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Abstract  

Kappa-opioid receptor () antagonists are potential therapeutic agents for a range of 

psychiatric disorders. The feasibility of developing -antagonists has been limited by the 

pharmacodynamic properties of prototypic -selective antagonists, that is, they inhibit 

receptor signalling for weeks after a single administration. To address this issue, novel trans-

(3R,4R)-dimethyl-4-(3-hydroxyphenyl) piperidine derivatives, based on JDTic, were 

designed using soft-drug principles. The aim was to determine if the phenylpiperidine-based 

series of -antagonists was amenable to incorporation of a potentially metabolically labile 

group, whilst retaining good affinity and selectivity for the -receptor. Opioid receptor 

binding affinity and selectivity of three novel compounds (BU09057, BU09058 and 

BU09059) were tested. BU09059, which most closely resembles JDTic, had nanomolar 

affinity for the -receptor, with 15-fold and 616-fold selectivity over  and receptors, 

respectively. In isolated tissues, BU09059 was a potent and selective -antagonist (pA2 8.62) 

compared with BU09057 (pA2 6.87) and BU09058 (pA2 6.76) which were not -selective. In 

vivo, BU09059 (3 and 10 mg/kg) significantly blocked U50,488-induced antinociception and 

was as potent as, but shorter acting than, the prototypic selective -antagonist  norBNI. These 

data show that a new JDTic analogue, BU09059, retains high affinity and selectivity for the 

-receptor and has a shorter duration of -antagonist action in vivo.  

 

 

Keywords. kappa-opioid receptor, kappa antagonist, mu antagonist, norBNI, tail-withdrawal 

assay, CD-1 mouse  
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Introduction  

Kappa-opioid receptors () are Gi/o-coupled receptors that are activated by the neuropeptide 

dynorphin (1). Both prodynorphin, the precursor for dynorphin peptides, and -receptor 

expression is high in the brain structures underlying emotional control and stress responses, 

including brainstem nuclei, amygdala, hippocampus, and cortical regions (2-4). -agonists 

induce dysphoric responses in humans and aversive responses in rodents (5-7) whereas -

antagonists, -receptor gene deletion or prodynorphin gene disruption block stress-induced 

behavioural responses (8, 9). Hence there is growing interest in antagonists as potential 

therapeutic treatments for a variety of psychiatric diseases, including substance misuse and 

mood disorders (10, 11).  

 

High affinity, selectiveantagonists have an unusual pharmacodynamic property that is not 

well understood. A number of high affinity, selective, nonpeptidic antagonists have been 

identified, including (3R)-7-hydroxy-N-[(1S)-1-[[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-

1-piperidinyl]methyl]-2-methylpropyl]-1,2,3,4-tetrahydro-3-isoquinoline-carboxamide 

(JDTic), 5’guanidinonaltrindole (GNTI) and norbinaltorphimine (norBNI) (12-14). However, 

these compounds all have very long-lasting effects in vivo. For example, a single dose of a 

selective antagonist, such as JDTic, has peak effects at 7 days and long-lasting receptor 

blockade up to 21 days post-injection (15). Diverse mechanisms have been proposed to account 

for this unusual long duration of action of selective antagonists (13). For example, it has been 

suggested that -antagonists are lipophilic and may form depots in the neuronal membranes 

which may lead to slow clearance of -antagonists from the brain. An alternative mechanism 

for the long-lasting action of antagonists is that they are resistant to metabolic pathways or 

produce metabolites that are active at the receptors, although little is known about the 
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metabolism of these compounds (13). More recently, -antagonists have been shown to produce 

ligand-directed signalling at the -receptor, with long-lasting -antagonists producing a c-Jun 

N terminal kinase (JNK) mediated inactivation of the -receptor (16, 17).Whatever the 

mechanisms are that account for the long-duration of -antagonist action, such 

pharmacodynamic properties may not be ideal for therapeutic development. Recently, a Phase 

1, first in human clinical trial with JDTic was terminated due to undisclosed adverse effects 

(ClinicalTrials.gov identifier NCT01431586). Therefore, there remains a need to develop 

alternative, including shorter-acting, selective -antagonists.  

