTS AND DISCUSSION 

 

Direct MS Studies of the Activation of [Cp*Ir(pyalc)OH], 1(OH) 

 

 

Scheme 1. Complexes Studied by Mass Spectrometry 

 

In previous work,27 the resting state of the fully activated [Cp*Ir(chelate)X] precursor was 

proposed to be a bis-µ-oxo iridium(IV) dimer with two water molecules and one chelate ligand on each 

metal (Figure 1). However, only the reduced (III-III) form of this species without the aqua ligands has 

been observed in the gas phase from a reducing MALDI-MS matrix. Attempts to isolate this solution-

phase species through atmospheric ionization and other solution phase techniques have proven 

difficult, but transient oxidized species are indeed observed in ESI mass spectra of solutions with low 

oxidant concentrations. This suggested they may play a role in the early formation of the active 

complex, and we undertook a mass spectrometry-based characterization study to probe the nature of 

these transient species. To determine which oxidized species are present at very low reaction times, 

reactive desorption electrospray ionization mass spectrometry (DESI-MS) was employed.  In reactive 

DESI, charged microdroplets containing a reagent are directed toward a surface containing a reaction 

partner.  Reactions are initiated on the surface and reactants, intermediates, and products are carried 

away from the surface in reflected secondary microdroplets which are intercepted by a mass 

spectrometer.  These secondary microdroplets enter the heated capillary of the mass spectrometer 

where the solution phase reactions are evaporatively quenched within a few milliseconds of leaving the 

surface. This ambient ionization technique enables facile reaction studies of species applied to a surface 

and offers a unique approach to access the species present in solution in the early stages of the 

reaction.  DESI-MS spectra of [Cp*Ir(pyalc)OH], 1(OH), were taken by depositing 10 L of a 10 mM 

aqueous solution of 1(OH) on paper affixed to a glass slide and then the surface was dried under a 
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stream of N2 before spraying it with water or aqueous solutions of NaIO4(aq) using a custom DESI source.  

In most cases, suitable ion intensity could be achieved without applying an electric potential to the 

source.  No potential was applied to the source in order to avoid spurious oxidation of 1(OH) by reactive 

oxygen species which can be generated by the electrochemical nature of the electrospray process.37–39  

In the absence of oxidant, DESI-MS spectra of 1(OH) almost exclusively contained the previously 

detected and structurally characterized ion [Cp*Ir(pyalc)]+, [1]+, (pyalc = 2-(2′-pyridyl)-2-propanolate m/z 

464.1560) as the principal peak (Figure 2a). 36,40  Also detected in low abundance (less than 3% relative 

to [1]+) were ions corresponding to the addition of a single oxygen atom to [1]+, [1’O]+ (m/z 480.1509), 

as well as H2O (m/z 482.1666), NaOH (m/z 504.1485), HCl (m/z 500.1327), NaCl (m/z 522.1146), and 

NaNO2 (m/z 533.1387) adducts of [1]+. The appearance of trace [1’O]+ was curious under these 

conditions, although a series of control experiments indicated that it was an artifact of the DESI process 

and unrelated to the compounds detected in the presence of oxidant (see supporting information for 

details). 
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Figure 2. MS Spectra of 1 Conditions: a) DESI-MS of 1(OH), spray = H2O. b) DESI-MS of 1(OH), spray = 1 

mM NaIO4(aq). inset: zoom-in of 463.1-463.2 m/z. c) ESSI-MS of 5 M 1(OH) + 50 M NaIO4(aq), approx. 3 s 



8 
 

reaction time. d) ESSI-MS of 5 M 1(OH) + 50 M NaIO4(aq), approx. 9 s reaction time.  All spectra were 

collected at source voltage of 0 kV using paper surfaces and are normalized to the most abundant peak. 

  

When 1 mM NaIO4(aq) was used to spray a surface containing 1(OH), clusters of Ir-containing 

peaks were observed that correspond to oxidized species of 1(OH). These species had a base molecular 

formula of [1]+ as well as 0 to 5 additional oxygen atoms and loss of 0 to 3 hydrogen atoms or gain of 1 

hydrogen atom (Figure 2b, 3, and Figure S1). We will refer to this set of oxidized species by the general 

notation [1,On,-Hm]+, where n refers to the number of additional oxygen atoms and m refers to the 

number of lost hydrogen atoms from the base molecular formula of [1]+, (C18H25-mO1+nNIr).  In the DESI-

