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Abstract. For structural health monitoring applications there is a need for simple
and contact-less methods of Non-Destructive Evaluation (NDE). A number of damage
detection techniques have been developed, such as frequency shift, generalized fractal
dimension and wavelet transforms with the aim to identify, locate and determine the
severity of damage in a material or structure. These techniques are often tailored
for factors such as (i) type of material, (ii) damage pattern (crack, delamination),
and (iii) the nature of any input signals (space and time). This paper describes
and evaluates a wavelet-based damage detection framework that locates damage on
cantilevered beams via NDE using computer vision technologies. The novelty of the
approach is the use of computer vision algorithms for the contact-less acquisition of
modal shapes. Using the proposed method, the modal shapes of cantilever beams are
reconstructed by extracting markers using sub-pixel Hough Transforms from images
captured using conventional slow motion cameras. The extracted modal shapes are
then used as an input for wavelet transform damage detection, exploiting both discrete
and continuous variants. The experimental results are verified and compared against
finite element analysis. The methodology enables a non-invasive damage detection
system that avoids the need for expensive equipment or the attachment of sensors to the
structure. Two types of damage are investigated in our experiments: (i) defects induced
by removing material to reduce the stiffness of a steel beam and (ii) delaminations in a
(0/90/0/90/0)s composite laminate. Results show successful detection of notch depths
of 5%, 28% and 50% for the steel beam and of 30mm delaminations in central and
outer layers for the composite laminate.

Keywords: Non-Destructive Evaluation (NDE), Wavelet Transform, Hough Transform,
Image Processing, Visual Tracking
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1. INTRODUCTION AND RELATED WORK

Structural Health Monitoring (SHM) has been an active research area in recent decades

and is considered to be of major importance due to its potential benefits in terms of

economics, reliability and safety. The ability to detect damage in a structure is a key
component of any modern SHM system and Non-Destructive Evaluation (NDE) is an

important element of any such system because of its convenient and non-invasive nature.

NDE methods based on modal parameters and shapes obtained using vibration-

based testing are highly effective [1, 2]. The cornerstone of vibration-based damage

detection lies in the mapping between modal parameters and changes in the physical

properties of a structure. Essentially, such mapping transfers the feature space in
which damage detection algorithms operate from that of mass, damping and stiffness to

one constructed from modal frequencies, modal damping and modal shapes. Damage

detection algorithms are often categorised by the type of modal properties they work

with. One of the first comprehensive reviews of vibration-based damage detection was

by Doebling et. al. [3]. The authors provide a thorough review of structural damage

detection techniques prior to 1996 and categorised the methods based on the type of
modal property used as an input, followed by [4, 5, 1]. Recently, Fan and Qiao [6] offered

an in-depth survey of vibration-based damage identification methods. A categorisation

method similar to Doebling et. al. [3] was followed, with particular emphasis on

advances in damage detection algorithms through the means of modern signal processing

techniques, such as Wavelet Transforms (WT). Since the introduction of WT for damage

detection by Hou et. al. [7] and Okafor and Dutta [8], WT-based damage detection
techniques have generally been shown to outperform others in terms of their ability to

detect damage robustly and its location [9, 2], though conventional techniques such as

frequency shift still remains a popular choice under certain scenarios [10].

Modal shapes, often obtained from experimental modal analysis, are widely used

as an input for WT-based damage detection algorithms. Acquiring modal shapes

in practice usually involves installing a large number of sensors which is not always

straightforward or practical. This not only makes the installation process labour-
intensive, but can also influence structural/vibrational properties. For example, a

common experimental modal analysis uses an array of accelerometers mounted on a

structure to compute Frequency Response Functions (FRFs), which collectively form

modal shapes via various forms of curve fitting. Such approaches have two common

drawbacks: (i) adding sensors can add undesirable damping effects on the structure;

altering its modal properties [11]; (ii) the total number of sensors deployable are largely
limited by the physical form of the accelerometers, this places a bottleneck on the spatial

resolution of the acquired modal shapes, which makes damage localisation less accurate

[2]. In addition, if the accelerometers are not wireless, a significant amount of cabling

must also be be laid throughout the structure.

