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ABSTRACT 20 

Biogas is nowadays getting more attention as a means for converting wastes and lignocelluloses 21 

to green fuels for cars and electricity production. The process of biogas production from N-22 

methylmorpholine oxide (NMMO) pretreated forest residues used in a co-digestion process was 23 

economically evaluated. The co-digestion occurs together with the organic fraction of 24 

municipal solid waste (OFMSW). The process simulated the milling of the lignocelluloses, 25 

NMMO pretreatment unit, washing and filtration of the feedstock, followed by an anaerobic 26 

co-digestion, upgrading of the biogas and de-watering of the digestate. The process also took 27 

into consideration the utilization of 100,000 DW (dried weight) tons of forest residues and 28 

200,000 DW tons of OFMSW per year. It resulted in an internal rate of return (IRR) of 24.14% 29 

prior to taxes, which might be attractive economically. The cost of the chemical NMMO 30 

treatment was regarded as the most challenging operating cost, followed by the evaporation of 31 

the washing water. Sensitivity analysis was performed on different plant size capacities, treating 32 

and digesting between 25,000 and 400,000 DW tons forest residues per year. It shows that the 33 

minimum plant capacity of 50,000 DW tons forest residues per year is financially viable. 34 

Moreover, different co-digestion scenarios were evaluated. The co-digestion of forest residues 35 

together with sewage sludge instead of OFMSW, and the digestion of forest residues only were 36 

shown to be non-feasible solutions with too low IRR. Furthermore, biogas production from 37 

forest residues was compared with the energy produced during combustion.  38 

 39 

KEYWORDS: anaerobic digestion, NMMO pretreatment, lignocellulose, forest residues, 40 

economic analysis 41 

 42 

HIGHLIGHTS 43 

 Biogas from co-digestion with pretreated forest residues was simulated and evaluated  44 

 Plant capacity of > 50,000 DW tons/year forest residues is financially feasible 45 

 The cost of the NMMO was regarded as the largest operating expenditure 46 

 Biogas production was compared with the energy produced during incineration 47 

  48 
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1. INTRODUCTION 49 

The global market and demand for biogas as a vehicle fuel, electricity production, and even as 50 

a heating energy source has had a positive trend. The biogas is produced in household digesters 51 

to provide cooking or lightening energy to replace kerosene or LPG, while the larger plants 52 

burn it in gas engines to produce electricity or upgrade it to almost pure methane to inject in the 53 

gas grids or compress it to CBG (compressed biogas) and sell as car fuel. The traditional 54 

substrates utilized for biogas production are municipal solid waste, organic wastes from 55 

industrial and agricultural activities, as well as high strength wastewater are. However, these 56 

sources are limited, and there is a demand for the development of new technologies utilizing 57 

other substrates. Lignocellulosic-rich materials have a great potential as an alternative feedstock 58 

for anaerobic digestion, since they are found in high abundance globally.  59 

The degradation of lignocelluloses into biogas is a complicated process, since lignocelluloses 60 

have a recalcitrant structure which is naturally designed to prevent enzymatic degradation. 61 

Lignocelluloses are formed in a compact and crystalline structure and often contain a high 62 

amount of lignin. In order to permit degradation of these materials in an anaerobic digester, the 63 

structure has to open up and/or the lignin has to be degraded or removed. This can be performed 64 

by using different pretreatment methods [1], such as mechanically, e.g., by milling; physically 65 

by steam explosion or radiation; chemically by acids, bases or solvents; and biologically by 66 

enzymes or fungi [1-3].  67 

Solvent pretreatment on lignocelluloses was shown to be an effective method due to the low 68 

degradation of the carbohydrates in the material under the applied, relatively mild conditions. 69 

Furthermore, pretreatment with a solvent does not require neutralization, and almost a complete 70 

recirculation of the treating chemical is possible [4]. The pretreatment using the solvent N-71 

methylmorpholine oxide (NMMO) has previously been studied on bagasse [5] and on spruce 72 

[6] for ethanol production, and on spruce, rice, and triticale straws [7] as well as pure cellulose 73 