MS spectrum of 1(OH) with 1 mM NaIO4(aq), [1,On,-Hm]+ encompasses over 20 different Ir-containing 

compounds as well as cation and anion adducts of these species (See Figure 3 for representative data 

and Table S1 for a list of the [1,On,-Hm]+ compounds detected by DESI).  A series of control studies, 

including 18O labeling using 1 mM NaIO4(aq) in 99 % H2
18O as the DESI spray (Figure S2), confirmed that 

the [1,On,-Hm]+ complexes observed were a direct result of the added periodate oxidant in the spray and 

not artifacts of the ionization process (see supporting information for details).  With such a complex 

solution composition, it is clear that a high resolution instrument was required to identify and resolve 

the species present, as the isotopic profile of Ir caused many of the peaks to be intercalated. In fact, up 

to four species were found at the same nominal mass (m/z 463, Figure 2b, inset) but are well resolved in 

the orbitrap analyzer. Not unexpectedly, clusters of Nax+1(IO4)x
+ are also observed in the DESI-MS when 1 

mM NaIO4(aq) is used as the spray and, at higher concentrations of NaIO4(aq) or lower concentrations of 

1(OH) on the surface, these peaks dominate the spectrum.   
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Figure 3. Zoom of [1,O3,-Hm]+ peaks.  Highlighted [1,O3,-Hm]+ region of the DESI-MS spectrum in Figure 

1b showing assigned intercalated peaks, with intercalated species indicated with the given symbols: * = 
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[1,O3,-H0]+, m/z 512.1406; Δ =  [1,O3,+H1]+, m/z 513.1483; # =  [1,O3,-H1]+, m/z 511.1328; ◊ =  [1,O3,-H2]+, 

m/z 510.1250; † =  [1,O3,-H3]+, m/z 509.1172; o =  [(1,O2,-H1)Na]+, m/z 518.1279.  
  

 Because the complete activation of 1(OH) occurs in seconds, it is too fast to directly measure by 

taking aliquots of a reaction solution. However, the speciation in Figure 2b suggested the oxidation of 

1(OH) had only just begun under the short timescales of DESI. To gain time-resolved insight into the 

further oxidation of 1(OH), we constructed an online flow microreactor similar to a published design29 

that allowed us to study reactions between 1(OH)  and NaIO4(aq) at the seconds timescale when 

interfaced with an ESSI source (Figures S3 and S4).  In-tubing reaction times from approximately 3 to 20 

s can be readily accessed by adjusting the residence time in the microreactor.   

 When 5 M 1(OH) is mixed online with 50 M NaIO4(aq) in the micromixer and allowed to flow 

through the tubing for approximately 3 s prior to ionization, extensive oxidation of [1]+ to an 

approximately Poisson distribution of [1,On,-Hm]+species is observed (Figure 2c). In fact, addition of up to 

8 oxygen atoms is found under these conditions (See Table S2 for a complete list of 

[1,On,-Hm]+compounds detected by ESSI).  Note that a potential was not applied to the ESSI source to 

observe these species. If a 5 kV potential were applied to the metal needle of a syringe containing 1(OH) 

while flowing this solution directly into the ESSI source, small amounts of [1,On,-Hm]+species were 

observed along with other unidentified Ir-containing species, even though no NaIO4 was present in 

solution. This result indicated that an applied potential affects the electrochemical oxidation of 1(OH) 

and alters the observed speciation of [1,On,-Hm]+, demonstrating an important advantage of ESSI in that 

it avoids this complication. 

When the capillary tubing between the mixing tee and the ESSI source was extended to allow 

the solution to react in the tubing for 9 s, there was a significant shift in the observed speciation of 

[1,On,m]+compounds toward more oxidized species (Figure 2d).  After approximately 15 s, no further 

change in speciation was observed, indicating that periodate had been expended and the reaction was 

exhausted.  We suspect the bulk of reaction progress to have occurred in the tubing.  Significant rate 

enhancement has been observed for some reactions in microdroplets opposed to bulk solutions.41,42 

However, the significant shift in speciation relative to the DESI data and the observed dependence on 

residence time in tubing demonstrated that reactions, in this case, progressed to a significant extent in 

the flow system as opposed to the ESSI microdroplets. 

The entire nonproductive induction period observed in water-oxidation with Cp*Ir precursors 

has been shown to consume about 20 equivalents of NaIO4, so it is not surprising that incomplete 

oxidation of 1(OH) was observed under the applied conditions (10 equivalents IO4(aq)). Unfortunately, 

increasing the concentration of NaIO4(aq) relative to 1(OH) significantly decreased the intensity of the 

