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Five new zinc derivatives of primary amines [R'ZnN(H)R]2 [R = SiPh3, R' = Me (1), N(SiMe3)2 (4); R = 5 

Si(NMe2)3, R' = Me (2), Et (3), N(SiMe3)2 (5)] have been synthesised by reaction of R'2Zn and H2NR. All 

five species are dimers in which the N-H groups are disposed in a trans manner about a central Zn2N2 

ring. In 1 and 4 the coordination at zinc is trigonal planar, while in 2, 3, 5 the zinc is in a distorted 

tetrahedral environment due to additional Me2N:Zn coordination from one SiNMe2 group. 5 was found 

to be generally resistant to NH deprotonation by bases such as MN(SiMe3)2 (M = Li, K) or 10 

Zn[N(SiMe3)2]2, but reacts with Sn[N(SiMe3)2]2 to give the tin-free, tetrameric mixed zinc-imido/amido 

species,[{(Me3Si)2N}{(Me2N)3SiN(H)}{(Me2N)3SiN}Zn2]2 (6) which can be viewed as part of a 

hexameric Zn6N6 drum which has lost a Zn2N2 ring. 

. 

Introduction 15 

 The first zinc amide, Zn(NEt2)2, was synthesised by Frankland 

in 1856,1 since when the reaction of zinc complexes with 

secondary amines has been systematically investigated in great 

detail.2 In comparison, studies into the reaction of organozinc 

reagents with primary amines are far less extensive.3 The direct 20 

reaction of several primary amines RNH2 (R =  tBu,3a Ph,3a Mes,3a 

napthyl,3b adamantyl,3c iPr3Si3c,4) with R2Zn (most commonly, but 

not exclusively,3a,4 the commercially available reagents ZnMe2 

and ZnEt2) with the subsequent elimination of alkane have been 

explored, resulting in either monomeric, dimeric or trimeric 25 

variants on [R'ZnN(H)R]n determined by the steric demand of the 

substituents bonded to the zinc and nitrogen atoms. In none of 

these examples has the further deprotonation of the amide and 

subsequent formation of zinc imido complexes been observed, 

even under forcing conditions. Interestingly, within similar 30 

zincated primary phosphane and arsane complexes, [R'ZnE(H)R]2 

(E = P, As), the increased acidic nature of the E-H bond results in 

the self-condensation of the complex and subsequent formation of 

bridging phosphanediide and arsanediide species.4-5  

 Interest in this general area is now driven by the continued 35 

requirement for volatile zinc compounds for use in chemical 

vapour deposition (CVD) processes, where the presence of N-H 

bonds in the precursor may aid the decomposition process.3d 

Furthermore, in addition to acting as precursor for the deposition 

of widely exploited n-type ZnO,6 systems with a high nitrogen 40 

content may lead to nitrogen doping and a switch to p-type 

behaviour or, conceivably, deposition of the nitride Zn3N2. 

Indeed, oxidation of Zn3N2 has been reported as a viable route to 

p-type ZnO by N-doping.7 In this paper we report the synthesis 

and characterisation of further examples of R'ZnN(H)R [R' = Me, 45 

R = SiPh3, Si(NMe2)3; R' = Et, R = Si(NMe2)3], the novel species 

(Me3Si)2NZnN(H)R [R = SiPh3, Si(NMe2)3], along with our 

attempts to elaborate these species further by reaction of the 

residual N-H unit, leading to the formation of the unprecedented 

imido-containing teterameric species Zn4[N(SiMe3)2]2[N-50 

Si(NMe2)3]2[N(H)Si(NMe2)3]2 (6). 

Experimental 

General Information:  

 All operations were performed under an atmosphere of dry 

argon using standard Schlenk line and glovebox techniques. 55 

Hexanes and toluene solvents were dried using a commercially 

available solvent purification system (Innovative Technology 

Inc.) and degassed under argon prior to use. Deuterated benzene 

(C6D6) Toluene (d8-Toluene) and THF (d8-THF) NMR solvents 

were purchased from Fluorochem and dried over potassium 60 

before isolating via vacuum distillation. All dry solvents were 

stored under argon in Young’s ampoules over 4 Å molecular 

sieves. 2 M Dimethylzinc (ZnMe2) and 1 M diethylzinc (ZnEt2) 

solutions were prepared accordingly from the neat reagent, 

supplied by SAFC HiTech. [Ph3SiNH2],8 [(Me2N)3SiNH2],9 65 

[Zn{N(SiMe3)2}2],10 and [Sn{N(SiMe3)2}2]11 were prepared 

according to published procedures. 