To overcome these disadvantages, contact-less methods to extract modal shapes

also exist, such as Laser Doppler Vibrometers (LDV) [8], which are able to measure
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the motion of a structure. However such systems are expensive and cannot readily be

deployed within a structure [12]. Wang et. al. [13] recently used a laser profile sensor to

measure the static profiles of delaminated aluminium and steel beams. Spatial wavelet

transforms were used to detect delamination damage. One outcome of their work was

the identification of the need to move away from laser displacement sensors and also

examine composite/laminate structures. This paper aims to address these needs.
We therefore propose a novel methodology for structural damage detection

which encapsulates a modal shape reconstruction algorithm based on computer vision

techniques and a wavelet-based damage detection algorithm tailored to work with

such modal shapes. This makes use of the latest developments in vision technology,

taking advantage of: (i) recent advances in the areas of saliency detection [14, 15] and

tracking [16] and (ii) the availability of cost-effective camera sensor nodes.
Other researchers have also advocated the utilization of cameras for damage

detection, specifically Patsias and Staszewskiy [12] and Shi et. al. [17]. Patsias and

Staszewskiy [12] extracted the edges of a cantilevered beam using a standard wavelet-

based algorithm. Discretely stored edge profiles were treated as modal shapes and the

authors used a different wavelet-based approach to detect damage. In contrast, Shi et.

al. [17] report on a method very similar to that which we present, in which they obtain
modal shapes via standard edge detection techniques using commercial software and

the modal shapes are represented at discrete pixel locations, where local jaggedness of

edges is acquired from the image representation. The technique was demonstrated on a

damaged aluminium cantilever beam. We specifically address shortcomings identified in

[17] by introducing a more accurate modal shape construction technique and better

feature detection, leading to a reduction in false damage reports. In addition, we

evaluate the technique on a composite laminate.
In this work, rather than attaching accelerometers/strain sensors to a structure or

using laser positioning systems, we simply paint markers on the structure, so that their

position can be determined using a sub-pixel accuracy marker extraction algorithm.

The markers can be regarded as zero-mass ‘virtual sensors’ from which modal shapes

are reconstructed. With the help of these visual markers, which can then be successfully

utilized in a WT-based damage detection algorithm. Such a setup has two important
benefits: first, managing sensors becomes easy since they are freely available and easily

(re-)deployable; second, a single camera node can read many markers and efficiently

transmit the acquired data across a network.

In summary, this paper will:

(i) Demonstrate how computer vision technology can be utilized on structural beams
as a contact-less and low-cost technique for the acquisition of modal properties for

damage detection algorithms.

(ii) Investigate how the acquired modal shapes can be used in practical damage

detection tasks, where both the discrete and continuous versions of the wavelet

transform are applied, taking advantage of their robustness to noise – an essential
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Figure 1. A system diagram of the proposed damaged detection process

property for practical damage detection.

(iii) Compare two different damaged materials (steel and Carbon Fibre Reinforced
Plastic (CFRP)), based on both experimental and finite element analysis data,

to evaluate the performance of the damage detection system.

2. METHOD

The proposed damage detection concept has two phases: after taking a video of a

structure resonating under one of its modal frequencies, we first extract markers from

each frame and use standard curve-fitting techniques to reconstruct the modal shape.

The second phase uses specific WT-based damage detection algorithms to detect and

locate damage on the structure. This process is illustrated in Figure 1.

2.1. Marker-Based Modal Shape Acquisition

There are two key design considerations in the marker extraction stage for damage

detection: accuracy and efficiency. This is achieved by extending the Hough Transform

(HT) to sub-pixel accuracy and proposing marker registration via a tracking-by-

correspondence framework. Accurate marker positions yield more accurate modal
shapes which in turn enable more robust detection; whereas, efficiency not only increases

applicability of the damage detection framework, but also plays an important part in

real-time monitoring applications.