[8] for biogas production. NMMO is an organic solvent that interrupts inter- and intra-molecular 74 

bonds [9] in the lignocelluloses, making the carbohydrates of the material more accessible and 75 

thereby facilitating the enzymatic degradation. NMMO is an environmentally friendly cellulose 76 

solvent, and used in industrial scale in the lyocell process [10, 11], where cellulose fibers are 77 

treated to produce textile. Since no toxic compounds are produced within the NMMO 78 

pretreatment and the recirculation of the solvent is possible [10, 12], this process can be 79 

regarded as environmentally friendly. 80 



4 
 

Techno-economic analysis is a useful tool to examine the profitability and performance of a 81 

proposed process. Recently, Shafiei et al [6] performed a techno-economical study on 82 

bioethanol production from NMMO pretreated wood. They found that the process is feasible 83 

when bioethanol production is combined with a subsequent biogas production utilizing the 84 

pentoses. Conversion of lignocellulosic pentoses to ethanol is one of the obstacles in the 85 

utilization of lignocelluloses to ethanol, since the ordinary industrial yeast species are unable to 86 

assimilate pentoses [13]. Furthermore, the production of biogas from lignocelluloses has several 87 

advantages compared to bioethanol production, since the overall energy efficiency is much 88 

higher in biogas production compared to that in ethanol production [14].  89 

The focus of this study was therefore to develop a feasible industrial process for NMMO 90 

pretreatment and subsequent utilization of forest residues (branches, tops, barks, and needles) 91 

in anaerobic digestion. Forest residues were selected because they are the most abundant 92 

lignocellulosic waste stream in Sweden, and several other countries. In 2008, 1.6 Mtons total 93 

solids (TS) /year of the tree tops and branches were delivered from the forests in Sweden, and 94 

this is expected to increase to 3.5 Mtons total solids /year by 2018 [15]. Moreover, the total 95 

energy potential of bioenergy production from the forest is calculated as being 49 TWh [15]. 96 

An industrial scale process was designed and simulated using SuperPro Designer® 8.0 97 

simulation software (Intelligen, Inc.,NJ, USA) based on unpublished biomethane potential test 98 

(BMP) experimental data provided by Kabir et al. [16]. A process including an NMMO 99 

pretreatment step with filtration, evaporation and recirculation of NMMO and washing water 100 

together with a following co-digestion step was evaluated to determine economic feasibility 101 

and profitability, such as capital costs for the total plant, annual operating costs, and unit costs. 102 

Finally, sensitivity analyses were performed on different scenarios, where effects of the plant 103 

size, different co-digestion set-ups as well as the methane price and the water consumption were 104 

evaluated.   105 

2. PROCESS DEVELOPMENT AND FINANCIAL ANALYSIS 106 

2.1 Process description 107 

A novel process of the NMMO pretreatment of forest residues prior to anaerobic digestion was 108 

developed. The process includes the feedstock handling, pretreatment by NMMO, anaerobic 109 

digestion, and upgrading of the biogas as well as the dewatering of the digestate. It is assumed 110 

that the plant is located close to a power plant, so that steam and electrical power are readily 111 

available. It is further assumed that the plant is situated in Sweden with a high availability of 112 
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forest residues. The type of forest residues investigated in this study includes the rejected tops 113 

and branches.  114 

The base case is constructed for 100,000 tons DW (dry weight) forest residues per year. 115 

However, capacities ranging from 25,000 to 400,000 tons DW forest residues/year were also 116 

studied. The plant is in operation for 7,920 h/year, and the construction material was chosen to 117 

be stainless steel 304. The cost index was set at 2012. 118 

 119 

2.2 Pretreatment unit 120 

The forest residues arrive at the plant in truck trailers, where the price of the feedstock includes 121 

the handling all the way to the plant. The feedstock contains 42% carbohydrates, 44% lignin, 122 

75% total solids (TS), and 64% volatile solids (VS) [17]. The forest residues have a C/N ratio 123 

of 325 [18]. The raw material is then placed into a grinder, which reduces the size of the biomass 124 

to 2 mm. After grinding, the biomass is conveyed to the pretreatment unit. The pretreatment is 125 

performed using 85% NMMO solution in water for 12 h at 90°C. During the pretreatment, the 126 

lignocellulosic structure is opened up, resulting in less intra-molecular linkages and less 127 

cellulosic crystallinity [9]. The pretreated biomass is then washed with water and filtered using 128 

a rotary vacuum filtration unit (Figures 1 and 2). The NMMO-solution is then evaporated back 129 

to 85% for reuse in the pretreatment unit. The recovery in the washing step is expected to be 130 

