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ABSTRACT 

Design of powertrain controllers relies on the availability of data driven models of the 

emissions formation from internal combustion engines. Typically these are in the form of 

tables or statistical regression models based on data obtained from stabilised experiments. 

However, as the complexity of engine systems increase, the number of experiments required 

to capture the effects of each actuator becomes large. In addition, the models are only valid 

under stable operating condition, and do not give any information as to dynamic behaviour. In 

this paper, the authors present the use of Volterra Series (dynamic polynomial models) 

calculated from dynamic measurements as an alternative to the steady state models. Dynamic 

measurements of gaseous exhaust emissions were taken for a 2.0L automotive Diesel engine 

installed on a transient engine dynamometer. Sinusoidal based excitations were used to vary 
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engine speed, load, main injection timing, Exhaust gas Recirculation (EGR) valve position and 

fuel injection pressure. Volterra models calculated for NOx and CO2 emissions presented high 

levels of fit with R2 and normalised RMSE values of 0.85, 0.91 and 6.8% and 6.6% respectively 

for cold start NEDC. Models for CO and THC emissions presented poorer levels of fit 

(normalised RMSE 26% and 17% respectively), with difficulties in capturing the high 

nonlinearities of the measured data, notably for very high emissions levels.  

Keywords: diesel engine emissions, engine control systems, engine dynamics, engine testing, 

diesel engine design/ development 

1 INTRODUCTION 

Engine manufacturers in the automotive sector are coming under increasing pressure to 

deliver lower harmful emissions and fuel consumption. In Europe, Oxides of Nitrogen (NOx) 

emissions requirements for Diesel passenger cars are currently 180g/km with a planned 

reduction to 80g/km in 2014. CO2 emissions will be regulated on all vehicles form 2015 in the 

form of a fleet average, initially set at 130g/km, but reducing to 95g/km by 2020. In areas 

similar limitations are appearing on fuel consumption. In addition to this, the drive cycles used 

for the certification of vehicles are becoming much more dynamic in order to better represent 

in-service behaviour. Fairly steady cycles like the New European Drive Cycle (NEDC) or Japan 

Mode 10-15 are being replaced by more dynamic cycles such as the World harmonised cycle 

[1].  
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To meet these stringent targets, engine manufacturers are using an increasing number of sub-

systems such as low and high pressure Exhaust gas Recirculation (EGR), multi ignition 

combustion systems, advanced thermal management systems, multistage turbocharging and 

variable valve timing [2, 3]. Each of these gives the engine further flexibility but makes the 

system controller more complex. The current industry standard for controller optimisation is 

to run experiments under stationary engine operating conditions, using design of experiments 

(DoE). Statistical response models are then used to represent the measured engine behaviour 

in optimisation routines [4]. However, as engine systems increase in complexity through more 

control actuators, the experimental effort also increases and more operating points are 

required to explore the system interactions and calculate the response surface. 

A shift to dynamic engine characterisation offers the opportunity to significantly reduce 

experimental work during model identification for optimisation. This avoids the long thermal 

settling times between each operating point which can require as much as 5 minutes [5]. The 

dynamic operating points are much closer to real world use in automotive applications where 

steady state conditions rarely occur. With a move to hybrid powertrains, engine use will 

become much more intermittent meaning fully warm operation will be less frequent, replaced 

by a series of thermal transients [6]. A move to dynamic experiments and models to capture 

cold start, dynamic behaviour will allow both reduced experimental effort and focus on 

conditions closer to real world applications.  
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This paper describes the application of Volterra Series Models, an extended polynomial 

approach to the modelling of Diesel engine exhaust gaseous emissions. Dynamic experiments 

have been conducted on an automotive Diesel engine installed on a transient dynamometer. 

The measured data was used to calculate models for various gaseous emissions to assess the 

suitability of this modelling approach. 

2 BACKGROUND 

2.1 Dynamic modelling of engine emissions 

Recent interest in the dynamic modelling of engine emissions using data driven models has 

been driven by the need to improve the engine development process. Research in this field 

can be roughly split into the following two areas:  

1. Design of dynamic experiments; 
2. Dynamic model type and training 

 
Different types of dynamic experiments have been considered for use with internal 

combustion engines. Amplitude modulated Pseudo Random Binary Signals (APRBS) [7, 8] and 

varying frequency sinusoidal signals (Chirps) [9] have received the most interest because of 

their ability to cover broad frequency ranges. Baumann et al [10] presented a comparison of 

Triangular, sinusoidal, APRBS and Chirp signals and showed that sinusoidal based signals 

presented significant advantages for engine development. These signals are less problematic 

with regards to safe engine operation because of their continuous nature rather than step 

disturbances. Although APRBS signals are, from a theoretical perspective, superior for 
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identification purposes because they cover a broader frequency range, the harsh nature of the 

step changes are not suited to all engine systems. In contrast, Chirp signals are a continuous 

signal however, the frequency range is limited. 