Classical HT [18] and its variants generally locate features having pure geometric

shapes, i.e, lines, circles and squares. Because of the geometric nature of Hough

features, HT is more tolerant to discontinuities and more robust to noise than marker-
less feature extraction techniques [18]. Although modern computer vision algorithms

can detect points of interest in a range of applications such as 3D reconstruction and

object recognition, they are still prone to the influence of outliers and post-processing

is commonly required. However, combining markers and HT can lead to more robust

detection. The HT can also be computed very efficiently, in real-time [19].

For our purposes, we use the Circular Hough Transform (CHT) to detect the
position of markers deployed on a structure. CHT determines the radius, R, of a

circle by locating points that lie on its perimeter. The idea behind CHT is that a

point, (x, y), in image space corresponds to a circle of radius R centred at (a, b) in the

parameter space. The parametric form of a circle is often used:

x = a +R cos(θ) (1)
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(a) marker extraction on a cantilever beam clamped at right hand side

(b) standard HT result, close-up of three markers

(c) sub-pixel HT result, close-up of three markers

Figure 2. Marker extraction result (Beam Material: CFRP, Beam Length: 463mm,
Mode Number: 2, Marker spacing is 10mm)

y = b+R sin(θ) (2)

where R is the unknown radius and (a, b) is the centre. θ determines the location of

a point, (x, y), on the circle’s perimeter. The triplet (a, b, R) constitutes the Hough

parameter space of an image and a CHT algorithm searches such a space to locate

circles. A voting procedure is then carried out to build an accumulation array, A,
where local maxima corresponds to circle centres in the image space. A is a two-

dimensional accumulator array that has the same size as the input image and each

dimension corresponds to quantised values for a and b.

Figure 2(a) shows a series of markers on the edge of a cantilever beam which is fixed

at the right hand side of the image. Circle centres detected using standard CHT are

often offset from the actual centre, as can be seen in Figure 2(b). This is largely due to
the limit in the spatial resolution of images; an inevitable result of the discrete sampling

nature of digitised images. However, more accurate localisation of markers makes them

more able to deliver modal shapes that can be reliably used to detect damage.

We therefore extend the standard HT algorithm to sub-pixel accuracy to yield

more accurate signals. We follow a similar approach to that developed by Lowe [20],

but modified to find sub-pixel locations of circle centres. The method works with a
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Difference of Gaussians (DoG) scale-space:

D(x, y, σ) = G(x, y, kiσ) ∗ I(x, y)−G(x, y, kjσ) ∗ I(x, y) (3)

where I is a greyscale image (two-dimensional array of pixel intensities), G(x, y, kiσ) is

a Gaussian blur kernel centred around point (x, y) of scale ki (i < j are kernel scale
indices and σ is the ‘octave’ scale) and ‘∗’ stands for the convolution operation. Here,

we use the previously calculated Hough accumulation array, A, as the input image,

I = A. The true maxima of A are then estimated by interpolating neighbouring pixels

of each provisional one and fitting a 3D quadratic function to them. A Taylor expansion

(up to the quadratic term) of the DoG scale-space function D(x, y, σ) is used for this

interpolation, which is given by:

D(x) = D +
∂D

∂x

T

x+
1

2
xT ∂

2D

∂x2
x, (4)

where D, ∂D/∂x and ∂2D/∂x2 are evaluated at the provisional centre c̄, obtained via

the standard HT. The algorithm then seeks to find a suitable offset x = (x, y, σ) that

moves c̄ to its true centre ĉ. It follows that its extremum, x̂, can be found by taking the

derivative of D(x) with respect to x and setting it to zero, giving

x̂ = −
∂2D(x)

∂x2

−1∂D(x)

∂x
. (5)

If x̂ is larger than a threshold in any of its three dimensions, the candidate centre is
updated to be the new offset point where the same interpolation procedure is performed

again; otherwise, the offset is desirable, hence used to find the true maximum using

ĉ = c̄+ x̂.