 All solution state 1H and 13C{1H} NMR spectra obtained at 

ambient temperature (25 oC) were recorded with a Bruker Avance 

300 spectrometer, whilst 29Si NMR spectra were recorded using a 70 

Bruker Avance 500 spectrometer. VT-NMR experiments were 

performed in d8-Toluene using a Bruker Avance 400 spectometer. 
1H and 13C NMR chemical shifts are given in ppm and referenced 

internally to residual non-deuterated solvent resonances.12 The 

following abbreviations are used: s (singlet), t (triplet), q 75 

(quartet), m (multiplet) and br (broad). Elemental analyses were 
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performed externally by London Metropolitan University 

Elemental Analysis Service, UK. 

 

Synthesis of [{MeZnN(H)SiPh3}2] (1): Ph3SiNH2 (1.38 g, 5 

mmol) was dissolved in hexanes (20 mL), then treated with a 2 M 5 

toluene solution of ZnMe2 (2.5 mL, 5 mmol). The reaction 

solution was stirred at ambient temperature for 24 h, forming a 

white precipitate. Volatiles were then removed in vacuo. Slow 

recrystallization of the residue from hexanes at ambient 

temperature gave the product as colourless crystals. Yield: 1.05 g, 10 

59%. C19H19NSiZn (354.83): calcd C 64.34, H 5.36, N 3.95; 

found C 64.74, H 5.38, N 3.95. 1H NMR (300 MHz, C6D6): δH = 

7.74 – 7.63 (br m, 6 H, C6H5), 7.34 – 7.16 (br m, 9 H, C6H5), 0.01 

(s, 1 H, NH), -0.31 (s, 3 H, ZnCH3). 13C {1H} NMR (75.5 MHz, 

C6D6): δC = 138.5, 138.1, 130.5, 126.1 (C6H5), -9.2 (ZnCH3). 29Si 15 

(99.35 MHz, C6D6): δSi = -11.9. 

 

Synthesis of [{MeZnN(H)Si(NMe2)3}2] (2): A solution of 

(Me2N)3SiNH2 (0.88 g, 5 mmol) in hexanes (10 mL) was treated 

with a 2 M toluene solution of ZnMe2 (2.5 mL, 5 mmol). The 20 

reaction solution was stirred at ambient temperature for 24 h and 

then volatiles were removed in vacuo. Crystallisation of the 

residue from hexanes at -28 oC gave the product as colourless 

crystals. Yield: 0.78 g, 61%. C7H22N4SiZn (255.74): calcd C 

32.89, H 8.61, N 21.93; found C 32.76, H 8.48, N 21.26. 1H 25 

NMR (300 MHz, C6D6): δH = 2.45 (s, 18 H, NCH3), 0.16 (s, 1 H, 

NH), -0.25 (s, 3 H, ZnCH3). 13C {1H} NMR (75.5 MHz, C6D6): 

δC = 38.6 (NCH3), -12.6 (ZnCH3). 29Si (99.35 MHz): δSi = -28.7. 

 

Synthesis of [{EtZnN(H)Si(NMe2)3}2] (3): A solution of 30 

(Me2N)3SiNH2 (0.35 g, 2 mmol) in hexanes (10 mL) was slowly 

treated with a 1 M solution of ZnEt2 (2 mL, 2 mmol) in hexanes. 

The reaction was stirred at ambient temperature for 24 h and 

volatiles were then removed in vacuo. Crystallisation of the 

residue from toluene at -28 oC gave the product as colourless 35 

crystals. Yield: 0.20 g, 37%. C8H24N4SiZn (269.77): calcd C 

35.62, H 8.97, N 20.77; found C 35.51, H 9.13, N 20.66. 1H 

NMR (300 MHz, C6D6): δH = 2.48 (s, 18 H, NCH3), 1.60 (t, 3 H, 

ZnCH2CH3, 3JCH2CH3 = 8.1 Hz), 0.64 (q, 2 H, ZnCH2CH3, 
3JCH2CH3 = 8.1 Hz), 0.16 (s, 1 H, NH). 13C {1H} NMR (75.5 MHz, 40 

C6D6): δC = 38.7 (NCH3), 13.0 (ZnCH2CH3), 1.83 (ZnCH2CH3) 
29Si (99.35 MHz, C6D6): δSi = -28.9. 