A range of common mathematical models are suitable dynamic applications if augmented to 

capture the measured dynamics. Generally this is achieved by including additional model 

inputs relating to the previous states of both the input (independent) variables and the output 

(dependent) variable. Guehmann and Riedel [11] compared ten different dynamic modelling 

approaches for NOx and CO emissions. Volterra series performed best for NOx emissions 

whilst a neural network approach was recommended for CO. The modelling work was 

conducted on measured data from an engine subjected to chirp excitations for engine speed, 

load, main injection timing, variable geometry turbocharger (VGT) position, EGR valve opening 

and fuel injection pressure. The predictive power of the models was assessed based on a 

portion of the chirp experiments not used during the training. Consequently, these findings do 

not give an insight into the prediction of drive cycle behaviour. A further study by the present 

authors [12] compared the performance of recurrent neural networks and Volterra series for 

the modelling of NOx emissions. Again the models were calculated based on chirp 

experiments, but validated over an NEDC. This resulted in similar performance for both model 

types, but highlighted the added complication of neural network model training. 

Baumann et al. [9] used sinusoidal chirp input signals to develop a parametric Volterra model 

for NOx emissions based on engine speed, engine load, injection timing, fuel injection 
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pressure, EGR rate and boost pressure. The model fitted measured data with a normalised 

RMSE of 6% over the NEDC. However the model did not include any way of accounting for the 

temperature variation during warm-up; consequently cold start NOx emissions prediction was 

overestimated. This paper aims to build on the previous works to assess the performance of 

the Volterra series for other gaseous emissions types. 

2.2 Emissions formation 

This paper will assess the performance of Volterra model to capture NOx, CO2, carbon 

monoxide (CO) and unburned hydrocarbons (THC). The proportions of each species in the 

exhaust gas results from a number of factors controlling the combustion process in the 

cylinder.  

NOx emissions comprise NO and NO2, but are most commonly grouped together as NOx. They 

are mostly formed through the reaction of atmospheric nitrogen and oxygen under conditions 

of high temperature (above 1900-2000K) [13, 14]. There is therefore a link between NOx 

emissions levels, combustion temperatures and availability of oxygen [15-17]. Hence systems 

that reduce combustion temperature (such as intake air cooling or main injection retard) or 

reduce the availability of oxygen (such as EGR) allow reductions in NOx emissions. Under cold-

start conditions, the engine and combustion chamber walls are significantly colder and the 

combustion air enters the cylinder at a colder temperature. Subsequently during combustion, 

more heat is lost to the walls meaning combustion occurs at colder temperatures making 

conditions less favourable for NOx formation. [18, 19]. 
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Carbon dioxide (CO2) results from the complete combustion of fuel with atmospheric oxygen; 

reductions in fuel consumption will lead to reductions in CO2 emissions. Consequently CO2 

emissions are linked to the efficiency of torque production and therefore to the phasing of 

combustion with cylinder volume changes as well as parasitic losses (friction losses, accessory 

systems). With respect to the combustion process, measures used to reduce NOx emissions 

are typically detrimental to CO2 as the thermal efficiency is reduced. Under cold start 

conditions, engine friction is higher due to the higher viscosity of the lubricant; this results in 

higher fuel consumption to deliver similar brake torque output as under hot conditions. 

Consequently CO2 emissions are higher by 3-10% during warm up [18]. 

Carbon monoxide (CO) and total un-burnt hydrocarbons (THC) are formed throughout the 

combustion phase within the Diesel jet [20]. They are the products of the rich premixed flame 

where initial combustion occurs with insufficient oxygen and along with soot precursors serve 

as the reactants for the diffusion flame. The majority of products are transformed into water 

and carbon dioxide, however as the piston moves down expanding the gases in the cylinder, 

the temperature drops and the chemical reactions freeze. The remaining CO and HC are then 

included in the exhaust gases. 

This paper aims to use the dynamic modelling approaches to capture the formation of Diesel 

engine gaseous emissions. This approach offers an alternative to conventional engine 

controller design that relies heavily on measurements taken under stable engine operating 

conditions. The application of these models to engine development process could result in 
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shorter development times and allow the controller design to be more suited to the dynamic 

duty cycles encountered in real driving situations. 

3 THEORY 

3.1 Dynamic Modelling 

Figure 1 illustrates the need for dynamic modelling and shows the effect of applying a static 

model to a dynamic training data-set for a single-input-single-output system. The measured 

system response is shown following a step change in input and, before the system is allowed 

to settle, the input is returned to its original value. If a static model is used (a), then only the 

current settings of the actuators can be used in the mathematical representation of the data. 