The results of the above sub-pixel accuracy circle detection algorithm are shown

in Figure 2(c). As can be seen, the refined centres offer a better localisation than the

classical method (Figure 2(b)). The benefits of sub-pixel HT will be quantified later in
the paper.

Using the extracted markers, modal shapes can be constructed using spline fitting.

More specifically, given a set of markers, denoted by P = {p1,p2, ...,pn} where n is the

total number extracted, the corresponding modal shape is generated by fitting a cubic

interpolating spline S to P , so that

S(ri) = pi, ri ∈ [0, 1]

Figure 3(a) shows a modal shape of a cantilever reconstructed using the above spline

interpolation procedure (the modal shape is drawn in yellow with markers in red). A

close-up of part of the same modal shape is provided in Figure 3(b). It can be seen that

the spline (yellow) reconstructed using the sub-pixel accuracy markers (red) is smooth
and rests near the true median axis of the beam (a quantitative experiment shortly

follows).

Numerically calculated modal shapes (e.g. via finite element analysis) are perfectly

smooth splines, therefore, their experimental realisations should also be smooth.

Here ‘smooth’ stands for the lack of local discontinuities on modal shapes. Local
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(a) modal shape via spline fitting, beam is clamped at right hand side

(b) zoomed-in section of the modal shape in (a)

Figure 3. Modal shape reconstruction result (Beam Material: Steel, Beam Length:
463mm, Mode Number: 2, Marker spacing is 10mm)

Figure 4. Modal Shapes: sub-pixel accuracy marker extraction (yellow) vs. standard
HT (green), Marker spacing in 10mm

discontinuities often make analysis difficult and can generate false positives in damage

detection algorithms [21]. Figure 4 offers a qualitative comparison between modal shapes

acquired using our sub-pixel HT(yellow) and using standard pixel level HT(green). It is
observed that standard HT yields modal shapes that tend to vary locally, whereas the

one reconstructed using our method appears to be smoother.

To quantify the benefit of our sub-pixel HT modal shape construction method, we

conduct an experiment using the mean curvature of a spline to measure the ‘smoothness’

of a modal shape, in which, we compare the shapes computed using our sub-pixel HT

approach against those obtained via standard HT. For the nine beams used in the
damage detection experiment (details appear in Section 3.1), we calculate the mean

curvature for each beam resonating under mode 2. The results are summarised in

Table 1, where improvements in smoothness over modal shapes obtained via standard

HT can be observed for every beam. It is this improvement in overall modal shape

smoothness that enables more accurate damage detection results, as Section 3 will later

show.
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Table 1. Overall Mean Curvatures of All Nine Tested Beams (see Section 3.1)

Beam ID Overall mean cur-

vature of sub-pixel

HT

Overall mean cur-

vature of standard

HT

Improvement over

standard HT (%)

Steel beam 1 13.45 65.88 79.58%

Steel beam 2 15.42 62.19 75.20%

Steel beam 3 21.32 64.33 66.86%

CFRP beam 1 15.21 66.93 77.27%

CFRP beam 2 21.12 60.09 64.85%

CFRP beam 3 11.45 65.38 82.48%

CFRP beam 4 20.83 59.17 64.79%

CFRP beam 5 13.99 60.90 77.01%

CFRP beam 6 14.49 68.86 78.95%

2.2. Damage Detection using Wavelets

We employed a wavelet-transform (WT) based algorithm to perform damage detection

on the modal shapes acquired from the sub-pixel markers. In contrast to Fourier
analysis where time (space) information is lost, wavelets are located in time (space)

and have ‘windows’ of variable size. These characteristics allow WT to reveal important

information buried within signals that other techniques fail to detect. For example, in

the context of damage detection, space information needs to be retained for localisation

and damage may only be detected at various scales, rather than just one.