[1,On,-Hm]+ peaks in the mass spectra, even at increased concentrations of 1(OH). In fact, when 20 

equivalents of NaIO4(aq) were mixed online with 5 M 1(OH), no Ir-containing peaks were observed. This 

was likely caused by competitive ionization between Nax+1(IO4)x
+ clusters and the [1,On,-Hm]+ species, a 

common problem in electrospray ionization of analytes in electrolyte solutions.43–45 We were unable to 
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increase the concentrations of 1(OH)  or NaIO4(aq) any further without risking harm to the instrument 

through salt deposition, likely precluding the observation of more extensively oxidized species or the 

fully activated form of 1(OH) by electrospray methods.  Neutral oxidants would avoid this competitive 

ionization, and H2O2 has been shown to degrade Cp* in similar complexes.24  Preliminary experiments 

where 5 M 1(OH) was mixed online with 100 M H2O2 and sprayed through an ESSI source gave very 

similar spectra as Figure 2c.  This implied that the early stages of this oxidation are similar with either 

H2O2 and NaIO4(aq); however, because this neutral oxidant is unable to drive catalytic water oxidation or 

C–H hydroxylation, the later stages of precatalyst activation must diverge.46  

While many different structures are possible for each [1,On,-Hm]+ species detected (vide infra), 

the mechanism for their production most consistent with the observed data consists of a sequence of 

consecutive nonselective oxidations of Cp*.  The complete set of [1,On,-Hm]+ peaks can be rationalized 

by considering the range of Ir(III) and Ir(IV) complexes that could be present during the successive 

oxidation of the Cp* ligand, where Cp* methyl groups are initially hydroxylated and then oxidized 

further to aldehyde and carboxylate groups (Figure 4). See Figure S5 for a set of representative isomers 

for up to n = 3.  This scheme accounts for both the successive addition of oxygen atoms as well as loss of 

hydrogen atoms in the observed [1,On,-Hm]+ compounds, where oxidation of an alcohol or carboxylation 

leads to a formal loss of hydrogen atoms.  Eventually, the Cp* ligand would either become sufficiently 

electron-deficient to dissociate from Ir or would undergo complete degradation within the metal’s 

coordination sphere to acetate, CO2, or other organic products.  The previous detection of one- and two-

carbon fragments means that at some point the C=C bonds of the 5-membered ring must be oxidatively 

cleaved;27 however, the statistical distribution of [1,On,-Hm]+ species and intensity of [1,O1,-H0]+ relative 

to the other species suggests that for 1(OH) in the presence of NaIO4(aq), [1,O1,-H0]+ is the prominent 

entry into precatalyst activation to generate the observed [1,On,-Hm]+ under the employed conditions. 

The complexity of the observed speciation strongly suggests that this process does not follow a 

specific pathway.  Almost every iterative combination of m and n was detected for n = 2 – 4 oxygen 

atoms and m = 0 – 3 hydrogen atoms.  Although it is difficult to relate ESI-MS intensities to 

concentrations in complex mixtures, it is unlikely for the sensitivity to vary drastically between related 

[1,On,-Hm]+ compounds (i.e., more than an order of magnitude).  Furthermore, for n = 3 and greater, 

species with an additional hydrogen atom , e.g., [1,O3,+H1]+, were detected which is most easily 

rationalized by the addition of a hydroxyl or hydroperoxyl group to quaternary carbons of previously 

oxygenated Cp* rings, as suggested by NMR studies of related complexes using hydrogen peroxide as 

the terminal oxidant (see representative structures for [1,O3,+H1]+ in Figure S5).24  Another possibility is 

hydroxide/water coordination to Ir or the formation of strongly bound solvent adducts of these more 

polar species.  This suggests that Ir-coordination isomers should also be considered for the observed 

[1,On,-Hm]+  peaks (in addition to those in Figure S5).  Given the complexity of these spectra, there is no 

reason to assume that a particular [1,On,-Hm]+  peak represents only one isomer of Cp* oxidation and/or 

Ir-coordination, and it is likely that multiple isomers are present for each molecular formula (vide infra).  

Finally, at high values of n (i.e., n = 6 and 7), the number of different values of m observed decreases 

and only +H1, -H0, -H1 species are observed. This reflects the lower number of potential compounds that 

can stochastically be formed at this later stage of oxidation. It is not clear if the various oxidation 
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pathways converge, or if only certain pathways can access addition of these higher numbers of oxygen 

atoms prior to Cp* dissociation. 

 

   

Figure 4. Potential initial pathways for Cp* oxidation. Each arrow indicates a formal 2e- oxidation. 