Consequently the model estimates the average response over the measurement period and 

underestimates the actual settling value. If a dynamic model is used (b), the additional 

parameters from previous input settings and output response capture the dynamics whilst the 

static model will represent the system behaviour if it were allowed to settle. 

3.2 Volterra Series 

Polynomial models are widely used in engine applications because of their simplicity, ease of 

training using least squares regression and explicit formula. A practical extension of polynomial 

models to the dynamic range is the parametric Volterra series [21]. The static model is 

augmented using previous states of model inputs and feedback of model output as described 

by equation 1; this is the general form of the Volterra series. Because of the increased number 
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of parameters and the presence of output feedback, the regression process also becomes 

more complex, but crucially still relies on least squares.  

 ̂( )    ∑       
  ∑        ∑            
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The different terms of the Volterra series in equation 1 are: 

 Model order: this defines the highest exponent order for the static model (value of n 

in Xstatic). 

 Delay order: This defines the number of previous input events that are used in the 

model (largest value of j in Xdelays). The delay terms can also have higher order 

exponents and typically this was allowed to the same order as the model order. 

 Interaction order: this defines the number of inputs that are grouped together for 

interaction terms. Interactions can also occur between delay terms. 

 Feedback order: this defines the number of previous output terms included in the 

model (value of l in Yfback). This was maintained as 1 for all modelling work presented. 
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3.3 Temperature Dependant Model 

For the modelling of engine behaviour during warm-up, the operating temperature is the main 

descriptor. In this paper it will be assumed that whilst the effect caused by temperature may 

be non-linear, it acts globally on the effects from the other inputs. This is illustrated in 

equation 2 and means the model could not capture individual interactions between 

temperature and other inputs.  

 ̂    ( )   ( )  ( ̂   ( )) 

Where  ( )  (          
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3.4 Evaluation of Model quality 

The quality of each model was assessed using the fit statistics detailed in equations 3 to 5. The 

statistics indicate the level of fit if applied to the prediction of training data whereas if applied 

to validation data (not used in the training) they give a measure of predictive performance. 

Ideally the fit should be similar for both training and validation data; if a model tends to 

predict training data better than validation data, this is a sign the model is over-fitted. 
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4 Experimental Equipment and Data acquisition 

4.1 Experimental Apparatus and Input factors 

A 2.0L Diesel engine meeting EURO IV emissions specifications was used in this work. The 

engine included a variable geometry turbocharger, cooled high pressure EGR and common rail 

fuel injection. The typical application of the engine was a light commercial vehicle. The engine 

was installed on a 215kW transient AC dynamometer with all but vital auxiliary systems 

removed (cooling and lubrication). Three key combustion control parameters were chosen as 

the basis of this study; these are summarised in table 1. Also given in the table are the ranges 

of variation for each parameter and the upper and lower frequencies used in constructing the 

dynamic experiments. The upper frequencies were determined from frequency analysis of the 

NEDC whilst the lower frequencies were defined to give least correlation between input 

variables. In principle, the lower frequencies should be zero to cover steady state operation, 

but to remain with dynamic experiments these were defined at least an order of magnitude 

lower than the upper frequency. 

 

 

 



12 
 

Variable Excitation method Excitation 
range 

Frequency 
Range 

Engine speed Direct control of set-point from host system 1000-2500rpm 0.003-0.1Hz 

Engine load PID control of electronic pedal position based on 
torque set-point within host system 

20-250Nm 0.01-0.1Hz 

Main Injection 
timing 

‘adder’ function resident in ECU; offset to production 
calibration was set directly in 

o
CA 

+/-2
o
CA 

(Absolute: -6 to 
8

o
BTDC) 

0.006-0.06Hz 

Common Rail 
fuel pressure 

 ‘adder’ function resident in ECU; offset to production 
calibration was set directly in bar 

+/-100bar 
(Absolute: 200 

to 1400bar) 

0.005-0.15Hz 

EGR valve 
position 

Indirect control through Mass air flow set point using 
‘multiplier’ function resident in ECU. This was 
necessary as the EGR valve position itself is controlled 
closed loop according to a MAF demand. 

+/-10% 
Absolute (6 to  

60% EGR by 
CO2 ratio) 

0.001-0.06Hz 

Table 1: Variable descriptions, excitation methods and excitation ranges 

The engine facility was controlled by the host system and the communications layout is 

summarised in figure 2. Communication with the engine control unit (ECU) was ensured using 

a calibration tool that was linked to the host system via ASAP3 link. Horiba MEXA 7000 

emissions analysers were used to measure pre-catalyst emissions. 