 

Synthesis of [{(Me3Si)2NZnN(H)SiPh3}2] (4): Ph3SiNH2 (0.55 g, 

2 mmol) was dissolved in hexanes (10 mL), then treated with a 45 

solution of Zn[N(SiMe3)2]2 (0.77 g, 2 mmol) in hexanes (10 mL). 

The reaction solution was stirred at ambient temperature for 24 h, 

forming a white precipitate. Volatiles were then removed in 

vacuo. Recrystallization of the residue from toluene at -28 oC 

gave the product as colourless crystals. Yield: 0.31 g, 31%. 50 

C24H34N2Si3Zn (500.18): calcd C 57.63, H 6.85, N 5.60; found C 

57.77, H 6.67, N 5.45. 1H NMR (300 MHz, d8-THF): δH = 7.66 – 

7.02 (br m, 15 H, C6H5), 0.13 – 0.05 (m, 13 H, SiCH3), -0.03 – -

0.18 (br m, 3 H, SiCH3), -0.19 – -0.36 (br s, 2 H, SiCH3). 
13C{1H} NMR (75.5 MHz, d8-THF): δC = 140.3, 136.6, 136.3, 55 

129.9, 129.5, 128.4, 128.3 (C6H5), 5.7 (SiCH3). 29Si (99.35 MHz, 

d8-THF): δSi = -5.0 (SiMe3), -16.1 (SiPh3). 

 

Synthesis of [{(Me3Si)2NZnN(H)Si(NMe2)3}2] (5): A solution of 

(Me2N)3SiNH2 (0.71 g, 4 mmol) in hexanes (6 mL ) was treated 60 

with a solution of Zn[N(SiMe3)2]2 (1.54 g, 4 mmol) in hexanes (6 

mL). The reaction solution was stirred at ambient temperature for 

24 h, forming a white precipitate. The volume of the reaction 

solution was partially reduced in vacuo and the precipitate re-

dissolved with gentle heating. Crystallisation from the reaction 65 

solution at 5 oC gave the product as colourless crystals. Yield: 

1.07 g, 67%. C12H37N5Si3Zn (401.09): calcd C 35.93, H 9.30, N 

17.46; found C 35.82, H 9.45, N 17.55. 1H NMR (300 MHz, 

C6D6): δH = 2.55 (s, 6 H, NCH3), 2.50 (s, 12 H, NCH3), 0.25 (s, 3 

H, SiCH3), 0.24 (s, 12 H, SiCH3), 0.19 (s, 3 H, SiCH3). 13C{1H} 70 

NMR (75.5 MHz, C6D6): δC = 39.2 (NCH3), 5.6 (SiCH3). 29Si 

(99.35 MHz, C6D6): δSi = -3.9 (SiMe3), -28.1 (SiNMe2). 

 

Synthesis of [{(Me3Si)2N}{(Me2N)3SiN(H)}{(Me2N)3SiN}Zn2]2 

(6): A solution of 5 (0.40 g, 0.5 mmol) in hexanes (10 mL) was 75 

treated with a solution of Sn[N(SiMe3)2]2 (0.22 g, 0.5 mmol) in 

hexanes (10 mL). The reaction solution was stirred for 72 h, and 

volatiles were then removed in vacuo. Crystallisation of the 

residue from hexanes at -28 oC gave the product as small, off-

white crystals. Yield: 0.03 g, 9%. 1H NMR (500 MHz, d8-80 

toluene): δH = 2.94-2.35 (br m, NCH3), 0.65-0.16 (br m, SiCH3). 
13C{1H} NMR (75.5 MHz, C6D6): δC = 39.5, 39.0, 38.7 (NCH3), 

6.4, 5.2, 2.6, 1.4 (SiCH3). 29Si (99.35 MHz, C6D6): δSi = 2.4, -0.6 

(SiMe3), -20.2, -27.8, -31.1 (SiNMe2). 