We utilize both the discrete and continuous variants of WT: Continuous WT
(CWT) offers accurate localisation of damage; whilst Discrete WT (DWT) delivers

noise filtering, which is essential in experimental modal shape acquisition. A CWT of a

function u(t) [22] is defined as:

CWT (τ, S) =
1

√

|S|

∫

u(t)ψ∗(
t− τ

S
)∂t, (6)

where τ is the translation parameter, S is the scale parameter, u(t) is the signal to be

analysed (t being time/space) and ψ∗ is called the ‘mother wavelet’ — a family of source

functions that satisfy the admissibility criterion and the daughter wavelets (those after

convolution) are simply the translated and scaled versions of it.
Similar to Rucka et. al. [21], we use “db4” of the Debauchies family of wavelets to

perform both DWT and CWT. Other researchers have investigated alternative families

of mother wavelets, such as the “gauss” family [9], however, in our studies “db4” gave

the better indication of the existence of damage. Specifically, we set u(t) = s and

S = 1 − 3 in Equation 6 and damage is located where the CWT coefficients find their

global maximum.
In general, CWT provides a measure of similarity between the mother wavelet and
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the signal. The calculated wavelet coefficients reflect the strength of the correlation

between the signal and the mother wavelet at a given scale. Given a modal shape,

s, reconstructed using extracted markers, damage can be detected by treating s as a

time signal and performing a CWT as in Equation 6. Since CWT is naturally sensitive

to local discontinuities, it performs best on simulated data where noise is not an issue

and the only discontinuity on the modal shape corresponds to the damage location.
However, in experimental modal acquisition, measurement noise is inevitable, which

can contaminate wavelet responses and make damage assessment inconclusive.

To this end, we also evaluate the modal shapes obtained using DWT [8]. DWT

differs from CWT by digitizing the scale parameter, S and the translation parameter,

τ from Equation 6, giving:

Ψ(t) =
1√
S
Ψ( t− pτS

S
), (7)

where the following dyadic sampling is often performed [23]:

S = 2o, τ = 2op

where o, p ∈ Z with Z being the set of all positive integers.
An important characteristic of DWT is that of multi-resolution analysis, where

signals are broken down into detail and approximation components at each level of the

dyadic space. Information that is often not apparent can be reviewed on different levels

of a multi-resolution decomposition.

In this work CWT was used after breaking the signal down using DWT. From our

damage experiments (Section 3) the third level detail DWT signal gave the best results
compared to other levels; a conclusion confirming observations in [21].

3. EXPERIMENTS AND RESULTS

We evaluate the performance of the proposed damage detection methodology using

data obtained experimentally and via finite element analysis (FEA). In addition, we

also investigate the effectiveness of our methodology on two materials: steel (isotropic)
and a CFRP laminate (anisotropic), and the two types of damage commonly associated

with each material, cracks and delaminations, respectively.

3.1. Experimental setup

We use a cantilever beam of length 463mm, with one end attached to a shaker and the
other end free to oscillate, and a slow-motion camera (FASTCAM SA3 model 120K-M2)

to record the motion of the beam. A picture of such a setup can be found in Figure 5.

The following materials were evaluated:

(i) Three steel beams of dimension 2.35mm× 61.5mm × 463mm, each with a machined

notch 5mm wide of increasing depths (5%, 28% and 50% respectively) at a distance
of 149mm (1/3 of the total length) from the free end (see Figure 6 for a schematic).
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Figure 5. Picture of the cantilever beam setup, fixed end is attached to a mechanical
shaker

Figure 6. Schematic diagram of the three steel beams

Of these, the two higher damage levels are primarily to illustrate clearly the function

of the detection method and much greater than is likely to be sustained as “damage”

in a real situation. However, although 5% of 2.35mm is small in absolute terms,
it remains relatively large as a percentage of whole thickness and so may not be

characteristic of incipient damage.