The control of engine behaviour according to the dynamic test designs was conducted by the 

host system (CP Engineering Cadet). Engine speed was controlled by the AC dynamometer and 

engine torque was controlled using a PID controller acting on the pedal position. Other 

actuators were controlled via the calibration tool and ECU (Accurate Technologies ATi Vision). 

The implementation of this control was through embedded “adder” and “multiplier” functions 

resident within the engine strategy. As the names suggest, an adder function allows an offset 

to be added manually to the ECU generated demand for a specific actuator and the ‘multiplier’ 

scales that signal. These capabilities have different applications during the calibration process; 

however it is fortuitous that these features can be addressed rapidly by an appropriately 
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configured host system to assume transient control over engine actuators without needing to 

resort to modified code or prototype hardware. Full details of the control methods for each 

variable are summarised in table 1. 

4.2 Model Training Data 

To capture the dynamic engine behaviour of the various control variables, chirp signals were 

used. These are sine wave functions with a frequency that varies as a function of time. The 

basic equation for a normalised chirp signal is given in equation 6. This is defined to vary 

between an upper and lower frequencies f1 and f0 occurring at times ttot and t0 respectively. 

Other parameters in equation 6 relate to the total length of the chirp between the upper and 

lower frequencies and a phase shift. These parameters can be used as variables to optimise 

the phasing of multiple input excitations. To ensure that the total length of each excitation 

signal is the same, these can be assembled back to back as shown in figure 3. 

      ((    
 )    ) 

Where   (     )   
 , and    

    

 
 

6 

An individual chirp signal was calculated for each of the input signals and the phasing of each 

signal calculated to optimise the design space coverage for all variables. However, this will 

result in operating points that are not achievable in practice because of limitations either in 

terms of mechanical integrity of the engine or because of operation in unstable conditions. For 

example, the injection timing window for sensible engine operating will be a function of engine 
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speed. To account for this, the static operating limits were determined and used to scale the 

affected input variables. Figure 4 shows the example for torque as a function of engine speed; 

this was achieved through scaling rather than a saturation limit.  

The experiments were conducted in two phases: the first to train the Volterra series 

representing the engine under fully warm conditions and the second to capture the warm-up 

behaviour. The excitation signals for the fully warm conditions for each of the five input 

variables are shown in in figure 5. The test is split into two phases: a loaded condition covering 

60 minutes and an idle phase lasting 15 minutes. 

The engine speed varies consistently between the lower and upper limits (1000-2500rpm). For 

engine torque, the signal has been scaled according to the region of interest which has been 

defined as a function of speed. This is due to the higher torque the engine can achieve at 

higher speeds. The three other signals do not require scaling in this case because they have 

been implemented through “adder” and “multiplier” functions and consequently the scaling is 

already an inherent part of the engine strategy. In other applications where direct set-points 

are defined, the scaling of these functions would also be required. 

The resulting coverage of the design space is shown in figure 6 as pairwise projections of the 

multidimensional design space. In each of the ten plots the chirp loaded phase, chirp idle 

phase and NEDC are distinguished. This representation gives a view of the overall operating 

points that are covered by the experimental data. It is important to bear in mind though that 

although the experiments are represented as a cluster of points, in fact they are a continuous 
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signal. This is best shown by considering figure 7 which shows the plot of engine speed against 

engine torque for the first 25 seconds of the experiment. There is a marked start point and the 

design space is swept according to the test plan. 

To capture the temperature dependent behaviour, a separate experiment was conducted. The 

aim was to record engine emissions showing the difference between cold and hot conditions. 

This was based on a chirp signal for engine speed and load as shown in figure 8; this was 

constructed using the same principles as previously described. The experiment was performed 

twice: once from ambient start (overnight soak at 20oC) and once from hot start (40min 

thermal soak at 1500rpm/100Nm). In each case, care was taken to ensure that other engine 

control variables were set to the same levels throughout both experiments. 

4.3 Validation Data 

To provide an independent data set for the validation, the NEDC was used. The speed and 

torque traces for the engine used in this study are shown in figure 9; these have been defined 

based on the application in light commercial vehicle Validation data was recorded both for 

cold and hot starting engine. 

5 Volterra Model Identification 

5.1 Overview 

The fitting algorithm of the model needs to be defined to account for the large number of 

factors of the Volterra model listed in equation 1. This is split into six phases as summarised in 
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figure 10. The many possibilities in terms of model orders and delay terms very quickly 

increases the number of possible model terms. This can cause problems for the parameter 

selection algorithms that fail to identify key effects. To avoid this, a pre-selection of delay 

terms and model order was performed (phase 1) before the automated fitting routine could be 

implemented (phase 2).  