 

These results differ from those of recent NMR studies by Macchioni and co-workers24,47 which 

examined the less active precatalyst [Cp*Ir(2-benzoylpyridine)NO3] using H2O2 or ceric ammonium 

nitrate (CAN) as the oxidant. They showed compelling evidence for initial oxo-functionalization of a 

quaternary carbon on Cp* to form hydroxyl or hydroperoxyl substituted Cp* rings.24,47  These species 

would correspond to [1,O1,+H1]+ or [1,O2,+H1]+ which were not observed in the DESI or ESSI spectra 

under our conditions.  Given the preliminary studies performed using H2O2 described above, it is unlikely 

that the differing conclusions are a result of the different oxidants. Instead, we propose that the 

electron donating properties of our pyalc ligand relative to the electron withdrawing 2-benzoylpyridine 

ligand causes this change in reactivity.  To confirm the inherent difference in reactivity between 1(OH) 

and the 2-benzoylpyridine catalyst, 3 equivalents of NaIO4(aq) were added to a solution of 1(OH) in D2O 

and 1H-NMR spectra were acquired, which showed the expected formation of acetate as well as a broad 

hump in the baseline in the ppm range of Cp* and pyalc methyl signals (see Figure S6). A few small 

peaks indicating some relatively minor species are present, but these peaks were not stable over a 4 

hour period and did not give any observable cross peaks in NOESY spectra, precluding their assignment.  

These NMR studies indicate that no abundant diamagnetic Ir species are formed when 1(OH) is exposed 

to NaIO4(aq), supporting the complex speciation that was resolved by the present MS studies.  

 

Structural Characterization of Oxidized Ir(Cp*)(pyalc)+ Complexes [1,O1,2,-H0]+ 

 Given the complexity and number of species detected in the MS spectra of 1(OH), we focused 

our efforts on the identification of the initial oxidation products [1,O1,2,-H0]+ in order to critically 

evaluate the mechanism proposed above (see Figure 4). Unfortunately, tandem MS fragmentation 

studies (MS/MS) could not allow us to distinguish between any of the six likely structures for [1,O1,-H0]+ 
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(see Figure 5), which includes C–H hydroxylation of Cp* or the pyalc ligand [1,O1,-H0]+ A-C, Cp* 

epoxidation [1,O1,-H0]+
D, an Ir(V)-oxo [1,O1,-H0]+ E, and formal loss of a hydride from Cp* to generate the 

fulvene species [1,O1,-H0]+ F.  Oxygen-insertions into the pyalc ligand to give bound peroxide or N-oxide 

species were ruled unlikely by the continuous series of +O-H functionalizations observed. 

 

 

Figure 5. Potential Structures for [1,O1,-H0]+ (representative isomers shown) 

 

We further ruled out [1,O1,-H0]+
C as a likely candidate for two reasons: 1) there is no reasonable 

way to explain either the number of observed additional oxygen atoms or the loss of hydrogen atoms, 

and 2) 1(OH) was found to be incapable of arene hydroxylations in previous C–H oxidation studies.23,46  

[1,O1,-H0]+
B was ruled out by a selective isotope labeling study. A pyalc ligand with fully deuterated 

methyl groups was synthesized and used to prepare d6-1(OH), analogously to 1(OH) (see supporting 

information).  DESI-MS spectra of d6-1(OH) using 1 mM NaIO4(aq) as the spray were qualitatively the 

same as those for 1(OH), except that the masses were shifted by 6 amu (Figure S7). The set of observed 

[d6-1,On,-Hm]+ compounds showed no evidence for loss of deuterium, indicating that the methyl groups 

of d6-pyalc are resistant to hydroxylation under these conditions.  As mentioned above, MS/MS data of 

[1,On,-Hm]+ and [d6-1,On,-Hm]+ compounds were uninformative as all of the detected fragments were 

from the pyalc and d6-pyalc ligands rather than from Cp* as exemplified by the fragmentation of 

[d6-1,O1,-H0]+ and [1,18O1,-H0]+ compared to [1,O1,-H0]+ (Figure S8). 

The remaining structures could be classified by whether or not they contained a hydroxyl group 

(with –OH: [1,O1,-H0]+
A and [1,O1,-H0]+

F; without –OH: [1,O1,-H0]+
D and [1,O1,-H0]+

E), which would show 

distinct differences in the vibrational spectrum of the [1,O1,-H0]+ ion.  Furthermore [1,O1,-H0]+
A and 

[1,O1,-H0]+
F contain many of the same functionalities and differ only by the position of the OH and the 

introduction of a CH2 group in [1,O1,-H0]+
F.  This presented an ideal opportunity for utilizing cryogenic ion 

vibrational predissociation (CIVP) to obtain the structural information needed to support the initial 

oxidation mechanism of the precatalyst 1(OH).  The overall character of the vibrational bands in this 

class of molecules was already considered in a report36 of the [1]+•D2 cryogenic ion vibrational 
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predissociation (CIVP) spectrum reproduced in Figure 6d. This band pattern was assigned to a series of 

fundamental excitations (as indicated) based on an accurate prediction of their locations and relative 

intensities by harmonic calculations at the cam-B3LYP/SDD/6-311+G(d,p) level. A qualitative overview of 

the spectrum reveals three strong CH2 and CH3 stretches between 2900 and 3000 cm-1, as well as a few 

weak transitions near 3100 cm-1 corresponding to CH stretches on the pyridine ring. Moving to lower 

energy, we find a more congested series of transitions that correspond to coupled normal modes 

derived from collective motions of many atoms. Two pyridine stretching modes lie at 1618 cm-1 and 