99.5%. The use of the rotary vacuum filtration allows for a minimum usage of water during the 131 

washing, in order to save energy in the following evaporation unit. Previous experimental 132 

studies were performed with 500 mL washing water for 200 g NMMO/biomass mixture [16], 133 

where these conditions were applied in the base case of the simulation study. The evaporation 134 

unit was designed with a mechanical vapor design (MVR). The MVR design with two effects 135 

and two compressors was found to be the most energy efficient and an economically beneficial 136 

alternative for the evaporation of NMMO water solution in a previous investigation, focusing 137 

on NMMO pretreatment of spruce prior to ethanol production [6]. The same design for the 138 

evaporation step was applied in this study.   139 

 140 

2.3 Biogas and digestate production 141 
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The washed and pretreated forest residues are mixed with the organic fraction of municipal 142 

waste (OFMSW, Figures 1 and 2), in order to a achieve a C/N ratio of between 20-30 which is 143 

regarded as the optimum ratio [19]. Two-thirds of the OFMSW and one-third of the forest 144 

residues are used in the base case, which results in a C/N ratio of 30. The OFMSW in the 145 

simulation consist of 60% carbohydrates, 17% fats, 8% proteins based on the dried weight, and 146 

the water content was estimated to be 67 % water. The cost of OFMSW is set to zero. The 147 

methane yield of similar substrate mix was 0.470 Nm3/kg VS [20], which corresponds to a 148 

conversion rate of 86.7%. The methane production from forest residues is based on 149 

experimental results from lab scale BMP tests showing a yield of 0.137 Nm3 CH4 per kg total 150 

solids of forest residues [16], which corresponds to a conversion rate of 73.4%. The two 151 

fractions are together passed through a screw press prior to the anaerobic digester, together with 152 

extra water in order to reach  a TS of 12% in the incoming stream. The digester runs at 153 

thermophilic conditions (55°C) with a hydraulic retention time of 20 days. It is a fixed roof 154 

storage tank, which allows for mixing, constructed of stainless steel. The gas produced is a 155 

mixture of the main components methane and carbon dioxide, and trace amounts of some other 156 

components, such as hydrogen sulfide, nitrogen, and hydrogen, which are neglected in the 157 

study. The gas produced in the anaerobic digester is upgraded to 98% methane content, using 158 

the water scrubber technique. The water scrubber technique is regarded as a low cost technique 159 

[21], and is globally the most widespread upgrading technique [22]. This upgrading step 160 

consists of a gas compressor, an absorption tower where the carbon dioxide is absorbed in 161 

water, and a degasification tower, where the carbon dioxide and water are separated. The 162 

upgraded methane is then injected into the biogas/natural gas grid. The solid residuals 163 

remaining from the process, so called digestate residues, are dewatered in a centrifugal 164 

separator to 45% TS, together with 10 kg flocculating agent polyacrylamide per ton TS, in order 165 

to improve the dewatering process [23]. The solid fraction after the dewatering step is lignin-166 

rich, which has a high heating value, and can be used as fuel for combustion in combined heat 167 

and power (CHP) plants [24]. In this study, the dewatered digestate is sold to CHP plants. 168 

However, due to the high nutrient value, the digestate residue can also be used as a fertilizer in 169 

agriculture or on forestland. Consequently, the dewatering process would then be unnecessary. 170 

 171 

2.4 Process simulation and economic calculations 172 
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SuperPro Designer® 8.0 (Intelligen, Inc., NJ, USA, licensed to the University of Borås) was 173 

used for the simulation of the main steps of the process. The software performs the rigorous 174 

material and energy balance calculations. The purchase costs of the equipment were calculated 175 

with the built-in software calculations, except for the purchase cost of the tanks, which was 176 

calculated according to Turton et al [25]. Other than the purchase costs, SuperPro Designer 177 

estimates the cost for the installation, the process piping, instrumentation, insulation, electrical 178 

utilities, buildings, yard improvements, and auxiliary facilities. The total direct plant cost (DC) 179 

is a sum of these costs and was 329% of the equipment purchase cost at base conditions. The 180 

total indirect plant costs, such as engineering (25% of DC) and construction fee (35% of DC) 181 

was based on the equipment purchase cost, and was obtained by the above- mentioned software. 182 