(ii) Six (0/90/0/90/0)s CFRP laminate beams of dimension 2.35mm × 61.5mm

× 463mm, made from Hexcel T700/M21; a 30mm wide delamination was

manufactured in the middle layer of three beams (“centre delaminate”) and between

the first and second layers for the other three beams (“outer delaminate”). Each
delamination type was placed at three locations: 1/3, 1/2 and 2/3 from the free

end respectively (see Figure 7 for a schematic of a beam with centre delamination).

The delamination was created by inserting a PTFE tape during layup. In contrast

to the nature of the damage in the steel beam, it is particularly interesting to detect

hidden delamination defects in composites which can develop during manufacture

or in-service which can be larger than incipient cracks in metals. For example, the
30mm delamination is 10% of length and represents a relatively realistic damage

feature for this kind of material.

For each of the experimental beams, 48 white circular markers were placed along

its edge (Figure 2a). A slow motion camera with a spatial resolution of 1024 × 256 and

frame rate of 2000 fps was used to record the motion of each test structure.
FEA models were created corresponding to each of the damaged steel and

delaminated CFRP beams and used as ‘ground truth’ to compare with the experimental

results. The FEA models were constructed using Ansys 12.1, and specified as follows:
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Figure 7. Schematic diagram of one of the (0/90/0/90/0)s CFRP beams with central
delamination

(i) steel beam: uses the BLC4 element type, with a Young’s modulus of 208 GPa

and Poisson’s ratio of 0.3. (ii) CFRP beam: uses the PLANE42 element type, with

Ex=136GPa, Ey=8.9GPa, Ez=8.9GPa, Poisson’ Ratio of 0.35 and Gxy of 4.5GPa.

Individual layers were created to represent the (0/90/0/90/0)s layup of the 10-ply
laminate and air gaps in the model where introduced to represent the delamination.

For both models, boundary conditions were applied to represent the attachment of one

end of the beam to the shaker. Modal analysis was conducted to examine the beam

shape at the first two modal frequencies. Nodal positions were extracted to form the

modal shape of the damaged structures and 194 nodal displacements were extracted

from each FEA modal shape. A cubic spline was fitted to the displaced nodal points in
the same manner as the experimental beams.

The damage detection results are presented in each case through three sets of

graphs. The first set demonstrate the effectiveness of the wavelet approach to detection

and location in an isotropic and an anisotropic setting, by showing experimental results

computed at sub-pixel accuracy. The second set shows the results computed using the

FEA models. The side-by-side comparison of these two confirms earlier results of [24],
and extends their findings in terms of accuracy. Accuracy is the motivation for the

third set of graphs, which demonstrate the critical role played by the sub-pixel, versus

the pixel-based, Hough transform, where we show that the latter generates inconclusive

signals for anything except relatively severe damage.

3.2. Detection Results for Steel Beams

The graphs for the steel beams (beam length: 463mm, mode number: 2) are given in

figure 9. Figures 9(a)–9(c) shows the damage severity and location captured from the

video of the beams, using the sub-pixel accurate Hough transform, with damage levels

of 5%, 28% and 50%, and modal frequencies of 66.5Hz, 65.9Hz and 63.2Hz, respectively.

Figures 9(d)–9(f) shows the same results, but derived from the FEA model for the same

damage levels. This comparison demonstrates the performance of the sub-pixel Hough
transform in an experimental setting against the ideal situation represented by the FEA

model. In all these graphs, the x-axis denotes the length of the beam (normalized by

the total length), the y-axis represents the wavelet scale and the z-axis is the coefficient

values. Figures 9(g)–9(i) use the standard (pixel accurate) Hough transform, again
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(a) An example modal shape (mode 2) of one FEA beam
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(b) An example modal shape (mode 2) of one experimental beam

Figure 8. A comparison of modal shapes acquired numerically (top) and
experimentally (bottom). The right hand side is fixed to the shaker.

with damage levels of 5%, 28% and 50%. This allows comparison with both sub-pixel

and FEA and demonstrates the increased accuracy achieved by means of the sub-pixel

Hough transform.
Experiments were also conducted using the first modal shapes with similar results.