The fitting of the input model corresponds to the initial identification of all terms except Yfback 

(see equation 1) and is achieved through least squares regression using orthogonal least 

squares parameter selection [21]. The calculation of the Yfback terms must be performed 

separately from the other coefficients as the output delay terms are highly correlated with the 

output itself. This is achieved by allowing the parameters identified from regression to float 

with the output feedback coefficients whilst the fit RMSE is minimised. This is performed using 

an unconstrained optimisation routine (phase 3). The best models are then chosen based on 

predictive performance (phase 4) Calculation of the temperature dependent function is then 

performed using the dedicated experimental data using conventional least squares regression 

(phase 5). Finally the results of phases 4 and 5 are combined to produce the complete model. 

5.2 Illustration of fitting process 

5.2.1 Phase 1: Pre-selection of Model terms 

The pre-selection of modelling terms define the overall Volterra series structure. In this work 

these were defined according to four parameters listed in table 2. As the initial phase of the 

model training relies on least squares, the calculation of the model is fast and therefore many 
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variations in model structure can be evaluated. This was performed for around 100 different 

cases. 

Value Description Range 

npoly Maximum order of single input terms 2-4 

ninteractions Maximum number of cross terms or interaction order 1-2 

ndelay Maximum number of delay terms per input 0-2 

Δtdelay Time interval between delay terms 1 / 4 / 7 

Table 2: Pre-selection of model terms defining structure of Volterra series 

5.2.2 Phase 2: Least squares fit of input terms 

For each emission species, all possible combinations of pre-selection terms were calculated 

based on the training data. This resulted in fitted models that included all terms except Yfback 

(see equation 1). The quality of the fit of these models was assessed using nRMSE values for 

both training and validation datasets (equation 3). The relative quality of the various models 

can be assessed by comparing these two values as shown for each species in figure 11. For all 

emission species, a range of model qualities appear. With the exception of CO2 emissions, a 

trade-off appears between the training and validation fits. Along the pareto front, models with 

lowest training nRMSE tend to have high validation nRMSE and vice-versa. This is due to the 

over fitting of models to the training data. The training data fit can always be improved by 

increasing the number of terms in the model as this allows more mathematical flexibility, 

however at the same time, this increases the tendency of the model to capture noise in the 

data set.  

An ideal model would present low but similar values of RMSE for the training and validation 
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data, meaning the model fits equally well both data sets. For the models calculated here, this is 

only the case for NOx emissions with all other model having poorer fit with the validation data. 

This is evidence of over-fitting of the models. The selection of best models was based on 

achieving a suitable balance between training and fit RMSE. For each emission species, the 

best models according to these rules are circled. In the case of NOx emissions, these are the 

models with similar levels of RMSE. For other species, a judgement has been made with an 

emphasis on minimum validation RMSE. 

5.2.3 Phase 3: Output feedback fitting 

Following the selection from phase 2, the output feedback term was added to the model. This 

was determined by fixing the model equation according to that defined in phase 2, and 

allowing the coefficients to float in an optimisation routine, minimising the RMSE value for the 

training data. Only the training data was used for the fitting of the model at this phase. Figure 

12 shows an example of the fitting results before and after the inclusion and identification of 

the feedback term. 

This training process was conducted for a small number of models for each emission species as 

identified in figure 11. The improvements in fit quality through the inclusion and training of 

output feedback are given in table 3. This shows a typical improvement of R2 of around 0.01 to 

0.05 and in nRMSE of around 0.5%. From these results it is clear the models produced for CO 

and THC have a poor level of fit with R2 values of 0.35 and 0.56 respectively. 
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Emission 

spices 

Without Output Feedback (Phase 2 

Models) 

With Output Feedback (Phase 3 

Models) 

R
2
 RMSE nRMSE R

2
 RMSE nRMSE 

NOx 0.88 124 8.9 0.91 107 7.7 

CO2 0.92 0.52 5.1 0.93 0.47 4.7 

CO 0.29 543 5.8 0.35 519 5.6 

THC 0.52 104 3.5 0.56 100 3.4 

Table 3: Average of fit statistics with and without input feedback for various emissions 
species 

5.2.4 Phase 4: Model Selection 

As for phase 2, the best models were selected based on the fit statistics for the validation 

NEDC. A summary of the best model structures and fit statistics is given in table 4.For each of 

the models considered in this phase of the work, the evolution of nRMSE has been plotted on 

the trade-off plots in figure 13. For the majority of models there is an improvement both in 

training and validation fit, however even in the small number of models tested here, in some 

cases there are large improvements in training fit accompanied by deterioration in validation 

fit. This is a sign of over fitting and highlights the need to consider multiple models at this 

stage.  