The fixed capital investment (FCI) was calculated as a sum of the direct costs, the indirect costs, 183 

the contractor’s fee, and the contingency. The contractor’s fee and contingency were estimated 184 

to be 5% and 10%, respectively, of the sum of the direct cost and the indirect cost together [26]. 185 

The project is regarded as 100% equity financed. The project life is set to 20 years and the 186 

depreciation period to 10 years. The construction period is set to 30 months and a startup period 187 

of 4 months is used. The working capital was assumed to be 5% of the fixed capital investment 188 

[27], and the cost index for all calculations was set at 2012.   189 

The annual operating cost was calculated as the sum of the expenses for raw materials, utilities, 190 

labor, waste management, and facility dependent cost and can together with the product prices 191 

be found in Table 1. The maintenance and insurance costs are regarded as facility dependent 192 

operating costs, and are together 1 and 2%, respectively, of the total plant capital costs [28-30]. 193 

The methane price used in the present study was the price of methane sold in the market in 194 

Sweden, minus the cost for the connection and distribution into the gas grid, including 195 

compression and cost for tank stations. The methane price used in this study was 1.895 euro/kg 196 

[31]. A value of 22% taxation rate is assumed, which is the current corporation tax in Sweden 197 

since 2013 [32].  198 

Furthermore, the plant was divided into sections in order to determine the cost distribution for 199 

the different parts of the plant. These calculations were performed using the base case. 200 

  201 

2.5 Sensitivity analysis 202 

Different plant sizes were investigated in a sensitivity analysis in order to study the effect of 203 

the capacity on the construction and production costs. Plant sizes with the feed capacity of 25, 204 
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50, 100, 200, and 400% of the base case were studied. The cost prediction of the total investment 205 

costs, annual operating costs, and production cost per unit methane produced, as a function of 206 

the plant capacity was studied and simulated. Cash flow analysis was performed where the net 207 

present value (NPV) was set to zero and the process time was equal to 20 years. The internal 208 

rate of return (IRR) was calculated, and was regarded as being financially feasible at 15% rate 209 

of return (IRR) or higher, in order to cover the firms costs of raising funds and making a 210 

sufficient profit [33]. The IRR is the discount rate, when the NPV is set to zero and was 211 

calculated as [33]: 212 

𝑁𝑃𝑉 =∑
𝐴𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=0

= 0 213 

Where: 214 

NPV, t, n, At and r are net present value, project year, total project lifetime, the cash flow in 215 

year t, and the discount rate, respectively.  216 

 217 

The cash flow analysis was performed in order to study the effect of the methane price, the 218 

water consumption in the washing step following the NMMO pretreatment, and the price of the 219 

feedstock on the economic feasibility of the process under different scenarios. A co-digestion 220 

study where the forest residues were co-digested with sewage sludge instead of OFMSW was 221 

also performed, as well as a scenario where only forest residues were digested. 222 

 223 

3. RESULTS 224 

3.1 Process development and economic calculations 225 

The plant was divided into five different sections (1) the NMMO pretreatment, (2) the filtration 226 

and evaporation following the NMMO pretreatment, which also includes the recirculation of 227 

water and NMMO, (3) the anaerobic digestion of both forest residues and OFMSW, (4) the 228 

upgrading of the biogas, and (5) the dewatering of the lignin-rich digestate. The fixed capital 229 

investment (FCI) for the different sections can be found in Figure 3. The most capital-intensive 230 

sections are the anaerobic digestion, followed by the filtration and evaporation, and the 231 

upgrading. Auxiliary capital investments, buildings, and yard improvements are excluded from 232 

the calculation. 233 
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A block flow diagram of the process is presented in Figure 1, which gives an overview of the 234 

process. The material composition of the streams in the block flow diagram is presented in 235 

Table 2. The developed process flow sheet, showing the equipment used in all processes, is 236 

presented in Figure 2. All process steps were run continuously, except the NMMO-pretreatment 237 

reactor, which was operated in batch mode. For this purpose, four staggered NMMO 238 

pretreatment reactors of each 970 m3 were used to perform 1975 batch pretreatments per year. 239 

The base case was considered to pretreat and utilize 100,000 DW tons forest residues/year, 240 

together with 200,000 DW tons OFMSW/year, and the plant was calculated to produce about 241 