 85 

Crystallography 

 Experimental details relating to the single-crystal X-ray 

crystallographic studies are summarised in Table 1. For all 

structures, data were collected on a Nonius Kappa CCD 

diffractometer at 150(2) K using Mo-K radiation ( = 0.71073 90 

Å). Structure solution was followed by full-matrix least squares 

refinement and was performed using the WinGX-1.70 suite of 

programmes.13 Specific details: 1 contains two independent 

molecules and one molecule of toluene in the asymmetric unit; 4 

also contains a molecule of toluene disordered over two positions. 95 

 

Results and Discussion 

Synthesis and Structures 

 New alkylzinc amido complexes R'Zn(NH)R [R' = Me, R = 

SiPh3 (1), R' = Me, R = Si(NMe2)3 (2); R' = Et, R = Si(NMe2)3 100 

(3)] have been prepared by reaction of RNH2 and R'2Zn in 

hexane. Similarly, (Me3Si)2NZnN(H)R [R = SiPh3 (4), Si(NMe2)3 

(5)] have been prepared analogously starting from (Me3Si)2Zn 

(Eqn 1): 

 Complexes 1–5 are colourless air-sensitive solids, soluble in 105 

common organic solvents; yields were in the range 31 – 67%. 

Despite numerous attempts to substitute the remaining R' group 

(1:2 reaction stoichiometry, excess amine, reflux, change of 

solvent to either THF or toluene), only mono-substituted 
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R'ZnN(H)R species, could be isolated. 

 The 1H NMR spectra of 1-3 each display the expected 

resonances attributed to the substituents bonded to the silicon 

atoms (Ph or NMe2). Additionally the spectra show a single 

resonance [δ = - 0.31 (1), -0.25 (2), 0.64 ppm (3)] that may be 5 

assigned to a methyl or methylene group bonded to the zinc atom, 

along with a broad singlet [δ = 0.01 (1), 0.16 (2), 0.16 ppm (3)] 

that may be attributed to the remaining NH proton. Integration of 

these resonances show the {R3Si}, {ZnMe/Et} and {NH} 

moieties are present in a 1:1:1 ratio, consistent with the formation 10 

of a zinc amide with the empirical formula Me/Et-ZnN(H)SiR3 

rather than a zinc imido species. In the case of 2, the NMe2 

groups all appear to be equivalent, despite this not being the case 

in the solid state (see below). The spectra are more complex for 

the more sterically encumbered 4 and 5. The 1H NMR spectrum 15 

of 4 has a complex multiplet of signals corresponding to the four 

Me3Si groups, while the N-H signal is not observed. The 13C 

NMR has only a singlet for the associated carbon centres. It 

appears that the hydrogen atoms of these groups become non-

equivalent due to restricted rotation in this congested molecule.  20 

 
Scheme 1 Proposed species that exist in equilibrium for complex 5. 

At 298 K, the 1H NMR spectra of 5 shows two signals for the 

NMe2 groups in 2:1 ratio consistent with the solid state structure 

incorporating the -(NMe2)Si(NMe2)2 moiety; there is also some 25 

non-equivalence to the Me3Si groups (three signals in 4:1:1 ratio) 

consistent with hindered rotation of these groups. Again, the N-H 

resonance is not observed within the 1H NMR sectrum.  

 
Fig. 1 The structure of 1 showing the labelling scheme used in the 30 

text; thermal ellipsoids are at the 40% probability level. C(107) and 

C(218) are hidden behind C(112) and Si(2), respectively. Only one of two 

molecules in the asymmetric unit is shown; a co-crystallised molecule of 

toluene has also been omitted for clarity. Selected geometric data: Zn(1)-

N(1) 2.015(4), Zn(1)-N(2) 2.048(4), Zn(2)-N(1) 2.036(4), Zn(2)-N(2) 35 

2.037(4), Si(1)-N(1) 1.733(4), Si(2)-N(2) 1.726 (4) Å; Zn(1)-N(1)-Zn(2) 

89.40(15), Zn(1)-N(2)-Zn(2) 88.47(16), N(1)-Zn(1)-N(2) 89.77(16), 

N(1)-Zn(2)-N(2) 89.48(15), N(1)-Zn(1)-C(1), 136.6(2), N(2)-Zn(1)-C(1) 

133.1(2), N(1)-Zn(2)-C(2) 134.5(2), N(2)-Zn(2)-C(2) 136.0(2), Zn(1)-

N(1)-Si(1) 115.97(19), Zn(2)-N(1)-Si(1) 112.71(19) o. 40 

 
Fig. 2 The structure of 4 showing the labelling scheme used in the 

text; thermal ellipsoids are at the 40% probability level. A co-crystallised 

molecule of disordered toluene has also been omitted for clarity Selected 

geometric data: Zn(1)-N(1) 2.0228(17), Zn(1)-N(1') 2.0371(17), Zn(1)-45 

N(2) 1.8873(16), N(1)-Si(1) 1.7480(18), N(2)-Si(4) 1.7208(17), N(2)-

Si(2) 1.7124(18)  Å, N(1)-Zn(1)-N(2) 132.27(7), N(1)-Zn(1)-N(1') 