 

Our approach has been to investigate whether the phenylpiperidine series of opioid antagonists 

can be modified to produce high affinity, selective -antagonists with a shorter duration of 

action than the prototypic -antagonists. We have synthesised ester containing ligands 

BU09057, BU09058 and BU09059 (Figure 1). The ligands in this study retained the trans-3,4-

dimethyl(3-hydroxyphenyl)piperidine moiety of JDTic, that serves as the message that 

recognises all opioid receptors and the  tetrahydroisoquinoline amino group that confers 

selectivity (address) for -receptors (18). The isopropyl side chain of JDTic has been omitted 

from two of the targets due to the synthetic challenge posed in incorporating it alongside the 

labile functionality.  The amide is replaced by the isosteric, and potentially metabolically labile, 

ester group in BU09057 and BU09058. BU09059 can be considered the closest analogue to 

JDTic, the side chain ester being used to mimic, as closely as possible, the isopropyl group 

present in JDTic.  It was not clear whether changes of this magnitude could be tolerated whilst 

retaining affinity and selectivity for the -receptor. This paper describes the in vitro and in vivo 

characterization of BU09057, BU09058 and BU09059.  
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Results and Discussion  

We have synthesized novel compounds with the aim of developing high affinity, 

selective -antagonists with a shorter duration of action than the prototypic -antagonists, such 

as norBNI. This is important for understanding the neurobiology of -receptors and also for the 

development of novel therapeutics that target -receptors. Novel ligands were designed using 

the structure of JDTic as a starting point (Figure 1). As far as possible, the critical SAR features 

identified by Thomas et al. (18, 19) to be essential for the high affinity and selectivity towards the 

-receptor were conserved. BU09057 and BU09058 both lack the isopropyl side chain found 

in JDTic, while in BU09059 an ester moiety is used to mimic the side chain. Potential sites of 

metabolism were designed within the chain connecting the message and address portions 

(BU09057, BU09058), or in a side chain off the connecting linker unit (BU09059). Like JDTic, 

each of the ligands has properties that would predict access to the brain and thus CNS activity 

(Figure 1). The synthesis and chemical characterization of the novel compounds is described in 

the Supporting Information. All compounds assayed were of ≥ 95% purity.  

 

The affinities of BU09057, BU09058, BU09059, norBNI and GNTI for the -, - and -opioid 

receptors were determined using the competitive [3H]-diprenorphine binding assay (Table 1). 

Of the novel compounds tested, BU09059 had highest affinity for the -receptor (Ki 1.72 ± 4.38 

nM) and showed promising selectivity for  (15 fold) in the range of the standard -opioid 

receptor antagonists norBNI and GNTI. Interestingly, the selectivity of BU09059 for  (616 

fold) far exceeded that of norBNI and GNTI. In this study, norBNI and GNTI appeared to have 

greater binding affinities for  and  receptors than previously published data, thereby reducing 

the apparent selectivity of norBNI compared to the 169-fold  selectivity reported by 

Takemori et al.(20), for example. Here, values were obtained using competitive [3H]-

diprenorphine binding, whereas others have used displacement of agonists such as [3H]-
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DAMGO, [3H]-DADLE and [3H]-ethylketocyclazocine (20) that may recognize different 

moieties  in the receptor-binding pocket and thus different displacement curves might be 

produced and give rise to somewhat different affinity values. Among all the ligands tested, 

BU09057 appeared to have the lowest affinity for both the -receptor (Ki 158.0 ± 20.6 nM) and 

the -receptor (Ki 186.0 ± 110.8 nM) and was not selective for and only weakly selective 

for BU09058 had the highest affinity for -receptors (Ki 6.55 ± 3.43 nM), rather than  

or receptors, and was weakly selective for  fold) but rather greater selectivity for  

(~37 fold). Interestingly, the novel test compounds showed lower affinity for the -receptor 

than the published reports for the parent compound JDTic(21) (Table 1). However, this change 

in binding affinity might be predicted since increasing the length of this side chain in JDTic has 

previously been shown to reduce both the binding affinity and selectivity for the -receptor(22). 

The novel compounds were without                                                                                                                             

agonist efficacy in the [35S]-GTPγS assay. At concentrations upto 10 µM, neither BU09057, 

BU09058 nor BU09059 produced stimulation of [35S]-GTPγS binding in C6- and CHO- cell 

membranes, indicating a lack of any agonist efficacy at  or receptors (n=3).  

 

Antagonist action and potency was confirmed in isolated tissue preparations (Figures 2, 3). 

Electrically-evoked twitches in the isolated guinea-pig ileum were inhibited by approximately 

90% by maximal concentrations of the -agonist U50488 and the -agonist DAMGO. 