975 GWh (98 MNm3) methane per year. The produced amount of dewatered digestate and 242 

carbon dioxide are 290 and 133 kt/year, respectively. The consumption of electricity was 48 243 

GWh per year, steam 355 GWh, and water 5,043 kt per year. In order to pretreat 100,000 DW 244 

tons forest residues per year, six batches of NMMO treatment per 24 h were performed. The 245 

fixed capital investment (FCI), is a sum of direct fixed capital, working capital, and startup cost, 246 

and was calculated for the base case as being 145,053,000 €. The annual operating cost is a sum 247 

of raw materials, labor costs, energy and power, waste management, as well as facility 248 

dependent costs. For the base case, this cost was calculated as being 103,810,000 €/year. The 249 

total revenue per year is a sum of the revenues of produced methane, carbon dioxide, and the 250 

dewatered lignin-rich digestate. The annual revenue for the base case was calculated as 251 

136,179,000 €/year. This gives a net profit value (taxes and depreciation are included) of 252 

181,333,000 €, at 7.0% interest rate over 20 years project lifetime. A cash flow analysis, with 253 

the net profit value set at zero resulted in an internal rate of return of 24.14% prior to taxes, and 254 

20.39% after taxes, at a process time of 20 years. 255 

The costs for the distribution of the upgraded methane into the distribution gas grid, were 256 

calculated according to as described by Benjaminsson and Linné [31]. The authors performed 257 

a techno-economic study of 300 GWh biogas plant in Sweden. For this size of plant, the cost 258 

of a gas pipeline for 40 km connected to the distribution gas grid was 0.001 €/kWh, the 259 

distribution cost 0.007 €/kWh, and the compression and tank station cost was 0.012 €/kWh, a 260 

total of 0.020 €/kWh. Calculating with an 8% price increase in Sweden between 2007 and 2012 261 

[34], the price for gas grid distribution, compression, and tank stations are set to 0.285 €/kg 262 

methane. 263 

The total annual operating costs divided into different cost items are presented in Figure 4. The 264 

costs of the raw materials have the highest share of operating costs, followed by facility 265 

dependent costs, which include maintenance, depreciation, insurance, and other factory 266 
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expenses. The cost for the NMMO corresponds to 80% of the material cost for the base case 267 

with 99.5% recirculation, and the cost for the forest residues corresponds to 15%. The annual 268 

operating cost divided into the different sections is presented in Figure 5, where the price of the 269 

materials is excluded. Filtration and evaporation represent the biggest part of the annual 270 

operating costs, followed by the anaerobic digestion, where the costs for materials are excluded.  271 

 272 

3.2 Sensitivity analysis 273 

Different plant sizes were investigated in a sensitivity analysis in order to study the effect of 274 

the plant capacity on the construction and production costs. Plants treating 25, 50, 100, 200, 275 

and 400 thousand DW tons forest residues per year were studied in co-digestion with 50, 100, 276 

200, 400, and 800 thousand DW tons OFMSW per year, respectively. All the estimations of 277 

total investment costs, annual operating costs and production cost per unit methane produced, 278 

as a function of the plant capacity is presented in Figure 6. The revenue per unit was calculated 279 

as being 2.12 €/kg produced methane, which is higher than the production cost for all plant 280 

sizes. However, a cash flow analysis of the five different plant size scenarios show that only 281 

plant capacities of 50,000 tons per year and above are financially viable with an IRR over 15%. 282 

This is in contrast to the IRR of the plant size of 25,000 tons per year, which was 5.08% prior 283 

to taxes.  284 

The economic feasibility of the process was further analyzed through different scenarios. The 285 

effect of water consumption in the washing process following the NMMO pretreatment was 286 

evaluated with 50% more and 50% less water consumption. The effect of 20% increase and 287 

20% decrease on the methane price and the cost of feedstock was also calculated. Cash flow 288 

analysis was performed and the resulting IRR’s were compared with the base case and are 289 

presented in Figure 7. The water volume during the washing step following the NMMO 290 

pretreatment has a large effect on the IRR. The use of more water during the washing step 291 

requires a larger and more expensive evaporation unit, which in turn results in a lower IRR. 292 