1481 cm-1, while the CH3 bending and rocking fundamentals appear at 1457 cm-1 and 1022 cm-1, 

respectively. Finally, the C-O stretching motion, coupled to CH and CH3 bends, yields a suite of 

transitions at 1165, 1112, and 969 cm-1, respectively. We would expect a significant response in both the 

CH stretch and fingerprint regions if the first oxidized product [1,O1,-H0]+ contained a fulvene 

functionality, as it is predicted to break the planar symmetry of the Cp* ligand and introduce an sp2 

carbon (Figure S9). Indeed, harmonic calculations predicted distinct differences in the vibrational spectra 

of the alternative structures and thus presented an opportunity to distinguish between these potential 

isomers. 

 The infrared predissociation spectrum of [1,O1,-H0]+ is presented in Figure 6c. Overall, the vast 

majority of the transitions are retained upon oxidation, with the most obvious addition corresponding to 

the two distinct OH stretches at 3513 and 3654 cm-1, which are entirely absent in the parent compound 

[1]+. This rules out [1,O1,-H0]+
D and [1,O1,-H0]+

E as potential structures, leaving the alcohol [1,O1,-H0]+
A

 

and the fulvene [1,O1,-H0]+
F as the remaining possible structures.  In addition, new peaks, labeled α, β, 

and γ, also appear lower in energy at 2961, 1410, and 1217 cm-1, respectively.  The overall preservation 

of the spectrum upon oxidation strongly suggests that the structure of this species is not significantly 

perturbed from that of [1]+, as would be expected for the [1,O1,-H0]+
A isomer.  However, as only one 

oxygen atom was added to this species, the presence of two OH stretches could not be readily explained 

by a single isomer. 
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Photochemical hole burning using the IR2MS3 method was employed to investigate the origin of 

the two sharp bands in the region expected for OH stretching fundamentals, denoted A and B in Figure 

6. The results are shown as negative going peaks (resulting from dips in the probe signal) in panels e) 

and f) in Figure 6.  The fact that only one OH transition appears in each dip spectrum unambiguously 

assigns these features to two distinct isomers.  The more red-shifted band at 3513 cm-1 is consistent 

with formation of a donor H-bond and the other higher in energy at 3654 cm-1 occurs in the location 

expected for a free OH.  These results, paired with the preservation of the main band structure upon 

oxidation, were used to guide a theoretical structural search. The calculated structures of the two 

lowest energy isomers are given in Figure 6a and 6b along with their (scaled) harmonic spectra.  Both 

 
Figure 6. The harmonic spectra (at the cam-B3LYP/SDD/6-311+G(d,p) level, scaling factors given in 
experimental) of two isomers of the [1,O1,-H0]+ complex which differ according to whether the OH on 
the Cp* ring is free (a) or engaged in an intramolecular H-bond (b).  The experimental predissociation 
spectrum of [1,O1,-H0]+•N2 is presented in (c).  The infrared predissociation spectrum of [1]+, collected 
in an earlier study,5 is reproduced in trace d), inverted for comparison. In addition to two new OH 
stretches, only three new transitions appear upon oxidation and are labeled α, β, and γ. Using the 
IR2MS3 photochemical hole-burning method, the two OH transitions in the experimental spectrum 
were confirmed to originate from two different isomers, as evidenced by the mutually exclusive dips 
in the holeburning spectra of [1,O1,-H0]+•N2 given in the red and blue traces (e) and (f).   
 
 
knkn 
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structures correspond to hydroxylation of Cp* methyl groups. The lowest energy structure 

[1,O1,-H0]+,bound is that displayed in Figure 6b, and features an intramolecular H-bonded arrangement in 

which the hydroxyl group attaches to the oxygen atom of the pyalc ligand. Comparison with the 

harmonic spectrum of the bare complex [1]+ (Figure S10) gives a structural basis for the three new 

transitions (α, β, γ in trace 6c).  The α transition corresponds to asymmetric stretching of the CH2 

functionality on the oxidized Cp* carbon, while the β and γ transitions are traced to OH bends coupled 

to CH2 bends and twists. As these new transitions all correspond to motions involving the CH2OH 

functionality, this further supports the structural assignment as oxidation on the Cp* ligand. 