BU09057 (150 nM) produced a significant rightward shift in the U50,488 concentration-

response curve (CRC) (control pEC50 = 7.63 (7.81 to 7.39, 95% CI); 150 nM BU09057 pEC50 

= 7.30 (7.34 to 7.25, 95% CI); n = 4; P < 0.01) and of the DAMGO CRC (control pEC50 = 

7.51(7.95 to 7.07, 95% CI); 150 nM BU09057 pEC50 = 6.85 (7.05 to 6.64, 95% CI); n = 4; P < 

0.05), without  significant effects on the U50,488 or DAMGO Emax (Figure 2). Similarly, 

BU09058 significantly antagonised the effects of both U50,488 (control pEC50 = 8.23 (8.62 to 
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7.84, 95% CI); 200 nM BU09058 pEC50 = 7.79 (7.82 to 7.75, 95% CI); n = 4; P < 0.05) and 

DAMGO (control pEC50 = 8.06 (8.38 to 7.74, 95% CI); 100 nM BU09058 pEC50 = 7.74 (7.93 

to 7.55, 95% CI); n = 4; P < 0.05) without affecting Emax (Figure 2). Thus, the - and -

antagonist effects produced were surmountable with increasing concentrations of agonist.  

Antagonist potencies (pA2) were determined by Schild plot analysis, in each case unity was 

within the 95% confidence limits of the slope of the Schild plot (Table 2). These experiments 

demonstrated that BU09057 and BU09058 are moderately potent antagonists at both the - and 

-receptors with no selectivity for either subtype.  

 

In contrast, BU09059 was revealed to be a potent and selective -antagonist in the isolated 

guinea-pig ileum. Increasing concentrations of BU09059 produced reversible progressive 

parallel rightward shifts of the U50,488 CRC (control pEC50 = 7.80 (8.50 to 7.09, 95% CI); 20 

nM BU09057 pEC50 = 6.98 (7.13 to 6.83, 95% CI); n = 4; P < 0.05), without affecting Emax 

(Figure 2). Interestingly, BU09059 had no significant effects on the DAMGO CRC at 

concentrations up to 100nM. The pA2 value for BU09059 at the -receptor was 8.62 (Table2). 

To further investigate the selectivity of BU09059 for -receptors, the mouse vas deferens assay 

was used to examine effects at - and -receptors (Figure 3). Electrically-evoked twitches of 

the mouse vas deferens were inhibited by almost 90% by maximal concentrations of the -

agonist DAMGO and the -agonist DPDPE. At concentrations up to 5 M, BU09059 was 

without significant effect on the DAMGO CRC (control pEC50 = 7.12 (7.22 to 6.98; 95% CI); 

5 M BU09059 pEC50 = 7.09 (7.36 to 6.83; 95% CI); n = 4; P>0.05)  or the DPDPE CRC 

(control pEC50 = 8.92 (9.06 to 8.77; 95% CI); 5 M BU09059 pEC50 = 8.66 (8.89 to 8.44; 95% 

CI); n = 4; P> 0.05).  There was no significant effect of BU09059 on Emax values for both 

DAMGO and DPDPE. Thus, BU09059 possessed negligible antagonist actions at - and -

receptors.  
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BU09059 was considered the closest analogue to JDTic, the ester side chain being slightly 

larger and electronically dissimilar to the isopropyl group of JDTic. Previously, a JDTic 

analogue with slightly increased bulk at this position has been reported to retain high affinity 

and selectivity for the -receptor (14, 23) suggesting that introduction of the ester moiety in 

BU09059 might be well tolerated. Indeed, BU09059 demonstrated the highest affinity (Ki 1.72 

nM), selectivity ( 15-fold;  616-fold) and antagonist potency (pA2 8.62) for the -

receptor among the novel phenylpiperidine-derived ligands tested. Furthermore, there were no 

detectable - or -receptor antagonist effects of BU09059 in isolated tissue preparations at 

concentrations up to 5 μM. Thus, introduction of the ester group appeared to cause only a 

modest disruption of the binding affinity for the -receptor in comparison to JDTic (Ki 0.41 nM 

in cloned human CHO-k cells)(21). This change in binding affinity was expected, since Cueva 

et al. (24) have shown that increasing the length of this side chain in JDTic (from an isopropyl 

to a sec-butyl group) reduces both the antagonist potency and selectivity  for the -receptor by 

13-fold (versus the -receptor) in the agonist stimulated [35S]-GTPS binding assay. In addition, 

BU09059 appeared to be more selective in the functional assays than the binding assays and 

this mirrors the findings for JDTic, which had only 12-fold selectivity in binding assays but 

substantially greater selectivity in functional assays (discussed in (21)). Overall, BU09059 

demonstrated a highly selective -receptor profile that made it particularly interesting for 

further testing in vivo. 