Emission norder nInteraction ndelays Δtdelay Nterms R
2
 RMSE nRMSE 

NOx 2 2 2 4 20 0.84 67 6.3 

CO2 3 2 2 7 20 0.90 0.88 8.2 

CO 3 1 1 1 13 0.50 315 8.1 

THC 3 1 2 4 13 0.05 71 7.6 

Table 4: Model structures and validation fit statistics for best models for each emission 
species 
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5.2.5 Phase 5: Temperature function identification 

The ratio of cold to hot emissions is plotted for each spiecies against oil tempeature in figure 

14. In each case the regression fit is plotted through the data. This captures the simple 

temperature dependent trend in the data but clearly for each emission spiecies there are more 

complex phenomenon.  

NOx emissions at 20oC oil temperature were 50% of those at 105oC (fully warm) with an 

approximatly linear trend. CO2 emissions are slightly higher at lower oil temperatures, around 

4% at 20oC; this is consistant with studies of engine warm-up behaviour. For CO and THC, the 

effect of engine temperature is much larger with emissions 3 and 10 times larger at 20oC 

respectivly. Model fit statistics and orders are given in table 5. 

 

 

 

Emission    (T
2
)    (T)    (Cnst) R

2 

NOx N/A 4.96e-3 0.42 0.38 

CO2 N/A 4.04e-4 1.05 0.25 

CO 1.39e-4 -3.80e-2 3.49 0.32 

THC 2.02e-3 -3.24e-1 14.7 0.49 

Table 5: Fit statistics for temperature dependent scaling factors 
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6 MODELLING RESULTS 

The final model predictions for the cold start NEDC drive cycle are illustrated in figure 15 and 

the fit is quantified by the statistics summarised in table 6. The fit for NOx emissions is 

reasonable throughout the drive cycle. The fit for CO2 emissions is excellent, notably towards 

the end of the cycle. For CO and THC emissions the predictions are poor, notably the very large 

values (above 2000ppm) are not captured by the model. During the early part of the drive 

cycle when the engine is cold, these could be attributed to the cold starting behaviour 

however these continue to occur even in the later phase of the drive cycle as shown by the 

plot for CO emissions.  

Emission 

Hot start NEDC Cold Start NEDC 

R
2
 RMSE nRMSE R

2
 RMSE nRMSE 

NOx 0.84 67 6.3 0.85 59 6.8 

CO2 0.90 0.88 8.2 0.91 0.80 6.6 

CO 0.50 315 8.1 0.33 1225 17 

THC 0.05 71 7.6 0.13 2114 26 

Table 6: Summary fit statistics for NOx, CO2, CO and THC over hot and cold start NEDC 

Equations 7 to 8 summarise the dynamic models of NOx and CO2 emissions. Due to the poor 

level of fit, the models for CO and THC are not given in this publication. For the NOx model, the 

application of the Volterra series is presented graphically in figure 16. The time variation of 

each input is shown over a certain time period. Equally, the predicted emissions are shown 

until point t-1. The current point to be predicted, y(t),  is shown as a star point whilst each of 
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the current and previous input and output variables that are used in the calculation of that 

point are emphasised in the respective time series.  
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7 DISCUSSION 

7.1 Volterra modelling process and input data 

The results show the potential of using dynamic models based on dynamic training data to 

capture the NOx and CO2 emissions of Diesel engines in response to a number of control 

variables. In contrast, the approach has not given satisfactory results for CO and THC 

emissions.  

The modelling approach proposed in this paper is based on least squares regression and as 

such allows a repeatable training method unlike the fitting of non-explicit models such as 
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Neural Networks. However, such is the large number of possible terms described by the 

Volterra series, it is still necessary to calculate a considerable number of models to obtain 

suitable results. Even in the case of the CO2 model which achieved a high level of fit, a large 

number of models during the first phase of the identification process presented poor levels of 

fit. The multiple stage approach presented in this paper illustrates a method to avoid poor 

model qualities. 

7.2 Model structure analysis 

Detailed analysis of the terms apparent in the NOx emissions (equation 7) shows that the 

response was significantly influenced by all of the input parameters. There are a large number 

of terms relating to engine speed and torque showing both the dominance but also the 

complexity of the response to the overall engine operating point. In this approach, a global 

model has been produced where engine speed and torque are given the same stature as other 

control variables. However, an approach taken by other researchers is to produce dynamic 

models at a range of local engine speed and torque points. The present approach was justified 

as it allows capturing of dynamics related to the change in speed and torque condition, 

however evidently requires the modelling of a more complex function. Main injection timing 

only appears as a static term in the model (terms 8 and 18) suggesting the impact on NOx 

emissions does not present significant dynamics in the 10Hz time frame of the model. In 

contrast, the other inputs present a number of delay terms which are required to capture the 
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dynamics associated with the engine turbocharger inertia, EGR and intake path volumes and 

thermal inertia. 