 A second rotamer [1,O1,-H0]+,free, depicted in Figure 6a, lies 3.0 kcal/mol higher in energy (at the 

cam-B3LYP/SDD/6-311+G(d,p) level) and features a free OH moiety, generated through simple rotation 

of the mono-hydroxylated Cp* ligand around the Cp*-Ir axis. Modes with the same qualitative character 

as those identified as α, β, and γ are indicated with grey dotted lines, and all redshift upon breaking the 

intramolecular hydrogen bond. We note that at room temperature in solution, rotation of the 

unmodified Cp* ligand is very fast on the NMR timescale,20 but at the lower temperature and isolated 

environment of the CIVP experiment, it is not surprising that  functionalized Cp* rotamers can be 

trapped.  Interestingly, although its OH stretch feature is weaker, the equilibrium population of the 

higher (3.0 kcal/mol) energy isomer responsible for that band should not be significantly populated at 

the trap temperature of approximately 30 K.  As such, there is likely a sufficiently high barrier separating 

the rotamers such that that either can be trapped as the ion is slowly cooled by buffer gas collisions.  

Such trapped higher energy isomers have been observed in previous studies of small peptides,31  and the 

formation mechanisms and cooling dynamics are presently in a rather primitive state of 

characterization. Though this energy difference is too large to explain the relative absolute abundances 

of the two isomers (5:1 assuming roughly equal transition strength of the two OH’s), it does qualitatively 

track the observed trend, with the hydrogen-bond stabilized structure in higher abundance.  

The similarity of the [1,O1,-H0]+ and [1]+ vibrational spectra, supported by calculations of low 

lying structures and harmonic spectra, provide compelling evidence for the occurrence of forms 

[1,O1,-H0]+,bound  and [1,O1,-H0]+,free for the [1,O1,-H0]+ ion, but it is useful to consider the possible role of 

the fulvene compound [1,O1,-H0]+
F contributing to the ion ensemble. The same level of calculation used 

above places this species considerably higher (34 kcal/mol) in energy, compared to the metastable 

[1,O1,-H0]+,free form. More importantly, the harmonic vibrational spectrum of [1,O1,-H0]+
F is clearly 

distinct from [1,O1,-H0]+ in the region near the  =CH2 bending vibration near 1500 cm-1 in the fingerprint 

region as explicitly demonstrated in Figure S11.  We therefore confidently conclude that the first 

oxidation product [1,O1,-H0]+ occurs with formation of a hydroxyl group on the Cp* ring [1,O1,-H0]+
A, 

yielding one isomer which is observed in the gas phase as two rotamers of the functionalized ring.   

 To support the nonselective oxidation mechanism proposed in Figure 4, we extended the 

spectroscopy study to the species formally corresponding to addition of a second oxygen atom to the 

[1]+ complex, denoted [1,O2,-H0]+, and present the CIVP spectrum of the N2 tagged [1,O2,-H0]+•N2 ion in 

Figure 7 along with that of [1,O1,-H0]+•N2 (inverted) for comparison. Unfortunately, the suspected 

aldehyde, [1,O2,-H2]+, could not be generated in sufficient abundance to gather a good CIVP spectrum.  

The most significant spectral responses to the second oxidation step are the preservation of the two OH 
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bands assigned above in the [1,O1,-H0]+ spectrum (denoted A in Figure 7d) as well as the appearance of 

two closely spaced bands (B in Figure 7d) just below the most intense OH feature in the [1,O1,-H0]+ 

spectrum. The A transitions lie within 5 cm-1 of those observed for the single oxygen complex [1,O1,-H0]+, 

while the B features occur at 3471 and 3436 cm-1 and are broader than those in A (8 cm-1 FWHM) by 4 to 

6 cm-1. The redshift and broadening of OH transitions is typical for OH oscillators engaged in stronger H-

bonds, and are common indicators of strong hydrogen bonding, suggesting two OH groups are involved 

in stronger H-bonds than the single H-bonding motif present in [1,O1,-H0]+ (i.e., to the oxygen atom of 

the pyalc ligand). No significant response in the fingerprint region is observed upon the second oxidation 

(Figure S12), as all three characteristic transitions are still present and no fulvene CH2 stretch is 

observed. 

 As the [1,O2,-H0]+ 

complex only contains two 

additional oxygen atoms, the 

presence of four OH transitions 

strongly suggests the presence of 

multiple isomers. Infrared double 

resonance (IR2MS3) was therefore 

once again employed to establish 

both the existence of isomers as 

well as identify the independent 

band patterns.  The resulting ion 

dip spectra are displayed at the 

right of Figure 7c, revealing the 

distinct spectral patterns of two 

isomers.  Interestingly, one of 

these isomers has both bands (A) 

that were associated with the two 

different rotamers in [1,O1,-H0]+.  

This suggests that this isomer of 

[1,O2,-H0]+ accommodates the 

oxygen atoms in both positions 

on the Cp* ring, one with an OH 

group bound to the pyridine 

alkoxy ligand while the second OH 

is non-bonded. This implies that 

the second isomer occurs in a 

configuration in which both OH 

groups are engaged in strong H-

bonds.  