 

Of the phenylpiperidine ligands tested, BU09057 was shown to have the lowest affinity for both 

the -receptor (Ki 158.6 nM) and the -receptor (Ki 475.0 nM) in the [3H]-diprenorphine 

binding assay. In the isolated guinea pig ileum, BU09057 appeared to demonstrate modest 

antagonist potency for both the - (pA2 6.87) and -receptor (pA2 7.01) indicating it was a non-



 9

selective mixed  antagonist. The substitution of the original amide containing chain in 

JDTic, with an ester in BU09057, coupled with loss of the isopropyl side chain, appeared to 

dramatically reduce the affinity for the -receptor (almost 100 fold compared with BU09059). 

Its closest analogue, BU09058 contained a one carbon longer ester linker and, among the novel 

compounds, BU09058 had the highest affinity for the -receptor (Ki 6.55 nM) and the -

receptor (Ki 221.0 nM), with a somewhat reduced affinity for the -receptor (Ki 25.2 nM). 

However, in the isolated guinea pig ileum, BU09058 had a very similar antagonist profile to 

that of BU09057 with modest antagonist potency at both the - (pA2 6.76) and -receptors (pA2 

7.03). The major effect of the structural differences between BU09057 and BU09058 compared 

with BU09059 was loss of selectivity for the -receptor. The profile displayed by BU09057 

and BU09058 may in itself prove interesting as mixed receptor antagonists have recently 

been shown to have anxiolytic- and or antidepressant-like activity in preclinical studies (25). In 

addition, a combination of buprenorphine, a partial  agonist and  antagonist, and a selective 

 antagonist (ALKS33BUP), together providing predominantly  and  antagonism, has 

completed Phase II clinical trials in major depressive disorder patients (ClinicalTrials.gov 

identifier NCT1381107). 

 

For in vivo studies, we first established that intraperitoneal injection in adult CD-1 mice of 1, 

3.2 and 10 mg/kg of BU09057, BU09058 and BU09059 did not produce any adverse behaviours 

over a 48h observation period (n=3, per dose per drug).  The ability of these novel 

phenylpiperidine derivatives to block -receptors in vivo was then examined using the blockade 

of U50,488-induced antinociception in the warm water tail-withdrawal assay in CD-1 mice 

(Figure 4). Tail-withdrawal responses were measured at 1 h, 24h, 7 d, 14 d and 21 d after a 

single injection of test ligand (3 mg/kg or 10 mg/kg).  A 2-way repeated measures mixed model 

analysis revealed a significant main effect of drug treatment (F(8, 63) = 20.76, p < 0.001) and 
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time (F(4, 252) = 20.62, p < 0.001). The interaction between treatment and time was also 

significant (F(32, 252) = 4.83, p < 0.001). 

 

Within-treatment post hoc pairwise comparisons revealed that at 24 h post-injection, BU09057, 

BU09058, and BU09059 (3 and 10 mg/kg) significantly blocked U50,488-induced 

antinociception compared to saline (all p <0.05), demonstrating functional -antagonist activity 

in vivo (Figure 4). However, BU09059 (3 mg/kg), displayed significantly greater blockade of 

U50,488 actions than did norBNI (3 mg/kg, p < 0.05) suggesting that it is more potent or has a 

more rapid onset of action than norBNI. BU09059 (3 and 10 mg/kg) significantly blocked 

U50,488-induced antinociception after 1 h post-injection, maintaining maximal peak until 24 h 

(compared to saline-controls, p < 0.05). At 7 and 14 d post-injection, norBNI continued to 

produce significant blockade of U50,488-induced antinociception (p<0.05, compared to saline) 

consistent with its reported long duration of action in vivo (15). However, BU09059 (3 and 10 

mg/kg) showed significantly diminished antagonist activity, compared to norBNI (at equivalent 

doses, all p < 0.05) at 7 and 14 days post-injection. Overall, these results show a different 

timecourse of effect for the novel phenylpiperidine derivatives compared to norBNI, with 

BU09059 particularly showing a more rapid onset of action and a more rapid reversal of effects 

suggesting that this compound has a shorter duration of action than norBNI. 