Second modal shapes are preferred mainly because they exhibit more local bending that

highlights better the damage response. Figure 8 compares numerical and experimental

modal shapes. CWT coefficient plots of the three beams under its second mode of

resonance are shown in figure 9(a)–9(c) using sub-pixel HT. The coefficients are plotted

as height maps where larger values simply correspond to observable peaks. For 28% and
50% damage, the CWT coefficient clearly peaks in the vicinity of the machined notch,

i.e., 1/3 of the total length of the beam from the free end where x = 0. The 5% damaged

beam is less conclusive. Corresponding results from the second mode of resonance shapes

from FEA are given in figures 9(d)–9(f). As can be seen, they correlate well with the

results from physical experiments. It is worth noting that the magnitude of the peak of

the wavelet coefficient (i.e., peaks that correspond to damage locations) appears to grow
proportionally with the degree of damage (5%, 28% and 50%). Overall, because of the

noise-free nature of the FEA numerical data, coefficient height maps in figure 9(d)–9(f)

tend to be smoother than those from the experiments in figures 9(a)–9(c).

To demonstrate the importance of the use of sub-pixel HT, we compare results using

sub-pixel HT in figure 9(a)–9(c) and standard (pixel accurate) HT in figure 9(g)–9(i).

Pixel accurate HT produces inconclusive results on beams with 5% and 28% damage,
where wavelet coefficient peaks are both insignificant and noisy, in contrast to the sub-

pixel results that more readily identify and locate the damage. Damage is however

detected on the beam with 50% damage using the standard HT, a result that confirms

the conclusions of Rucka and Wilde [24] who observed a detection limit at 50% material

removal.



N
o
n
-in

va
sive

d
a
m
a
ge

d
etectio

n
in

bea
m
s
u
sin

g
m
a
rker

extra
ctio

n
a
n
d
w
a
velets

13

Distance to the free end (percentage)

W
a
ve

le
t 
co

e
ff
ic

ie
n
t

Wavelet scale

(a) Steel, notch depth: 5%, sub-pixel HT

Distance to the free end (percentage)

W
a
ve

le
t 
co

e
ff
ic

ie
n
t

Wavelet scale

(b) Steel, notch depth: 28%, sub-pixel HT

Distance to the free end (percentage)

W
a
ve

le
t 
co

e
ff
ic

ie
n
t

Wavelet scale

(c) Steel, notch depth: 50%, sub-pixel HT

Distance to the free end (percentage)

W
a
ve

le
t 
co

e
ff
ic

ie
n
t

Wavelet scale

(d) Steel, notch depth: 5%, FEA

Distance to the free end (percentage)

W
a
ve

le
t 
co

e
ff
ic

ie
n
t

Wavelet scale

(e) Steel, notch depth: 28%, FEA

(f) Steel, notch depth: 50%, FEA

(g) Steel, notch depth: 5%, standard HT

(h) Steel, notch depth: 28%, standard HT

(i) Steel, notch depth: 50%, standard HT

Figure 9. Damage detection results for steel beam using sub-pixel HT 9(a)–9(c), FEA model 9(d)–9(f) and standard HT 9(g)–9(i). The
axes in each case are x: wavelet scale, y: Distance to the fixed end (percentage) and z: wavelet coefficient
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(f) CFRP, centre, 2/3, FEA

(g) CFRP, centre, 1/2, standard HT

(h) CFRP, centre, 1/3, standard HT

(i) CFRP, centre, 2/3, standard HT

Figure 10. Damage detection results for CFRP beam with centre layer delamination using sub-pixel HT 10(a)–10(c), FEA model 9(d)–
9(f) and standard HT 10(g)–10(i). The axes in each case are x: wavelet scale, y: Distance to the fixed end (percentage) and z: wavelet
coefficient
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(f) CFRP, outer, 2/3, FEA