Furthermore, the price of the produced methane has a large impact on the IRR, while the cost 293 

of forest residues has a minor effect.  294 

 295 

3.3 Co-digestion scenarios 296 



11 
 

In order to achieve a proper C/N ratio, forest residues can be co-digested with other nitrogen 297 

rich substrates. Sludge from wastewater treatment (sewage sludge) has been studied as an 298 

alternative co-digestion source. Due to the high nitrogen content, one part of sewage sludge 299 

together with two parts of forest residues result in an optimum C/N ratio of about 20, compared 300 

with two parts of OFMSW and one part of forest residues in the base case (Table 3). In Sweden, 301 

biogas plants get paid for the digestion of sewage sludge (Table 1), which will increase the unit 302 

revenue. However, our calculations showed that the co-digestion with sludge results in a unit 303 

production cost of 2.78 €/kg and a unit revenue of 2.75 €/kg. The IRR of the process was 304 

calculated as being 3.52% (Table 3), which is lower than the financially feasible limit of 15% 305 

and is therefore considered to be a non-feasible solution. 306 

The process can be further designed to digest forest residues exclusively, which is not a real 307 

scenario, since it is unfavorable to digest forest residues by itself due to the low nitrogen 308 

content. However, the simulation of the pretreatment and anaerobic digestion of forest residues 309 

only can give us a better insight in the contribution of forest residues in the co-digestion process. 310 

With the exclusive digestion of forest residues, the IRR is negative (Table 3). The unit 311 

production cost has increased to 9.35 €/kg CH4, while a higher unit revenue comes from the 312 

higher fraction of lignin in the digestate residue which was sold to a combustion plant.  313 

Moreover, a sensitivity analysis has been performed in order to study the effect of different 314 

scenarios when only the forest residues are digested (Table 4). The effect of circulation of 315 

NMMO was evaluated, as well as the effect of the methane price. An increase in the 316 

recirculation of NMMO from 99.5% to 99.99% will decrease the unit production cost by a 317 

factor of three, while an increase in methane price increases the unit revenue. The unit revenue 318 

was the same as the unit production cost, after an increase of the NMMO recirculation to 319 

99.99%, together with a methane price increase of 25%. However, none of the present scenarios 320 

reached the targeted IRR of 15% (Table 4).  321 

 322 

3.4 Anaerobic digestion versus combustion 323 

The energy produced from anaerobic digestion of NMMO-pretreated forest residues can be 324 

compared with the energy production of the same amount of forest residues when incinerated. 325 

Combustion of the feedstock in a combined heat and power plant (CHP) will produce 17 MJ/kg 326 

TS, with the assumption of 90% efficiency in the CHP [35]. On the other hand, when biogas 327 
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produced from the anaerobic digestion of only forest residues is utilized in a CHP with 90% 328 

efficiency [36], the energy generated can be calculated as being 12 MJ/kg TS. This is with the 329 

assumption that the lignin-rich residue from the anaerobic digestion is combusted separately, 330 

and the energy produced by this process is included in the above-mentioned calculation. Both 331 

processes are assumed to yield similar fractions of electricity and heat. It can, therefore, be 332 

concluded that the combustion of forest residues in CHP will yield about 1.5 times more energy 333 

compared with that in the anaerobic digestion.  334 

There are another aspects that should also be considered when comparing anaerobic digestion 335 

or combustion of forest residues. Utilization of these materials for vehicle fuel production is 336 

only possible if they are converted to biogas. There is a large demand for alternative fuels 337 

produced from renewable resources worldwide, since a considerable part of the total 338 

greenhouse gas emissions originates from the transport sector [37]. Moreover, the organic 339 

nutrients cannot be retained and recycled back to soils after combustion, which in turn will 340 

result in the removal of structural material from the soil. On the other hand, the digested residue 341 

left after anaerobic digestion can be utilized as a sustainable fertilizer. Additionally, combustion 342 

is also connected with other serious problems as well, such as fly ash disposal and super heater 343 

corrosion.  344 

 345 

  346 
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4. DISCUSSION 347 

The anaerobic digestion of NMMO pretreated forest residues, co-digested with household 348 

organic wastes in the base case is an economically viable process, with an IRR over 15%. The 349 

analysis of different sections of the process shows that the price of the raw material, i.e., 350 