 

In vivo BU09059 was equipotent to the prototypic -antagonist norBNI but exhibited a different 

pharmacodynamic profile. Blockade of U50,488-induced antinociception in the tail- 

withdrawal assay by a single injection of norBNI, was effective 1 h post-injection, peaked at 7-

14 d and was significantly diminished by 21 d post-injection, consistent with previous reports 

in the literature  (15, 26). BU09059 had a similar rapid onset of blockade of U50,488-induced 

antinociception, effective 1h post-injection. However, in contrast to norBNI, peak effects of 
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BU09059 were observed at 24h post-injection and significantly reduced by 7 days. On the other 

hand, both BU09057 and BU09058 seemed to produce long-lasting -antagonism at days 7-14. 

These two compounds are the more distant analogues of JDTic, lacking the isopropyl side chain 

entirely. The modification in BU09059, where the isopropyl side chain is replaced with an ester, 

indicates that this connecting linker unit may be structurally important in determining the 

duration of action of -antagonists, as well as influencing -selectivity. 

 

These data suggest that the insertion of the hypothetically metabolically labile ester side chain 

into BU09059 can reduce the duration of -antagonist action while maintaining high affinity 

and selectivity for the -receptor. This approach to achieving shorter-acting compounds by 

integrating hydrolysable ester groups has been successful in a wide range of target drugs, 

including the receptor analgesic remifentanil (27), beta-blockers (28, 29), anticholinergics (30) 

and antiarrhythmic agents (31). The prolonged -receptor antagonist activity of high affinity, 

selective -antagonists such as JDTic has been seen as a limitation towards successful drug 

development for a number of therapeutic indications. A Phase 1, first in human clinical trial 

with JDTic was indeed terminated in 2012 due to undisclosed adverse effects 

(ClinicalTrials.gov identifier NCT01431586). Therefore, there is a need to develop alternatives, 

including shorter-acting, selective -antagonists.  

 

Several new -antagonists have recently been reported with a shorter duration of -antagonist 

activity (32-36). Different approaches have been adopted in the development of these ligands 

with some appearing to be shorter acting because they do not produce prolonged inactivation 

of the -receptor via JNK activation (17). It is not known to what extent a different metabolic 

profile contributes to their shorter duration of action. Until recently, very little was known 

about the metabolism of the long-acting selective -antagonists in mice. JDTic, norBNI and 
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GNTI all bind reversibly to -receptors in vitro and do not form covalent bonds with the 

receptor. Thus, in vitro they are competitive antagonists producing surmountable antagonism, 

although in vivo they are pseudoirreversible antagonists (12). Following intraperitoneal 

administration, JDTic, norBNI and GNTI (all 10 mg/kg) are rapidly absorbed and eliminated 

from the plasma (37). Clearly, plasma concentrations do not parallel the slow onset and long 

duration of -antagonism seen in vivo. These authors argue that their findings support the 

idea that selective -antagonists, with long duration of activity, act to produce an irreversible 

change in the -receptor, such as JNK-mediated inactivation. However, these authors also 

demonstrated that JDTic was only slowly eliminated from the brain, possibly because of 

accumulation in lysosomes, and that this effect might contribute to its long duration of action. 

Munro et al.(37) also demonstrated that JDTic, norBNI and GNTI were hydrophilic with a low 

affinity for brain homogenate suggesting that they were unlikely to form lipid depots or 

nonspecific tissue binding. More recently, norBNI has also been shown to be detectable in 

mouse brain homogenates isolated up to 21 days after intraperitoneal administration (10 

mg/kg), which outlasted its apparent -antagonist activity in the tail-withdrawal assay (38). 

However, the levels of norBNI detected were proven to be below the threshold required to 

produce -antagonism, supporting the idea that the long duration of -antagonist action 

cannot be simply explained by the presence of antagonist in the brain and corresponding 

occupancy of  receptors. BU09059 has a shorter duration of action in vivo than norBNI, 

JDTic and GNTI. While esters are a potential metabolic hotspot in a molecule, they are not 

necessarily easily metabolised, with some being metabolically stable. Furthermore, BU09059 

lacks the isopropyl group present in JDTic and this may contribute to the shorter duration. 

Further determination of the pharmacokinetics of BU09059 in mouse brain and its potential 

metabolic products may provide insights regarding the shorter duration of activity of this 

novel compound. With its shorter duration of action, high selectivity and potent -antagonist 
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action in vivo, BU09059 will be a useful novel tool in understanding the functional role of -

receptors and the chemistry of -receptor-drug interactions.  
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Methods  

Materials. Cell culture reagents were from Gibco Life Sciences (Grand Island, NY). All other 

chemicals were analytical grade and purchased from Sigma-Aldrich except: guanosine-5’-O-

(3-[35S]-thio)triphosphate ([35S]-GTPγS) and [3H]-diprenorphine (Perkin Elmer, MA, USA), 

DAMGO and DPDPE from Abcam Biochemicals. Norbinaltorphimine dihydrochloride 

(norBNI), 5’-guanidinonaltrindole trifluoroacetic acid (GNTI), BU09057, BU09058 and 

BU09059 were synthesised (Figure 1) (>95% purity) in the Department of Pharmacy and 

Pharmacology, University of Bath.  