 

 
Figure 7. (a) and (b) Harmonic spectra (cam-B3LYP/SDD/6-
311+G(d,p) level, scaling factors given in experimental) of two 
isomers of the [1,O2,-H0]+ complex which differ according to 
whether their Cp* ligand has one free OH (a), or two 
intramolecular H-bound OH functionalities (b). The calculated 
structures of the two isomers are given at the left of panel (c). 
The experimental predissociation spectrum of [1,O2,-H0]+•N2 is 
presented in (d).  The IR2MS3 photochemical hole-burning 
method (see text),3 establishes that the four OH transitions in 
the experimental spectrum originate from two different 
isomers, as evidenced by the mutually exclusive dips in the 
inverted red and blue traces at the right of (c). The (inverted) 
infrared predissociation spectrum of [1,O1,-H0]+•N2 is presented 
in panel (e). 
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 Having identified the spectra of the two [1,O1,-H0]+ rotamers, we carried out a computational 

isomer search, which recovered two low-energy local minima with structures and energies shown at the 

left in panel c).  Harmonic spectra for these structures are also displayed and accurately account for the 

two bands in the OH stretching region. The first structure, denoted [1,O2,-H0]+,a, where “meta” methyl 

groups are hydroxylated, indeed occurs with the hydroxyl groups in the two locations occupied 

independently in the [1,O1,-H0]+,bound and [1,O1,-H0]+,free compounds.  Note that the intensity of the free 

OH is much closer to that of the bound transition, unlike that of [1,O1,-H0]+, where the weak free –OH 

transition is proposed to arise from the lower population of the [1,O1,-H0]+,free isomer in the ion packet, 

relative to [1,O1,-H0]+,bound. This suggests constitutional rather than rotational isomerism.  The structure 

which accurately accounts for the B features, [1,O2,-H0]+,b, where “ortho” methyl groups are 

hydroxylated, is depicted at the right in Figure 7c, and is calculated to lie only 0.3 kcal/mol above [1,O2,-

H0]+,b suggesting that there is little to no thermodynamic driving force for “ortho” vs “meta” substitution 

of C–H groups on Cp*. The fact that the band due to the ligand-bound OH is red-shifted in this so-called 

“homodromic” or pseudo-linear acceptor-donor configuration is clearly due to the cooperative effect of 

the second OH,48 which strengthens the initial H-bond to the ligand. A third [1,O2,-H0]+ structure, with 

both OH functionalities H-bonded to the pyridine alkoxide, was also calculated to be a local minimum, 

but its harmonic spectrum only displayed a single intense OH transition due to nearby symmetric and 

asymmetric OH stretches (Figures S12 and S13).  In addition to confirming the initial steps for the 

oxidation of 1(OH) proposed in Figure 4, the vibrational spectrum of [1,O2,-H0]+ further highlights the 

essentially nonselective nature of the functionalization of Cp* ligand of 1(OH), where C–H hydroxylation 

of [1,O1,-H0]+ can occur at any methyl group without any apparent direction and in competition with 

further oxidation of the initial hydroxyl group to generate [1,O2,-H2]+, all of which were directly observed 

in this study. 

 

Activation of other catalyst precursors 

 Preliminary MS studies on other catalyst precursors were undertaken to investigate the nature 

of these oxidized species.  [Cp*Ir(ppy)OH] (ppy = 2-phenylpyridine), 2(OH),  was studied to interrogate 

the role of the supporting ligand. As expected from previous studies,27 the oxidation of 2(OH) proceeded 

slower than that of 1(OH).  When DESI-MS spectra of 2(OH) were taken analogously to those of 1(OH), 

very little oxidation of 2(OH) was observed (Figure S14). When the concentration of 2(OH) on the 

surface was reduced by depositing 10 L of a 1 mM dichloromethane or methanol solution of 2(OH) on 

a hydrophobic porous PTFE surface and 1 mM NaIO4(aq) was sprayed, oxidation of 2(OH) was more 

evident (Figure S15a). 49  Online reaction monitoring showed similar results (Figure S15b), where 

oxidation of 2(OH) generated similar [2,On,-Hm]+ species as 1(OH); however, the oxidation was less 

extensive at the same time points. These results are consistent with the observed slower oxidation of 

2(OH) relative to 1(OH) and with the Cp* moiety of 1(OH) and 2(OH) being oxidized.27 

MS/MS data for 2(OH) was more informative than for 1(OH). When [2]+ was isolated and 

subjected to collision induced dissociation (CID) in the ion trap of the LTQ-Orbitrap instrument, the 

fragments corresponded to loss of neutral H2, H4, and H6, suggesting sequential loss of H2 from the Cp* 
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ring (Figure S16a).  However, when [2,O2,-H0]+ was subjected to CID the principal fragment 

corresponded to loss of neutral CH4O; other significant neutral losses included CH2O, C2H4O2, H2, and H4 