NMMO, used for the pretreatment has the largest share of the costs. A challenge for the future 351 

is to increase the recirculation of the NMMO, in order to limit the consumption of the raw 352 

material, and thereby the costs. Furthermore, evaporation of the washing water is a costly 353 

process, and solving the technical challenge of using less washing water should further improve 354 

the economy of the process. 355 

In order to reach a financially viable process for the digestion of pretreated forest residues, the 356 

methane price needs to be increased substantially. This could perhaps partly be reached by 357 

incentives in order to increase the fraction of renewable vehicle fuels production, together with 358 

increasing oil price. The European Commission has set the goal that by 2020, 20% of the energy 359 

consumed and 10% of the vehicle fuels should be renewable [38]. Furthermore, the cost of gas 360 

injection into the gas grid and the cost of the tank stations are probably reduced with larger 361 

plant sizes as is the case in the present study.  362 

The use of the biogas produced from the anaerobic digestion of the NMMO pretreated forest 363 

residues in a CHP plant was shown to be a less attractive alternative compared with the 364 

combustion of the same amount of forest residues. These two processes, however, produce 365 

electricity and heat, while the anaerobic digestion process produces high-valued vehicle fuel. 366 

Another advantage of producing biogas from the forest residues, compared with combustion, is 367 

that the digestion of the feedstock results in a rich solid residue. In this study, this residue is 368 

calculated as being sold to combustion plants. As an alternative, it could also be used as a 369 

nutrient rich fertilizer. The use of the solid residue as a fertilizer is a sustainable way of 370 

recycling the nutrients back into the soil, and also structural material being placed back into the 371 

soil. 372 

Compared with co-digestion of forest residues with OFMSW, the digestion of only pretreated 373 

forest residues has a negative IRR. The scenario of digesting only forest residues however, is a 374 

fictive scenario, since an optimal C/N ratio of 20-30 should be reached for a sufficient 375 

nutritional balance in the digester. Therefore, a co-digestion of nitrogen-rich substrates together 376 

with forest residues is required. Many digesters with e.g. sewage sludge or protein-rich 377 

substrates have problems with a too low C/N ratio, which means a lack of carbohydrate-rich 378 
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substrates. Addition of carbon-rich materials, such as lignocelluloses, was previously shown to 379 

both stabilize sensitive processes as well as result in good synergetic effects [39]. These 380 

synergetic effects have implied higher methane yields when a lignocellulosic-rich material (i.e., 381 

paper tube residuals) has been digested with nitrogen-rich substrate mixture compared to the 382 

expected methane production calculated from the methane potentials of the single substrate 383 

streams alone. The co-digestion of NMMO-pretreated forest residues with OFMSW has not yet 384 

been experimentally studied, but similar synergetic effects can be assumed, which can lead to 385 

higher methane yields and a more economically feasible process. The anaerobic co-digestion 386 

of pretreated lignocelluloses has not yet implemented commercially, but could emerge in the 387 

future. 388 

 389 

5. CONCLUSIONS 390 

The possible co-digestion of NMMO pretreated forest residues together with the organic 391 

fraction of municipal solid waste is an economically feasible process with an IRR over 15%. In 392 

order to avoid nitrogen deficiency, one-third of forest residues were co-digested with two- thirds 393 

of OFMSW. Technical improvements such as increased recycling rate of the NMMO solvent, 394 

as well as decreased water consumption in the washing step can further increase the economic 395 

viability of the process. The co-digestion with sewage sludge instead of OFMSW resulted in 396 

lower methane yields, which had a negative effect on the process economy. In general, the co-397 

digestion circumstances, such as the type of feedstock used in the co-digestion and the 398 

relationships between the different feedstocks have large consequences on the methane yields 399 

and thereby the process economy. 400 

 401 
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TABLE LEGENDS 508 

Table 1. Prices for raw materials, products, and utilities. 509 

Table 2. Stream components based on data obtained by batch NMMO pretreatment 510 

experiments and expressed as ton/batch. 511 

Table 3. Co-digestion scenarios with forest residues, OFMSW, and sewage sludge. 512 

Table 4. Sensitivity analysis for the digestion of forest residues only. 513 

  514 
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FIGURE LEGENDS 515 

Figure 1. Block flow diagram of the NMMO pretreatment and biogas production from forest 516 

residues within a co-digestion with OFMSW. 517 

Figure 2. Process flow diagram of the entire process. 518 

Figure 3. FCI, Fixed capital investment per section, including equipment prices, installation, 519 

instrumentation, electricity, piping, insulation, engineering and construction, contractor’s fee, 520 

and contingency. Auxiliary facilities, yard improvements, and buildings are excluded. 521 