91.79(7), N(2)-Zn(1)-N(1') 135.94(7)' Si(1)-N(1)-Zn(1) 119.30(10), Si(1)-

N(1)-Zn(1') 119.18(10), Zn(1)-N(1)-Zn(1') 88.21(7) o. Symmetry 

operation: 1-x,1-y,1-z. 50 

 However, on cooling a sample of 5 to 218 K, far from 

resolving these different environments, the 1H spectrum 

simplifies (singlets at  ca 2.56, 0.38 ppm) which are contrary to 

the observed solid-state structure. We have no unambiguous 

rationale for this observation, but suggest that an alternative 55 

structure involving 2-N(SiMe3)2 and terminal N(H)Si(NMe2)3 

groups may exist at low temperature (Scheme 1), as is the case 

for [tBuZnN(SiMe3)2]2
14 and [C6F5ZnN(SiMe3)2]2.14 

 The structures of 1 - 5  are shown in Figures 1 – 5 and all five 

species are dimeric in nature. Both 1 (Figure 1) and 4 (Figure 2) 60 

adopt structures in which R(H)N groups bridge zinc centres, with 

the bulky Ph3Si groups disposed in an anti-manner about the 

central Zn2N2 ring. The structures are analogous to 

[R'ZnN(H)SiiPr3]2 (R = Me, Et)3c in embodying a three-

coordinate, trigonal planar metal centre geometry, with no further 65 

coordination by either free amine3c, 3d or solvent, which is 

common for reactions carried out in donor solvents such as 

THF.3a, 3b  

 
Fig. 3 The structure of 2 showing the labelling scheme used in the 70 

text; thermal ellipsoids are at the 35% probability level. Selected 

geometric data: Zn(1)-N(1) 2.1422(14), Zn(1)-N(1') 2.0165(13), Zn(1)-

N(2) 2.3377(14), Si(1)-N(1) 1.7023(14), Si(1)-N(2) 1.7769(15), Si(1)-

N(3) 1.7056(14), Si(1)-N(4) 1.7131(14) Å; C(1)-Zn(1)-N(1), 131.24(7), 

C(1)-Zn(1)-N(1') 131.37(7), C(1)-Zn(1)-N(2) 111.19(8), N(1')-Zn(1)-N(2) 75 

103.02(5), N(1)-Zn(1)-N(2) 73.23(5), N(1)-Zn(1)-N(1') 90.65(5), Zn(1')-

N(1)-Si(1) 121.21(8), Zn(1)-N(1)-Si(1) 93.82(6), Zn(1)-N(1)-Zn(1') 

89.35(5), Zn(1)-N(2)-Si(1) 85.52(5), Zn(1)-N(2)-C(21) 106.73(12), 

Zn(1)-N(2)-C(22) 112.91(13), Si(1)-N(2)-C(21) 118.57(12), Si(1)-N(2)-

C(22) 119.48(12), C(21)-N(2)-C(22) 110.25(14) o.  Symmetry operation: 80 

1-x,1-y,-z 
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Fig. 4. The structure of 3 showing the labelling scheme used in the 