 

Synthesis and chemical characterization of BU09057, BU09058 and BU09059. The 

compounds were prepared from (+)-(3R,4R)-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine 

(purchased from Astatech Inc and used as received) as described within the Supporting 

Information. 7-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid was purchased 

from Acros Organics and other reagents and solvents were from Sigma Aldrich. NMR 

spectra were obtained on a JEOL Delta-270MHz instrument with TMS as internal 

standard. ESIMS, microTOF (Bruker). Ligands were tested as their hydrochloride salts, 

formed by adding 5N HCl in isopropanol to an ether solution of the compound until just 

acidic. 

 

Animals. Experiments were performed in accordance with UK Home Office guidelines and the 

Animals (Scientific Procedures) Act 1986. Adult (8-9 weeks, 27-38 g) male CD-1 mice, from 

Charles River (Crl: CD1(ICR)) and bred at the University of Bath, were housed in groups of 3-

4 in cages provided with a shelf, wood shavings and nesting material. The colony rooms were 

held under a 12 h light/ dark cycle (lights on at 07:00), at 20 ± 2°C with ad libitum food and 
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water. Adult, female, Dunkin Hartley guinea-pigs (300–350 g, Harlan UK) were housed in open 

floor pens at 19 ± 2°C, on 12 h light/dark cycle with ad libitum food and water.  

 

Cell membrane preparation.   Cell membranes were prepared from C6 rat glioma cells 

stably transfected with the rat -receptor (C6-;) or receptor (C6-;  and CHO cells stably 

expressing the human -receptor (CHO-(39-41). 

 

[3H]-Diprenorphrine competitive binding assay.  Membranes (20 g) were incubated in 50 

mM Tris-HCl, pH 7.4 with a saturating concentration of [3H]-diprenorphine (0.2–0.3 nM) in 

the absence or presence of test compounds (norBNI, GNTI, BU09057, BU09058, BU09059) 

with a concentration range of  0.1 pM to 1 M, for 1 h, in a shaking water bath at 25°C. 

Nonspecific binding was measured using 50 µM naloxone. Samples were filtered through 

GF/C glass-fibre filtermats mounted on a Brandel cell harvester and rinsed with 4°C 50 mM 

Tris-HCl, pH 7.4 buffer. Filtermats were dried and radioactivity in each sample area was 

counted. Three triplicate determinations were carried out for all compounds at each opioid 

receptor. Data were analysed using Prism 5.0 (GraphPad Software, CA, USA) to determine Ki 

values from the IC50 values using the Cheng-Prusoff equation.  

 

[35S]-GTPγS assay.  As described previously (42), C6-µ/δ or CHO-k membranes (20 µg) were 

incubated in 20 mM Tris-HCl, pH 7.4 buffer containing (mM) 5 MgCl2, 100 NaCl, 2.2 

dithiothreitol, 30 µM GDP, 0.1 nM [35S]-GTPγS, and 1pM to 10M test compound 

(BU09057, BU09058, BU09059), 10 µM U69,593 or 10 µM DAMGO or Super Q H2O. The 

membranes were incubated for 60 min in a shaking water bath at 25°C. Samples were filtered 

through GF/C glass-fibre filtermats and then processed as described above. [35S]-GTPγS 

stimulation by test compounds was expressed as a percentage of the stimulation by 10 µM 



 16

U69,593 or DAMGO for the - and -receptor, respectively. The -receptor agonist activity 

of the novel compounds was not evaluated because of the very low affinity of the compounds 

for the -receptor compared to the - and -receptors. Data were analysed using Prism 5.0 

(GraphPad Software, CA, USA). 

 

Isolated tissue preparations. Guinea pigs were killed by CO2 euthanasia. Approximately 3 cm 

of ileum was mounted, under 1g tension, in a 35 ml organ bath at 37°C containing gassed 

(95%O2 / 5%CO2) Krebs solution (mM): 118 NaCl, 11.6 glucose, 25 NaHCO3, 4.7 KCl, 1.2 

KH2PO4, 1.2 CaCl2.6H2O, 1.2 MgSO4.7H2O. Electrical field stimulation (100 V, 1 ms pulse 

duration, 0.033 Hz) via platinum wire electrodes (Grass S-D9 stimulator), was applied for 40 

min prior to drug addition. Twitch contractions were recorded using an isotonic transducer 

connected to Powerlab/200 and Chart software (AD Instruments).  