Figure 4. Annual operating costs for the base case divided into cost items. 522 

Figure 5. Annual operating cost per section. Cost of materials is excluded. 523 

Figure 6. Sensitivity analysis of total investment and annual operating costs, as well as 524 

methane production costs, as a function of plant capacity of digested forest residues per year.  525 

Figure 7. Result of cash flow analysis. Internal rate of return before taxes (IRR) of 50% 526 

increased or decreased water consumption during washing, and of 20% increased or decreased 527 

price of methane and forest residues, compared to base case, after taxes.  528 

 529 

530 
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Table 1.  531 

Raw materials €/kg Reference 

Forest residues 0.057 Market price1 

NMMO 4.0 [6] 

OFMSW - - 

Fresh water 6.7*10-5 [6] 

Polyacrylamide 2,171 Market price2 

Sewage sludge -3.28 3 

Products   

Methane 1.895 Market price4 

Carbon dioxide 0.003 [6] 

Lignin rich digestate 0.030 Market price5 

Utilities   

Electricity 0.0346 €/kWh [28] 

Steam 0.0084 SuperPro Designer®  

Chilled water 2.28*10-4 SuperPro Designer®  

Others   

Waste water treatment 9.79*10-4 [40] 

Labor wage 70.000 €/employee/year [28] 

1Based on prices from the fourth quarter of 2011 [41], and the energy content of 1 kg 532 

branches and tops [42],  2www.alibaba.com, 3personal communication with Moshe Habagil, 533 

VIVAB, Vatten och miljö i Väst, 2013, 4methane price sold on the market (www.fordonsgas.se) 534 

minus the cost for injection and distribution into the gas grid, together with the cost for tank 535 

stations [31] and 5www.bioenergiportalen.se [41]. 536 

537 

http://www.fordonsgas.se/
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Table 2.  538 

Stream 

component 

1 2 3 4 5 6 7 8 9 10 11 

Cellulose 14.3   14.3    4.1  4.1  

Hemicellulose 7.6   7.6    2.1  2.1  

Lignin 21.0   21.0    21.0  21.0  

Ash 7.6  15.2 7.6    22.7  22.7  

Water 16.8 3.3 205.1 133.8 2166.4 1815.1 117.0 1046.9 820.8 81.1  

NMMO  3.3  666.0 662.7  666.0 3.3  3.3  

Carbohydrates   60.7     8.1  8.1  

Proteins   8.0     1.1  1.1  

Fats   17.2     2.3  2.3  

Polyacrylamide          0.9  

Methane           32.6 

Carbon dioxide           67.6 

Total 

(ton/batch) 

67.3 6.6 306.1 850.4 2829.1 1815.1 783.0 1111.6 820.8 146.8 100.2 

 539 

  540 
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Table 3.  541 

Co-digestion 

substrates 

C/N 

ratio 

Forest 

residues 

Unit prod. 

cost (€/kg 

CH4) 

Unit 

revenue 

(€/kg CH4) 

Total raw 

material (tons 

DW /year) 

IRR %4 

Forest residues + 

OFMSW 

29.51,2 33% 1.58 2.12 300,000 20.70 

Forest residues + 

Sewage sludge 

20.51,3 67% 2.78 2.75 300,000 3.52 

Forest residues 3251 100% 9.35 3.12 300,000 -100 

1C/N ratio for forest residues is set as the middle value of a range between 150-500 according 542 

to[18], 2C/N ratio for OFMSW is set as the middle value of a range between 15-32 according 543 

to [43] and 3 C/N ratio for sewage sludge is set as 5.98 according to [44], 4IRR is the internal 544 

rate of return.  545 

546 
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Table 4.  547 

Methane price NMMO 

recirculation 

Unit production 

cost (€/kg CH4) 

Unit revenue 

(€/kg CH4) 

IRR1 % 

+0% 99.5% 9.35 3.12 -100 

+0% 99.99% 3.21 3.12 -100 

+25% 99.99% 3.21 3.21 4.30 

+50% 99.99% 3.21 3.69 11.0 

1IRR is the internal rate of return.  548 

 549 

  550 
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 551 

Figure 1.  552 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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