Considering the CO2 equation (8); this is dominated by terms relating to engine torque and air 

flow. A combination of static and dynamic terms are included in the model which, as for the 

NOx emissions, will be required to capture the dynamics of the various engine components. 

Also in this case, the mechanical inertia of the engine may be significant. It is interesting that 

the injection timing term does not feature in the model. One explanation for this is that the 

effect is hidden under the effects of other variables, i.e. this effect is small and can’t be 

extracted from the data. This is not necessarily an issue with the modelling approach, but 

rather with the individual test design and resulting training data. In this study a relatively small 

window of injection timing was considered (4oCrank Angle) which may be significant for the 

formation of other emissions in the cylinder, but may not have a significant effect on fuel 

consumption and CO2.  

7.3 Temperature scaling function 

Simple first and second order equations were derived for the temperature behaviour of 

emissions formation. This was based on the assumption that the effect of temperature was 

independent of other input parameters. This approach required only a simple experiment for 

identification and this appears sufficient for NOx and CO2, evidenced by the similar levels of fit 

in table 6 for hot and cold NEDC. However, if this assumption were strictly true, then the data 
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used for the fitting in figure 14 would lie considerably closer to the fitted lines. The large 

excursions from this may result from two effects: 

1. Measurement issues resulting in misalignements in the hot and cold start data sets 

2. Real effects dependent on the engine operating point 

To consider first of these effects, the hot and cold emissions measurements for NOx are 

plotted in figure 17. This shows that whilst the aligment is reasonable, there are cases where 

this is poor. The issues arise from variable time delays associated with the transport of 

emissions gases from the engine exhaust to the sensors in the analysers.  

Further investigations into the temperature dependent scaling function were conducted by 

using additional factors in the fitted model. Two further iterations were included, the first 

using brake power as an input and second using engine speed and torque. The fit statistics are 

shown in table 7. These show an improvement in fit from the additional parameters but this 

would always be the case as the flexibility of the function is increased.  

Emission 

species 

R
2
 

y=f(Toil) y=f(Toil,Wbrake) y=f(Toil, Neng,τeng) 

NOx 0.38 0.39 0.42 

CO2 0.25 0.29 0.32 

CO 0.32 0.38 0.39 

THC 0.49 0.49 0.51 

Table 7: Fit statistics for augmented temperature scaling function 
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Each of the new scaling functions was used in combination with the Volterra model for NOx 

and CO2 to predict cold start NEDC emissions; the resulting fit statistics are given in table 8. 

This shows that for NOx emissions there is a small improvement in nRMSE from 6.8% to 6.3% 

and 6.5% using the augmented temperature scaling functions. For CO2 on the other hand the 

augmented scaling factor causes deterioration in predicted cold start statistics with nRMSE 

increasing from 6.6% to 9.8%. Coupling this to the low levels of fit from (table 7) suggests a 

significant level of noise and a tendency to over-fitting for the augmented scaling factor 

models. 

Emission 

y=f(Toil) y=f(Toil,Wbrake) y=f(Toil, Neng, τeng) 

R
2
 RMSE nRMSE R

2
 RMSE nRMSE R

2
 RMSE nRMSE 

NOx 0.85 59 6.8 0.88 55 6.3 0.86 56 6.5 

CO2 0.91 0.80 6.6 0.91 0.81 6.8 0.88 1.2 9.8 

Table 8: Fit statistics for cold start NEDC NOx and CO2 using a range of temperature 
scaling functions 

8 CONCLUSIONS 

Dynamic polynomial models (Volterra Series) have been used to model various gaseous 

emissions species from a multi-cylinder Diesel engine. Dynamic experiments were conducted, 

varying five control parameters according to swept frequency sinusoidal excitations. The 

measured data was used to calculate Volterra models and their predictive performance was 

assessed over the NEDC drive cycle. A simple approach for capturing temperature dependent 
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behaviour during engine warm-up was also presented that uses a simple temperature 

dependent scaling factor. Based on this work the following conclusions have been drawn: 

1. Modelling of NOx and CO2 emissions over the NEDC resulted in predicted nRMSE 

values of 6.8% and 6.6% respectively using conventional measurement equipment. 

This high level of fit can provide useful models for engine simulation work. 

2. The modelling of CO and THC emissions is more problematic suggesting significant 

levels of random variation that was not controlled by the test procedure in this work. 

Normalised RMSE levels were 26% and 17% for cold start NEDC respectively. 