 

The vas deferens was isolated from CD-1 mice, killed by CO2 euthanasia. Tissues were 

mounted, under 0.5g of tension via an isometric transducer, in a 5 ml organ bath containing 

gassed (95%O2 / 5%CO2) Mg2+-free Krebs solution at 37°C. A grass S-88 electrostimulator 

was used to deliver a 25 ms train of pulses (3 pulses, 10 ms apart, 1 ms duration) at a frequency 

of 0.05 Hz. Twitches were recorded using a Powerlab 4/26 and Chart software (AD 

Instruments). 

 

Cumulative concentration response curves (CRCs) were constructed for the -agonist U50-488 

(1nM-1M) or the -agonist DAMGO (0.1 nM –1 M) or the -agonist DPDPE (0.1nM-

0.1M), in the absence and presence of increasing concentrations of test ligands; BU09057, 

BU09058 and BU09059. Following each CRC, tissues were washed until twitch amplitudes 

returned to baseline. Agonist CRCs were repeated after incubation with antagonist for 30 min. 
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An individual tissue was only exposed to one antagonist to avoid potential carryover effects. 

Agonist responses were calculated as percentage maximal response: (average baseline twitch - 

average agonist response twitch)/(average baseline twitch - average maximum agonist 

inhibition of twitch) x 100. Agonist potency was determined as the negative logarithm of the 

concentration required to produce 50% of the maximum response (pEC50).  Shifts of the agonist 

concentration-response curve by the presence of a competing ligand (agonist pEC50 values, 

Emax values)  were compared by a one-way ANOVA followed by Dunnett’s post hoc test. 

Probability p < 0.05 was taken to be statistically significant.  The concentration ratio for the 

rightward shift of the agonist curve in the presence of antagonist was used to calculate the pA2 

from a Schild linear regression plot (43). Values are reported as mean ± SEM or mean ± 95% 

confidence interval (CI) for each treatment group. 

 

 

Establishing non-toxic doses in vivo. Drugs were dissolved in 0.9% w/v saline solution and 

administered via intraperitoneal injection at volumes of 10 mL/kg. Toxicity of BU09057, 

BU09058 and BU09059 was assessed in naïve mice using a step-wise minimal numbers 

approach, starting at a low dose (1 mg/kg) and monitoring of behaviours (including respiration 

rate, posture, locomotor behaviour, pilo erection) (44). If no toxicity was seen, higher doses up 

to 10 mg/kg were administered in step-wise increments. 

 

Warm water tail-withdrawal test. In vivo studies commenced at 10:00 am. Mice were 

positioned vertically and ~2 cm of the tail placed into a beaker of warm water (50oC). The 

control tail-withdrawal latency was measured 30 min after saline injection (45). Subsequently, 

the agonist U50,488 (10 mg/kg) was administered and the test latency measured 30 min later. 

A cut-off time of 15 s was used to prevent tissue damage. Antinociception was calculated as 
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percent maximum possible effect (% MPE) = (test latency - control latency) / (15 s - control 

latency) x 100. Mice were pre-treated with 0.9 % w/v saline, norBNI, BU09057, BU09058 and 

BU09059 (3 and 10 mg/kg) to assess their ability to block U50,488 induced antinociception in 

the tail-withdrawal test at 1h, 24 h, 7, 14 and 21 days post-injection. Data were analyzed using 

a 2-way repeated measures mixed model approach, with treatment factor “Treatment” and 

repeated factor “Time” using InVivoStat software (46). Planned pairwise comparisons were 

made and Bonferroni’s correction for multiple comparisons applied. Values are reported as 

mean ± SEM or mean ± 95% confidence interval (CI) for each treatment group. 

 

Supporting Information Available: The details of synthesis and chemical characterization of 

the novel compounds is included. This material is available freeof charge via the Internet at 

http://pubs.acs.org 

 

 

Abbreviations: ANOVA, analysis of variance; CRCs, concentration response curves; , delta 

opioid receptor; GNTI, 5’guanidinonaltrindole;  JDTic, (3R)-7-Hydroxy-N-((1S)-1-[[(3R,4R)-4-

(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl]-2-methylpro pyl)-1,2,3,4-tetrahydro-3-

isoquinoline carboxamide; JNK, c-Jun N terminal kinase; norBNI, norbinaltorphimine;  , kappa 

opioid receptor; , mu opioid receptor; % MPE, percent maximum possible effect; U50,488, 

(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide 
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Table 1. Summary of antagonist affinity and selectivity for -, - and -receptors in the 

competitive [3H]-diprenorphine binding assay.  