(g) CFRP, outer, 1/2, standard HT

(h) CFRP, outer, 1/3, standard HT

(i) CFRP, outer, 2/3, standard HT

Figure 11. Damage detection results for CFRP beam with outer layer delamination using sub-pixel HT 11(a)–11(c), FEA model 11(d)–
11(f) and standard HT 11(g)–11(i). The axes in each case are x: wavelet scale, y: Distance to the fixed end (percentage) and z: wavelet
coefficient
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3.3. Detection Results for Composite Beams

We assessed six CFRP laminates with various delamination defects of 30mm in length
as detailed in Section 3.1. Figures 10(a)–10(c) give damage detection results for three

CFRP beams where the delamination was located within the middle layer at a distance

of 1/2, 1/3 and 2/3 from the free-end, where x = 0. Figures 11(a)–11(c) show data for

three further CFRP beams, where the delamination is between the first and second layer

at a distance of 1/2, 1/3 and 2/3 from the free-end. The corresponding figures 10(d)–

10(f) and 11(d)–11(f) give the results using the FEA model.
As can be seen in both Figures 10 and 11, in all cases, a strong peak of wavelet

coefficients is observable where the delamination is located in both the experimental

and finite element data. As observed for the steel beams, FEA results offer noise-

free responses compared to physical beams. However, unlike the isotropic steel beams

where the heights of wavelet coefficient peaks grows proportionally with the degree of

the damage, the rather different nature of the damage on CFRP beams triggers some
notable differences in the wavelet responses:

(i) The response appears to contain two neighbouring peaks, rather than a single one

peak observed for the steel beams, this effect is particularly apparent in Figure

10(b), which can lead to errors in damage location identification. The reason behind
such a behaviour potentially lies with the nature of delamination damage where

local discontinuities occur at the boundaries of the actual delamination. This also

confirms experimental conclusions from recent work by Wang et. al. [13].

(ii) Wavelet coefficients tend to be less noisy on beams with outer layer delamination

damage compared to those with centre delaminations, which is also the case with the

finite element data. This is best seen when comparing figure 10(b) and figure 11(b).

(iii) Damage also tends to be more readily detected closer to the fixed end of the

beam, where the structure undergoes more strain. Figures 10(b) and 10(c), and

figures 11(b) and 11(c) both illustrate such an effect.

The combination of modal shape reconstruction and WT is able to detect the

delaminations of the order of 30mm in these CFRP structures.

4. CONCLUSIONS

This paper presents a novel non-invasive damage detection system that utilises a

camera, markers and a modal shape reconstruction algorithm based on computer vision

techniques. The acquired modal shapes are used as an input into a WT-based algorithm

to detect and locate damage. The system benefits from a novel sub-pixel HT extraction

algorithm that is both accurate and efficient. For steel beams, notch depths of 5%,
28% and 50% were detected using sub-pixel HT and 30mm delaminations were detected

in central and outer layers of a composite laminate. For future work, smaller notch

depths and finer spatial resolution of damage need to be investigated, but these contain

significant challenges in the form of enhancing sensitivity to lighter damage at the same
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time as reducing incidence of false positives. A further set of experiments are required

to explore the the sensitivity of the modal shape reconstruction process to the relative

positions of damage to features of the modal shape.

Our work confirms the applicability of cameras for SHM and NDE applications when

combined with modern computer vision techniques. The approach enables structural

health monitoring of structures without the need for attaching accelerometers/strain
gauges or employing laser positioning systems. A single camera node could potentially

capture a number of markers and efficiently transmit the acquired data across a network.

The methodology could further be applied to: (i) the processing of the camera

data in the temporal domain, for example, linking the markers extracted in time to

enable dynamic testing of structures; (ii) quantifying the observed correlation between

wavelet magnitudes at damage locations and the degree of damage; (iii) extending the
algorithm to characterise more types of damage on composite materials, such as the

layer of damage and not just its location.
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