text; thermal ellipsoids are at the 40% probability level. Selected 

geometric data: Zn(1)-N(1) 2.0208(15), Zn(1)-N(1') 2.1327(16), Zn(1)-

N(2') 2.3425(15), Si(1)-N(1) 1.7039(16), Si(1)-N(2) 1.7795(15), Si(1)-5 

N(3) 1.7129(16), Si(1)-N(4) 1.7111(17) Å; C(1)-Zn(1)-

N(1)131.76(7),C(1)-Zn(1)-N(1') 130.10(7), C(1)-Zn(1)-N(2') 112.40(7), 

N(1)-Zn(1)-N(1') 90.65(6), N(1)-Zn(1)-N(2') 102.31(6), N(1')1-Zn(1)-

N(2') 73.48(6), Si(1)-N(1)-Zn(1) 119.24(9), Si(1)-N(1)-Zn(1') 94.37(7), 

Zn(1)-N(1)-Zn(1') 89.35(6) o.  Symmetry operation: 1-x,-y,-z. 10 

 The Zn-N bonds to the bridging nitrogen atoms are typical of 

those involved in Zn2N2 rings reported in the Cambridge 

Crystallographic Database (1.997 Ǻ - 2.109 Ǻ),15 and are longer 

[2.015(4) – 2.0371(17) Å] than the exocyclic Zn-N bond in 4 [ 

1.8873(16) Å].In contrast, 2 (Figure 3), 3 (Figure 4) and 5 (Figure 15 

5), each of which incorporate the N(H)Si(NMe2)3 ligand, are 

dimeric but embody four-coordinated zinc atoms by virtue of 

both 2-N(H)R and 2-NMe2 moieties; the bulky Si(NMe2)3 

groups are, as in 1, 2, in an anti-arrangement with respect to the 

central Zn2N2 ring.  20 

 
Fig. 5. The structure of 5 showing the labelling scheme used in the 

text; thermal ellipsoids are at the 40% probability level. Selected 

geometric data: Zn(1)-N(1) 2.1035(15), Zn(1)-N(2) 2.4282(16), Zn(1)-

N(1') 2.0397(15), Zn(1)-N(5) 1.9264(14), Si(1)-N(1) 1.7225(15), Si(1)-25 

N(2) 1.7854(17), Si(1)-N(3) 1.7135(17), Si(1)-N(4) 1.7079(16), Si(10)-

N(5) 1.7195(16), Si(20)-N(5) 1.7152(15) Å; N(1)-Zn(1)-N(2) 71.83(6), 

N(1)-Zn(1)-N(1') 91.58(6), N(1)-Zn(1)-N(5) 130.59(6), N(1')-Zn(1)-N(2) 

104.26(6), N(1)'-Zn(1)-N(5) 130.28(6), N(2)-Zn(1)-N(5) 112.50(6), Si(1)-

N(1)-Zn(1) 96.65(7), Si(1)-N(1)-Zn(1') 123.71(9), Zn(1)-N(1)-Zn(1') 30 

88.42(6), C(21)-N(2)-Zn(1) 121.83(13), C(21)-N(2)-Zn(1) 121.83(13), 

C(21)-N(2)-C(22) 108.89(16), C(22)-N(2)-Zn(1) 106.01(12), C(22)-N(2)-

Si(1) 115.37(13), Si(1)-N(2)-Zn(1) 84.35(6), Si(10)-N(5)-Zn(1) 

121.87(8), Si(10)-N(5)-Si(20) 120.69(9), Si(20)-N(5)-Zn(1) 117.01(8) o. 

Symmetry operation: 1-x,-y,1-z. 35 

 There is a clear asymmetry in the distinct Zn-N bonds within 

the central Zn2N2 ring [2.0165(13) – 2.0397(15) vs 2.1035(15) – 

2.1422(14) Å], along with a longer Zn-N bond within the ZnN2Si 

ring [2.3377(14) – 2.4282(16) Å]. The Si-N bond associated with 

the 2-NMe2 group is, not surprisingly, longer [ 1.7769(15) – 40 

1.7854(17) Å] than the remaining Si-N bonds [1.7023(14) – 

1.7225(15) Å], and, while the exocyclic Zn-N bond in 5 is still 

the shortest in this trio of structures [1.9264(14) Å] it is marked 

longer than the same bond to three-coordinate zinc in 4. The 

tetrahedral geometry about zinc is severely distorted to 45 

accommodate the two fused Zn2N2 and ZnN2Si rings. 

 In attempts to react the remaining N-H bond in these species to 

form bimetallic species, 5, as representative, was treated with 

excess M[N(SiMe3)2] (M = Li, K) or Zn[N(SiMe3)2]2, but only 

starting materials could be isolated from these reactions. 50 

Remarkably, however, the stoichiometric reaction of 5 with 

Sn[N(SiMe3)2]2 afforded the mixed amino-imido tetramer 

Zn4[N(SiMe3)2]2[NSi(NMe2)3]2[N(H)Si(NMe2)3]2 (6) albeit in 

very low yield (9%). It is unclear why the tin silylamide 

deprotonates 5 where other bases fail, nor have we ascertained the 55 

fate of the tin in this reaction. Compound 6 is, as far as we are 

aware, only the second example of an imido-zinc complex, and 

the first to be prepared from a primary amine as reagent; the only 

other example of a bis-zinc imido complex, bis-(ethylzinc)imido-

1,2-di(2-pyridyl)ethane, was prepared from the secondary bis-(2-60 

pyridylmethyl)amine via a C-C bond forming process.16 

Furthermore, the formulation of 6 only has tenuous precedent in 

that of Zn4Et2(NHR)4(OEt)2 (R = 2,6-iPr2C6H3).3a  

 The structure of 6 (Figure 6) is made up of three Zn2N2 rings 

with two common edges, with the outer rings symmetry related 65 

by virtue of a two-fold axis running vertically down through the 

centre of the middle Zn2N2 ring.  