 

Ligand Ki (nM) -selectivity 

    

JDTica 0.41 ± 0.10 0.96 ± 0.0 29.6 ± 11.9 2 72 

NorBNI 0.29 ± 0.02 1.99 ± 2.38 0.46 ± 0.09 14 2 

GNTI 0.37 ± 0.16 4.74 ± 1.96 2.86 ± 1.45 13 8 

BU09057 158.6 ± 20.6 186.0 ± 110.8 475.0 ± 175.0 1 3 

BU09058 25.2 ± 8.2 6.55 ± 3.43 221.0 ± 137.0 <1 9 

BU09059 1.72 ± 4.38 26.5 ± 8.4 1060.0 ± 320.0 15 616 

 

Ki values were determined by competitive displacement of [3H]-diprenorphine (0.2 nmol·L-1) 

binding in CHO-, C6- and C6-cell membranes. Values are the mean ± SEM of n=3 in 

triplicate experiments. a Values previously reported and obtained using cloned human opioid 

receptors transfected into CHO cells(21).                                          
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Table 2. Summary of antagonist potency at - and -receptors in the isolated guinea-pig 

ileum preparation 

 

Ligand Antagonist potency (pA2) 

 

BU09057 6.87 (7.13-6.35) 

(134.9 nM) 

7.01 (7.89-6.79) 

(97.7 nM) 

BU09058 6.76 (7.45-6.05) 

(173.8 nM) 

7.03 (7.32-6.90) 

(93 nM) 

BU09059 8.62 (9.12-8.03) 

(2.39 nM) 

- 

NorBNI 8.30 (10.3-7.72) 

(5.0 nM) 

- 

 

pA2 values were determined by Schild plot analysis. Values are the mean and 95% confidence 

interval for n=4 tissues. Values for the prototypic -antagonist norBNI were obtained from our 

previously published data (25). Mean values are also shown as nM. 
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FIGURE LEGENDS 

 

Figure 1 Structures of BU09057, BU09058 and BU09059 alongside JDTic and predicted  

physicochemical properties (ACD/I-Lab-2, accessed via the Royal Society of Chemistry 

National Chemical Database Service) TPSA: topological polar surface area. 

 

Figure 2. Cumulative concentration-response curves, in the guinea-pig ileum for U50,488 and 

DAMGO (maximal agonist concentrations 1 M), in the presence of increasing concentrations 

of BU09057 (A, B), BU09058 (C, D), and BU09059 (E, F). Apart from BU09059, all ligands 

tested caused rightward parallel shifts in the concentration response curves of both U50,488 

and DAMGO. Results are expressed as the mean percentage of the maximum response induced 

by the agonist ± SEM, , n=4 tissues. 

 

Figure 3. Cumulative concentration-response curves, in the mouse vas deferens, for DAMGO 

(maximal agonist concentration 2 M) (A) and DPDPE (maximal agonist concentration 20 

nM),  (B), in the presence of high concentrations of BU09059. Results are expressed as the 

mean percentage of the maximum response induced by the agonist ± SEM, , n=4 tissues. 

 

Figure 4. Ability of the test compounds BU09057, BU09058 and BU09059 to block  U50,488-

induced antinociception in the tail-withdrawal test. Mice received a single injection of 0.9% 

(w/v) saline, BU09057 (A), BU09058 (B) BU09059 (C) and norBNI (D) at both 3 mg/kg (□) 

and 10 mg/kg (■) and tail-withdrawal latency measured at intervals up to 21 days post injection. 

U50,488 (10mg/kg) was injected on each test occasion, 30 min prior to measuring tail-

withdrawal latency. Data are expressed as mean percentage maximum possible effect (%MPE) 

± SEM, n=8 per treatment group.   
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FIGURE 1 

 
 
 

 
 BU09057 BU09058 BU09059 JDTic 
TPSA 82.03 82.03 111.13 84.8 
H-bond donors 3 3 4 4 
H-bond acceptors 6 6 8 6 
Rotatable bonds 6 7 8 6 
logP 2.70 2.90 2.02 2.93 
M.Wt 424 438 495 465 
Predicted to be 
CNS active 

Yes Yes Yes Yes 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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