(Figure S16b).  While assignment of structures to the charged fragments is not possible with only this 

data, these results suggest that the additional oxygen atoms are closely associated with the methyl 

groups of the Cp* ring, given that the ppy ligand cannot reasonably provide the number of carbon and 

hydrogen atoms that are lost with each oxygen atom.  These studies indicate that the mode of activation 

of 2(OH) is very similar to that of 1(OH), although it is slower.  Furthermore, the non-statistical 

distribution of [2,On,-Hm]+ speciation in Figure S15b relative to [1,On,-Hm]+ in Figure 2c suggests that the 

supporting ligand influenced the course of Cp* oxygenation. 

 

The neutral (cod)Ir(pyalc) complex 3 is also an effective precatalyst for water oxidation, and has 

been shown to exhibit catalytic activity similar to 1(OH), despite that the Cp* ligand is not present.27  We 

studied the activation of 3 under exposure to NaIO4(aq) in order to indirectly support that the Cp* ligand 

of 1(OH) is oxidized during activation, as well as gain information on the mode of activation of 3. The 

species 3 is not stable in air-saturated solutions and required more sensitive handling, but good DESI-MS 

spectra could be obtained (see methods and Figure S17a).  As expected, exposing 3 to NaIO4(aq) 

produced drastically different MS spectra than 1(OH) (Figure S17b). When 1 mM NaIO4(aq) is used as the 

spray,  [3,O1,+H1]+ species is the largest Ir-containing peak, with almost no further oxidation observed in 

the DESI-MS spectrum.  This species is 18O-labeled when 1 mM NaIO4(aq) is used as the spray (Figure S18).  

Unfortunately, the sensitivity of 3 to air precluded its measurement by ESSI.  The structure of [3,O1,+H1]+ 

is currently unknown. However, the fact that it is by far the most abundant oxidized species indicates 

that the mode of precatalyst activation has been fundamentally altered.  The previous detection of 

traces of the cod-bis-epoxide as well as succinic acid in solutions of fully oxidized 327 are consistent with 

an epoxidation pathway, leading to dissociation and further oxidative cleavage of the epoxidized cod 

ligand. Unfortunately, despite that less than 10 equivalents of sodium periodate would be required to 

activate 3, ESSI-MS of solutions prepared by mixing 10 equivalents of NaIO4(aq) with 3 and allowing the 

reaction to complete before diluting to 10 M Ir and directly infusing this solution did not show any Ir-

containing peaks that did not contain a cod ligand.  Importantly, when d6-3 bearing the d6-pyalc ligand 

was used under the same conditions, virtually identical spectra were obtained at +6 higher m/z values, 

demonstrating that also in the cod precursors the chelate ligand remains unaltered at least during the 

initial stage of activation. 
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CONCLUSIONS 

 By using multiple direct MS methods which probe the speciation of 1(OH) as it changes under 

conditions directly relevant to catalysis, we present significant evidence that precatalytic activation of 

1(OH) by periodate occurs through consecutive, nonselective hydroxylations and oxidations of the Cp* 

ligand. This is likely followed by oxidative cleavage of the ring of Cp* to yield CO2 and small organic acid 

byproducts such as acetic acid.  Furthermore, we did not find any evidence for oxyfunctionalization of 

the supporting chelate ligand under the applied conditions.  To confirm the structural assignments and 

support the proposed mechanism, the initial oxidation products have been characterized by their exact 

mass, their fragmentation pattern, isotope labeling of selected groups/solvent, and their vibrational 

spectra in the gas phase.  Somewhat surprisingly, all data suggest that this process does not follow a 

unique pathway, but rather a highly complex competition between the available hydroxylations, 

dehydrogenations, and carboxylations of Cp*.  This process leads to a large array of species which we 

speculate collapses to yield the previously proposed27 dimer [IrIV(pyalc)(H2O)2(µ-O)]2
2+.    Furthermore, 

comparing the activation of 1(OH) to previous studies24,47 and the related compound 2(OH) suggests 

that the supporting ligand plays a significant role in modulating the activation of half-sandwich Cp*Ir 

oxidation catalysts. Also, some insight has been gained in the activation of the related cod precursors.   

Although the different methods brought to bear on these systems have yielded much 

information about organometallic Ir catalyst activation, the active catalytic species for water oxidation 

or C–H hydroxylation have yet to be identified and structurally characterized. Nevertheless, this study 

presents a detailed picture of speciation during precursor transformation for this class of Ir catalysts 

under oxidizing conditions which should be informative for the design of ligands for oxidation catalysts 

as well as the fundamental reactivity of metal-bound organic compounds.   
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