 
Fig. 6. The structure of 6 showing the labelling scheme used in the 

text; thermal ellipsoids are at the 30% probability level. Selected 70 

geometric data: Zn(1)-N(1) 2.0487(19), Zn(1)-N(1') 2.0979(19), Zn(1)-

N(5) 2.0164(19), Zn(1)-N(2') 2.141(2), Zn(2)-N(1) 1.9382(19), Zn(2)-

N(5) 2.1121(19), Zn(2)-N(9) 1.917(2), N(1)-Si(1) 1.681(2), N(5)-Si(2) 

1.731(2) Å; N(1)-Zn(1)-N(1') 98.00(7), N(1)-Zn(1)-N(2') 123.71(8), N(1)-

Zn(1)-N(5) 92.60(8), N(1')-Zn(1)-N(2') 80.10(8), N(1')-Zn(1)-N(5) 75 

131.74(8), N(2')-Zn(1)-N(5) 130.20(8), N(1)-Zn(2)-N(5) 92.94(8), N(1)-

Zn(2)-N(9) 140.39(9), N(5)-Zn(2)-N(9) 125.90(8), Si(1)-N(1)-Zn(1) 

139.27(12), Si(1)-N(1)-Zn(1') 91.63(9), Si(1)-N(1)-Zn(2) 126.45(11), 

Zn(1)-N(1)-Zn(2) 89.11(8), Zn(1)-N(1)-Zn(1') 81.20(7), Zn(1')-N(1)-

Zn(3) 123.96(9), Si(2)-N(5)-Zn(1) 125.12(11), Si(2)-N(5)-Zn(2) 80 

121.04(11), Zn(1)-N(5)-Zn(2) 85.31(7) o.  Symmetry operation: 1-x,y,1/2-

z. 
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 The outer two rings are thus syn with respect to the central 

ring, so overall the structure can be viewed as a fragment of 

Zn6N6 hexagonal drum with one Zn2N2 face missing. This is in 

contrast to the three fused rings in Zn4Et2(NHR)4(OEt)2 (R = 2,6-
iPr2C6H3)3a in which the two ZnOZnN rings are anti with respect 5 

to the central Zn2O2 ring, generating a staircase structure. There 

are two distinct zinc centres in 6, namely trigonal planar three-

coordinate Zn(2) and four-coordinated Zn(1) which has a 

distorted tetrahedral array of ligands. The imido nitrogen has a 

3-Zn3 bonding mode with one short [Zn(2)-N(1) 1.9382(19) Å] 10 

and two longer [Zn(1)-N(1) 2.0487(19), Zn(1')-N(1) 2.0979(19) 

Å] bonds to zinc. The 2-N(H)R group [N(5)] forms two bonds to 

zinc of similar strength and comparable to those formed by 3-

N(1) [2.0164(19), 2.1121(19) Å], while the longest and shortest 

Zn-N bonds are formed by the 2-NMe2 group [Zn(1')-N(2) 15 

2.141(2) Å] and the terminal N(SiMe3)2 group [Zn(2)-N(9) 

1.917(2) Å], respectively. There are distinct Si-N bonds, ranging 

from the shortest involving the imido nitrogen [N(1)-Si(1) 

1.681(2) Å] to the longest based on bridging N(2) [N(2)-Si-Si(1) 

1.843(2) A] and spanning the remaining, more typical Si-N bond 20 

lengths [1.708(3) – 1.731(2) Å]. The terminal N(SiMe3)2 groups 

are bonded to Zn(2) at the outer edges of the array, while the two 

remaining N-H groups [N(5)-H(5)] are too crowed to participate 

in any hydrogen bonding. Indeed, the crowding of these two 

functionalities is probably the reason why formation of the 25 

hexameric drum structure, typified by (iPrNAlH)6
17 or 

[PhNMg(THF)]6,18 is incomplete. 