3. A simple approach to capture temperature dependant behaviour using a scaling 

function independent of other inputs provides a reasonable prediction of cold start 

behaviour. The inclusion of additional terms in this model such as engine power can 

improve the prediction but care should be taken to avoid capturing measurement 

noise. 

The models developed in this work offer the possibility to replace steady state approaches for 

engine calibration by offering reduced experimental effort and also yielding additional 

information relating to transient response. The resulting models could be used in optimisation 

procedures or integrated into the engine ECU to aid the controller algorithms which are 

becoming more physically based. During vehicle development, the models could also be used 

as a replacement for map based engine models or as an enhancement to mean values models. 

An example application is the development of hybrid vehicles which typically rely on models of 
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stationary engine behaviour. These simple mathematical models could improve the products 

by allowing early estimation of transient emissions. 
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11 APPENDIX: Notation 

11.1 Abbreviations 

APRBS Amplitude Modulated Pseudo Random Binary Signal 

ASAP3 Communication Protocol 

CO Carbon Monoxide 

CO2 Carbon Dioxide 

DoE Design of Experiments 

ECU Engine Control Unit 

EGR Exhaust gas Recirculation 

NEDC New European Drive Cycle 

NOx Oxides of Nitrogen 

nRMSE Normalised RMSE 

PID Proportional, Integral, Derivative (controller) 

R2 Coefficient of Determination 

RMSE Root Mean Square Error 

SOI Start of main injection 

THC Total Unburnt Hydrocarbons 

VGT Variable Geometry Turbocharger 
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11.2 Symbols 

f frequency rad/s 

j Input delay offset  

l Output delay offset  

N Rotational speed rev/min 

n Number of measurements  

 ̇  Mass flow rate kg/hr 

P Fuel injection Pressure  Bar 

t time S 

T Temperature oC 

Wbrake Brake engine power W 

x Regression Input   

y Measured dependent variable  

 ̂ Output predictor  

 ̅ Mean measured dependent variable  

Greek Letters 

  Phase Shift rad 

  Regression parameter  

  Regression parameter  

  Regression parameter  
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Δ Regression Coefficient  

  Regression parameter  

  Main Injection Timing o CA BTDC 

  Torque Nm 

Subscripts 

n Input number 

k Parameter number 
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Figure 1: Illustration of (a) static model prediction and (b) dynamic model fitted to 
dynamic measurement data 

 

 

Figure 2: Experimental facility communications layout 
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Figure 3: Assembly of full excitation signals from base chirps 

 

 

Figure 4: Scaling of torque chirp signal according to speed  
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Figure 5: Torque based Chirp excitation signals for main and idling test 

 

Figure 6: 2dimensional projections of 5 dimensional design space for the dynamic chirp 
experiment, idle chirp and NEDC 
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Figure 7: Brake Torque and engine speed evolution over the first 25 seconds of the Chirp 
experiment 

 

Figure 8: Engine speed, brake torque and oil temperature for the temperature function 
identification test 
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Figure 9: NEDC speed and torque traces used for temperature function training and 
model validation 

 

 

Figure 10: Model Training process 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 11: Normalised RMSE trade-off for training and validation data for (a) NOx, (b) 

CO2, (c) CO and (d) THC emissions 

6 8 10 12 14
8

10

12

14

nRMSE
Train

 (%)

n
R

M
S

E
v
a
lid

 (
%

)

 

 

All Models

Pareto Front

Best Models

4 5 6 7 8 9
8

10

12

14

16

18

nRMSE
Train

 (%)

n
R

M
S

E
v
a
lid

 (
%

)

 

 

All Models

Best Models

5.4 5.6 5.8 6 6.2
10

15

20

25

nRMSE
Train

 (%)

n
R

M
S

E
v
a
lid

 (
%

)

 

 

All Models

Pareto Front

Best Models

3.3 3.4 3.5 3.6 3.7 3.8 3.9

8

9

10

11

nRMSE
Train

 (%)

n
R

M
S

E
v
a
lid

 (
%

)

 

 

All Models

Pareto Front

Best Models



40 
 

 

Figure 12: Fitted NOx emissions for training data both with and without feedback term 
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Figure 13: Variation of model fit through inclusion of output feedback for (a) NOx, (b) 
CO2, (c) CO and (d) THC emissions. Arrows indicate evolution of nRMSE through 

inclusion and training out output feedback term 
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Figure 14: Ratio of hot to cold emissions for NOx, CO2, CO and THC as a function of oil 
temperature 
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Figure 15: Model prediction of cold start NEDC NOx, CO2, CO and THC at time windows 
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Figure 16: Illustration of significant terms of the Volterra model for NOx emissions 

 

 

Figure 17: NOx emissions measurement during hot and cold tests for temperature 
function identification 
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