 The NMR data for 6 reflect the asymmetry in the species. The 
1H NMR signals for both the Me3Si and Me2N environments are 

broad and featureless, which reflects both the extent of non-30 

equivalent environments and possible fluxionality. Similarly, the 
13C NMR has 4 signals for the Me3Si carbons and signals for two 

non-equivalent Me3Si environments in the 29Si NMR, while the 

complexity of the SiNMe2 environments is reflected in four 13C 

and three 29Si NMR resonances. Additional peaks in the spectra 35 

can be attributed to residual 5 in the reaction mixture, whch could 

not be completely removed from samples of 6, a feature which is 

reflected in the poor elemental analysis of 6: attempts to separate 

peaks for 5 and 6 using DOSY NMR experements proved 

unsucessful. 40 

 

Conclusions 

The synthesis of zinc (amido) complexes have been accomplished 

through protonolysis of either dialkyl-zinc or diamino-zinc 

starting materials with primary silyl-amide proligands. Despite 45 

successive attemts to force these complexes to undergo a double 

deprotination of the amide proligand, zinc-imido species where 

not formed. In attempts to react the remaining N-H bond in these 

species to form bimetallic species, complex 5, was treated the 

metal amides M[N(SiMe3)2] (M = Li, K) or exess 50 

Zn[N(SiMe3)2]2, but only starting materials could be isolated 

from these reactions. Remarkably, reaction of 5 with 

Sn[N(SiMe3)2]2 affords the unprecidented mixed amino-imido 

tetramer species Zn4[N(SiMe3)2]2[N-

Si(NMe2)3]2[N(H)Si(NMe2)3]2 (6), albeit in very low yield (9%), 55 

in which the imido ligand has a 2-bridging role and 2-N,NMe2 

chelating coordination role. To the best of our knowledge, 

complex 6 repersents the first zinc-imido species formed from a 

primary amine to have been identified and structurally 

characterised. While the precise nature of the reaction to form 6 is 60 

not understood, attempts to both rationalise this reaction and to 

produce other zinc imido species are underway. 

 

Table 1 Crystal refinement data for 1-6 

Compound reference 1 2 3 4 5 6 

Chemical formula C83H84N4Si4Zn4 C14H44N8Si2Zn2 C16H48N8Si2Zn2 C62H84N4Si6Zn2 C24H74N10Si6Zn2 C36H110N18Si8Zn4 

Formula Mass 1511.38 511.49 539.54 1184.61 802.21 1281.62 

Crystal system Monoclinic Monoclinic Monoclinic Triclinic Monoclinic Monoclinic 
a/Å 26.2840(3) 7.83400(10) 7.9730(2) 11.4310(4) 9.05200(10) 23.8580(4) 

b/Å 9.4770(2) 10.0490(2) 18.1740(4) 11.9430(5) 21.7480(3) 18.2210(4) 

c/Å 32.3190(4) 15.9980(3) 9.3130(2) 12.9460(5) 10.9160(2) 15.5450(3) 
α/° 90.00 90.00 90.00 87.265(2) 90.00 90.00 

β/° 110.2770(10) 91.4860(10) 98.8530(10) 71.794(2) 101.0760(10) 100.7600(10) 

γ/° 90.00 90.00 90.00 73.697(2) 90.00 90.00 
Unit cell volume/Å3 7551.5(2) 1259.00(4) 1333.39(5) 1609.86(11) 2108.93(5) 6638.9(2) 

Temperature/K 150(2) 150(2) 150(2) 150(2) 150(2) 150(2) 

Space group Cc P21/c P21/n P1̄  P21/c C2/c 
No. of formula units per unit cell, Z 4 2 2 1 2 4 

Absorption coefficient, μ/mm-1 1.365 2.015 1.907 0.896 1.337 1.612 

No. of reflections measured 37195 26752 24560 29835 26367 52385 
No. of independent reflections 15356 2892 3061 6615 4834 7541 

Rint 0.0594 0.0569 0.0577 0.0549 0.0430 0.0599 

Final R1 values (I > 2σ(I)) 0.0489 0.0258 0.0273 0.0346 0.0308 0.0346 
Final wR(F2) values (I > 2σ(I)) 0.1097 0.0666 0.0613 0.0786 0.0737 0.0758 

Final R1 values (all data) 0.0731 0.0375 0.0393 0.0498 0.0397 0.0603 

Final wR(F2) values (all data) 0.1294 0.0732 0.0668 0.0853 0.0775 0.0848 

Goodness of fit on F2 1.014 1.055 1.093 1.047 1.077 1.040 

CCDC number 
960127 960128 960131 960129 960130 960132 
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